基于3D⁃CA⁃GAN的岩石体纹理合成技术
段炼 , 冯云 , 花卫华 , 陈启浩 , 刘修国 , 张坤 , 付伟
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4499 -4513.
基于3D⁃CA⁃GAN的岩石体纹理合成技术
Rock Solid Texture Synthesis Based on 3D⁃CA⁃GAN
,
,
基于二维样本(深度学习)的体纹理合成是一种重要的岩石体纹理生成途径,目前岩石体纹理合成存在无法长距离依赖和颜色失真的问题.提出一种基于三维坐标注意力生成对抗网络(3D-Coordinate Attention Generative Adversarial Network, 简称3D-CA-GAN)的创新方法.通过将坐标注意力机制(Coordinate Attention, 简称CA)扩展至三维空间,结合内容感知上采样模块和多尺度判别器,实现了矿物颗粒空间分布的高保真建模.实验表明,该方法在SSIM(0.773)、PSNR(提升24.92%)和LPIPS(降低0.110)等指标上显著优于现有技术,消融实验进一步验证3D-CA模块使方向性纹理的SSIM提升14.69%.本研究为地质建模提供了具有真实感纹理合成的新解决方案,其三维注意力框架对通用生成任务具有借鉴意义.
Solid texture synthesis based on 2D samples (deep learning) is an important pathway for rock solid texture generation, which currently suffers from the inability of long distance dependence and color distortion. In this paper, it proposes an innovative method based on 3D coordinate attention generative adversarial network (3D-CA-GAN). By extending the coordinate attention mechanism to three-dimensional space (3D-CA) and combining the content-aware upsampling module and multi-scale discriminator, high-fidelity modeling of the spatial distribution of mineral particles is achieved. Experiments show that the method significantly outperforms existing techniques in terms of SSIM (0.773), PSNR (24.92% enhancement), and LPIPS (0.110 reduction), and ablation experiments further validate that the 3D-CA module improves the SSIM of directional textures by 14.69%. This study provides a new solution to texture synthesis with realism for geological modeling, and its 3D attention framework is useful for generic generation tasks.
岩石 / 体纹理 / 混合空洞卷积 / 注意力模块 / 3D⁃CA⁃GAN / 三维建模.
rocks / solid texture / hybrid dilated convolution / attention module / 3D⁃CA⁃GAN / 3d⁃modeling
| [1] |
Cao, T. S., Kreis, K., Fidler, S., et al., 2023. TexFusion: Synthesizing 3D Textures with Text⁃Guided Image Diffusion Models. IEEE International Conference on Computer Vision (ICCV), Paris, 4169-4181. https://arxiv.org/abs/2310.13772 |
| [2] |
Du, S. P., Hu, S. M., Martin, R. R., 2013. Semiregular Solid Texturing from 2D Image Exemplars. IEEE Transactions on Visualization and Computer Graphics, 19(3): 460-469. https://doi.org/10.1109/TVCG.2012.129 |
| [3] |
Fu, J. M., Hu, M. S., Fang, F., et al., 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176 (in Chinese with English abstract). |
| [4] |
Gatys, L. A., Ecker, A. S., Bethge, M., 2015. Texture Synthesis Using Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS), La Jolla, 1-9. https://doi.org/10.5555/2969239.2969269 |
| [5] |
Gatys, L. A., Ecker, A. S., Bethge, M., 2016. Image Style Transfer Using Convolutional Neural Networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2414-2423. https://doi.org/10.1109/CVPR.2016.265 |
| [6] |
Gulrajani, I., Ahmed, F., Arjovcky, M., et al., 2017. Improved Training of Wasserstein GANs. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 5769-5779. https://doi.org/10.5555/3295222.3295327 |
| [7] |
Gutierrez, J., Rabin, J., Galerne, B., et al., 2020. On Demand Solid Texture Synthesis Using Deep 3D Networks. Computer Graphics Forum, 39(1): 511-530. https://doi.org/10.1111/cgf.13889 |
| [8] |
Heeger, D. J., Bergen, J. R., 1995. Pyramid⁃Based Texture Analysis/Synthesis. Proceedings of the22nd Annual Conference on Computer Graphics and Interactive Techniques, New York,229-238. https://doi.org/10.1145/218380.218446 |
| [9] |
Henzler, P., Mitra, N. J., Ritschel, T., 2020. Learning a Neural 3D Texture Space from 2D Exemplars. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 8353-8361. https://doi.org/10.1109/cvpr42600.2020.00838 |
| [10] |
Hou, Q. B., Zhou, D. Q., Feng, J. S., 2021. Coordinate Attention for Efficient Mobile Network Design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 13708-13717. https://doi.org/10.1109/CVPR46437.2021.01350 |
| [11] |
Hua, W. H., Xiao, Y. N., Wang, Z. J., et al., 2022. Real⁃Time Generation Technology of Vector Geological Profile Based on 3D Geological Model. Earth Science, 47(11): 4256-4266 (in Chinese with English abstract). |
| [12] |
Huo, D., Guo, Z. X., Zuo, X. X., et al., 2024. TexGen: Text⁃Guided 3D Texture Generation with Multi⁃View Sampling and Resampling. In: Leonardis, A., Ricci, E., Roth, S., eds., Computer Vision⁃ECCV 2024. Springer, Cham, 352-368. https://doi.org/ 10.1007/978⁃3⁃031⁃72920⁃1_20 |
| [13] |
Kwatra, V., Essa, I., Bobick, A., et al., 2005. Texture Optimization for Example⁃Based Synthesis. ACM SIGGRAPH 2005 Papers,Los Angeles, 795-802. https://doi.org/10.1145/1186822.1073263 |
| [14] |
Peachey, D. R., 1985. Solid Texturing of Complex Surfaces. ACM SIGGRAPH Computer Graphics, 19(3): 279-286. https://doi.org/10.1145/325165.325246 |
| [15] |
Perlin, K., 1985. An Image Synthesizer. ACM SIGGRAPH Computer Graphics, 19(3): 287-296. https://doi.org/10.1145/325165.325247 |
| [16] |
Portenier, T., Bigdeli, S., Goksel, O., 2020. GramGAN: Deep 3D Texture Synthesis from 2D Exemplars. Proceedings of the 34th International Conference on Neural Information Processing Systems, Montreal, 6994-7004. https://doi.org/10.5555/3495724.3496311 |
| [17] |
Qian, Y. L., Shi, J., Sun, H. Q., et al., 2023. Vector Solid Texture Synthesis Using Unified RBF⁃Based Representation and Optimization. The Visual Computer, 39(9): 3963-3977. https://doi.org/10.1007/s00371⁃022⁃02541⁃y |
| [18] |
Qian, Y. L., Shu, Y., Sun, H. Q., et al., 2015. Vector Solid Texture Synthesis Using Two⁃Scale Shaping Model. Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology,Beijing, 27-36. https://doi.org/10.1145/2821592.2821605 |
| [19] |
Shaham, T. R., Dekel, T., Michaeli, T., 2019. SinGAN: Learning a Generative Model from a Single Natural Image. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 4569-4579. https://doi.org/10.1109/iccv.2019.00467 |
| [20] |
Tai, W. X., Zhou, Q., Yang, C. F., et al., 2023.3D Geological Visualization Modeling and Its Application in Zhexiang Gold Deposit, Southwest Guizhou Province. Earth Science, 48(11): 4017-4033 (in Chinese with English abstract). |
| [21] |
Wang, J. Q., Chen, K., Xu, R., et al., 2022. CARAFE: Unified Content⁃Aware Re⁃Assembly of FEatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 4674-4687. https://doi.org/10.1109/TPAMI.2021.3074370 |
| [22] |
Wang, P. Q., Chen, P. F., Yuan, Y., et al., 2018. Understanding Convolution for Semantic Segmentation. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 1451-1460. https://doi.org/10.1109/WACV.2018.00163 |
| [23] |
Xiao, H. G., He, L., Zheng, Y. L., et al., 2022.3D Solid Digital and Numerical Modeling of Multimineral Heterogeneous Rocks Based on Deep Learning. Geomechanics and Geophysics for Geo⁃Energy and Geo⁃Resources, 8(6): 188. https://doi.org/10.1007/s40948⁃022⁃00495⁃y |
| [24] |
Zirek, S., 2023. Synthesising 3D Solid Models of Natural Heterogeneous Materials from Single Sample Image, Using Encoding Deep Convolutional Generative Adversarial Networks. Systems and Soft Computing, 5: 200051. https://doi.org/10.1016/j.sasc.2023.200051 |
| [25] |
Zhang, R., Isola, P., Efros, A. A., et al., 2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 586-595. https://doi.org/10.1109/CVPR.2018.00068 |
| [26] |
Zhao, X., Guo, J. F., Wang, L., et al., 2023. STS⁃GAN: Can We Synthesize Solid Texture with High Fidelity from Arbitrary 2D Exemplar? In: Proceedings of the Thirty⁃Second International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization, Macao, 1768-1776. https://doi.org/10.24963/ijcai.2023/196 |
中铁第一勘察设计院集团有限公司科研项目(2022KY53ZD(CYH)⁃10)
中国铁建股份有限公司重大专项(2024⁃W04)
/
| 〈 |
|
〉 |