丽江盆地早三叠世砂岩物源特征及其对扬子西南构造的约束

朱民 ,  孟立丰 ,  李也 ,  陈新伟 ,  吴鸿翔

地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4424 -4441.

PDF (3342KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4424 -4441. DOI: 10.3799/dqkx.2025.138

丽江盆地早三叠世砂岩物源特征及其对扬子西南构造的约束

作者信息 +

Provenance of Early Triassic Clastic Rocks and Its Constraint on Tectonic Evolution of Lijiang Basin, Upper Yangtze Block

Author information +
文章历史 +
PDF (3421K)

摘要

丽江盆地作为扬子西南边缘地区多板块交汇带,对其下三叠统沉积物源的研究可掲示扬子西南地区的沉积“源‒汇系统”及其与西部冈瓦纳弧盆体系的时空关系.野外观测与镜下鉴定显示鹤庆腊美组砂岩均来自近距离的长英质火山岩物质,且碎屑锆石分别呈现~254 Ma和~255 Ma单一年龄峰值,与峨眉山大火成岩省中酸性岩浆活动时间一致,与板内/非造山环境岩浆锆石具有锆石微量元素一致性,而区别于弧造山带; Lu-Hf同位素εHft)值表明其与峨眉山大火成岩省的长英质岩类有关系;全岩地球化学数据显示腊美组与峨眉山流纹岩、粗面岩、正长岩具有主微量元素一致的特征.综合分析得腊美组物源来自近源搬运的峨眉山流纹岩、粗面岩和正长岩.早三叠世期间丽江盆地仍为被动陆缘沉积,主要接受来自峨眉山大火成岩省的物质,无西部弧盆体系物质来源.

Abstract

Lijiang basin is a multi-plate confluence zone located in the southwestern margin of the Yangtze block. The study for the provenance of the Lower Triassic reveals the source-sink system of the southwestern Yangtze block and its spatio-temporal relationship with the western Gondwana arc basin system. Field observations and microscopic identification show that the sandstones of the Lamei Formation in Heqing region are mainly derived from the proximal transport of felsic volcanic rocks. The detrital zircons exhibit single age peaks of ~254 Ma and ~255 Ma, corresponding to the timing of felsic magmatic activity in the Emeishan Large Igneous Province (ELIP), and are consistent with interior/non-orogenic magmatic zircon trace element signatures, distinguishing them from those in arc orogenic belts. The εHf(t) values of the Lu-Hf isotopic analysis indicate the provenance of the sandstones of Lamei Formation are from the felsic rocks of the ELIP. Whole-rock geochemical data show that the Lamei Formation shares similar trace element characteristics with the Emeishan rhyolites, porphyries and syenites. A comprehensive analysis suggests that the materials of the Lamei Formation originate from the proximal transport of rhyolite, trachyte and syenite from ELIP. During the Early Triassic, the Lijiang basin functioned as a passive continental margin sedimentation area, primarily receiving materials from the ELIP, with no contributions from the western arc-basin system.

Graphical abstract

关键词

下三叠统 / 丽江盆地 / 物源分析 / 碎屑锆石U⁃Pb / 年代学 / 全岩地球化学 / Lu⁃Hf / 同位素.

Key words

Lower Triassic / Lijiang basin / provenance analysis / detrital zircon U⁃Pb age / chronology / whole⁃rock geochemistry / Lu⁃Hf / isotope

引用本文

引用格式 ▾
朱民,孟立丰,李也,陈新伟,吴鸿翔. 丽江盆地早三叠世砂岩物源特征及其对扬子西南构造的约束[J]. 地球科学, 2025, 50(11): 4424-4441 DOI:10.3799/dqkx.2025.138

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

晚古生代末‒早中生代早期,扬子板块西南经历了西部古特提斯洋俯冲‒闭合(Zi et al., 2012; Metcalfe, 2013)引起的盆‒山演化及峨眉山大火成岩省(ELIP)构造岩浆热事件(Chung and Jahn, 1995Xu et al., 2001,2010Shellnutt et al., 2009Hei et al., 2018),导致扬子西部由冈瓦纳(羌塘‒中咱‒印支等)多弧盆体系(潘桂棠等,2001)为基础的三江造山带的逐步形成,以及响应性的川西南、盐源‒丽江、楚雄等前陆盆地的诞生(Zhao and Coe, 1987;潘桂棠等, 2001;雷永良等,2010;Dong et al., 2011Chen et al., 2020).丽江盆地在此期间由早中三叠世的被动陆缘沉积转化为晚三叠世的前陆盆地沉积(崔克信,2004;马永生等,2009)并被较为完整的保留下来,记录了其周缘地质事件关键的源‒汇信息,是分析扬子及其西部盆山演化的重要窗口(Burchfiel and Chen, 2013).古特提斯洋闭合相关火成岩年代学(Wang et al., 2014)及古地磁数据(李朋武等,2009)显示扬子西南与冈瓦纳弧盆系碰撞具有南早(滇南,早三叠世印度期)北(川西北甘孜‒理塘,晚三叠世卡尼期)晚穿时性.毗邻盆地东侧的康滇古陆在中生代期间始终处于抬升状态,其上覆ELIP被认为可能与其两侧盆地的形成存在密切联系(Xu et al., 2001; 何斌等, 2006; Zhu et al., 2018Huang et al., 2022b).因此,丽江盆地早三叠世物源来自何处,沉积物质组成如何,是否已经开始接受来自西部冈瓦纳弧盆系的物质,可反映扬子西北地区与冈瓦纳碰撞的时限和地点,关系到其是否开始受西部三江造山带初始隆升的影响和控制.

已报道基于全岩地球化学与碎屑锆石U⁃Pb年代学成果表明扬子西南川、滇、黔地区早三叠世飞仙关组(张英利等, 2016; Zhu et al., 2018Meng et al., 2022; 周寅生等,2022; 邓旭升等,2025)、青天堡组(朱民等,2016; 韩超,2023)碎屑岩具有部分相似的沉积学建造、砂岩碎屑组分以及年代学特征,体现在砂岩组分中较高的各类板条状、微晶状火山岩屑(含量40%以上),一定含量的石英和长石(5%~20%)及碳酸盐岩组分(10%~20%),以及以不透明矿物(磁铁矿、赤褐铁矿)为特点的填隙物,同时以247~268 Ma年龄的且多集中在~256至~261 Ma单峰值、部分伴有零星的新元古代颗粒(700~1 000 Ma) 碎屑锆石年代学(宋芳等,2024)为特点,并伴有部分相似的全岩地球化学属性,多元证据均一致指向扬子板内的峨眉山大火成岩省(ELIP)火山岩物源,且主要为其位列中部序列的高钛玄武岩(Xu et al., 2001; 周寅生等,2022; 韩超,2023; 邓旭升等,2025),而与西部的三江造山带无关(朱民等,2016; Zhu et al., 2018).丽江盆地早三叠世沉积特征和砂岩物质组成如何,物源来自扬子板内还是与西部冈瓦纳弧盆系有关,目前尚未清楚.故需要结合丽江盆地下三叠统沉积学特征、砂岩碎屑组分、全岩地球化学和碎屑锆石年代学,结合锆石微量元素以及Hf同位素进一步分析,探讨其物源特征及其相应的构造演化过程.

1 区域地质背景

丽江盆地位于扬子板块西南边缘,西部紧邻羌塘‒昌都板块和中咱地块(图1c),北部近维西‒木里一带与义墩岛弧相望,南部延伸至大理‒临沧一线,东部以深大断裂与康滇古陆相隔,东北部大致以宁蒗‒永胜一线为边界(四川省地质矿产研究所专题研究组,1987) 与盐源盆地相连,地处多板块汇聚拼合带(图1d).区内三叠系下、中、上统出露齐全,分布广泛,其中下统为暗紫红色至灰色的滨浅海相碎屑岩(四川省地质矿产研究所专题研究组,1987),西、北较厚,南、东较薄.位于盆地内部的下三叠统(T1)在云南永胜、宁蒗、丽江、鹤庆、大理等地区为一套碎屑岩沉积,富含瓣鳃类Eumorphotis inaequiostata及植物化石,向东与四川盐源甲米地区青天堡组相连;在丽江大东‒宁蒗马家村一线以北,永宁‒三江口以南地区则为一套碳酸盐岩沉积,并含Claraia wangi组合瓣鳃类、上部含Eumorphotis multiformis等化石,向东与盐源左所连为一片.其中剖面出露较好的鹤庆地区下三叠统砂岩从古生物组合与盐源、大理地区的青天堡组、川黔一带地区飞仙关组、永宁镇组乃至义敦、马尔康、雅江地区下三叠统皆可对比,同属于印度‒奥伦尼克期.鹤庆下三叠统目前尚未有正式命名,早期呈分别被称为“丽江群”和“白山洛可组”,现已废弃.考虑到鹤庆与丽江地区下三叠统相连且具有可对比性,故沿用丽江地区的“腊美组(T1l)”作为本研究的组名.腊美组虽与周围同期沉积古生物可对比,但其砂岩碎屑组分、野外露头沉积特点与构造特征却和其他组别不尽相同,意味着其物质组成和来源与其他地区可能存在差异,需要个体化深入分析.

本次研究分布于鹤庆县城所在地以西以南约20 km的后本菁(图3d)和吉地坪村(图3a)紫红色碎屑岩,厚度多在350 m以上,主体为一套中粒砂岩夹泥页岩,报道显示其底部存在一套约10 m厚的砾岩与二叠系玄武岩组或黑泥哨组(P2h)呈平行不整合接触,顶部与上覆中三叠世北衙组一段整合接触(云南省地质局,1966).野外测量吉地坪村(图2a)及后本菁村(图2b)剖面.两者总厚度野外观测分别为470 m和368 m,具有相似的沉积构造和岩石组成,总体呈中厚层中细粒砂岩夹薄层泥页岩组合,风化破碎较明显,局部可见交错层理,后本菁较吉地坪剖面更明显(图3a, 3c);主要为中细粒岩屑砂岩,野外剖面底部未见砾岩,底部至顶部粒度大致由粗到细,但不明显,吉地坪剖面细粒砂岩和泥页岩主要赋存于剖面顶部,后本菁剖面则存于剖面中部.

2 样品和实验方法

本次研究采集野外新鲜吉地坪和后本菁剖面腊美组中粒砂岩各一份,用以进行砂岩碎屑组分鉴定、砂岩碎屑锆石U⁃Pb定年、Hf同位素分析,两个剖面另采集各5份细砂岩、粉砂‒泥页岩进行全岩地球化学分析.砂岩碎屑组分样品前期碎样和薄片加工在廊坊市诚信地质公司完成,镜下鉴定及统计在浙江大学地球科学部岩石实验室完成.依据Gazzi⁃Dickinson砂岩碎屑颗粒统计模型,除样品需要新鲜及颗粒方便识别的要求外,砂岩中杂基或胶结物含量须小于25%,且不能有过高碳酸盐颗粒.碎屑锆石制靶和实验以及Hf同位素测试在廊坊诚信地质有限公司完成.锆石定年采用Thermofisheri CAP RQ型ICPMS及与之配套的Cetea Analyte HE激光剥蚀系统.采用单点剥蚀方式,激光剥蚀所用斑束直径为25 μm,U⁃Pb定年测试采用人工合成的硅酸盐玻璃NIST 610和NIST 612作为外标进行元素校正(Pearce et al., 1997),以国际标准锆石91500样品作为外标进行U⁃Pb同位素分馏效应校正.每测定6个样品前后重复测定两个标准锆石91500对样品进行校正,并使用Plesovice作为监控测试的准确度和精度.后采用GLITTER(4.0)程序处理数据,各样品的加权平均年龄计算及谐和图的绘制采用Isoplot 4.15程序计算,锆石年龄核密度估计图(Kernel Density Estimates,KDE)采用Density Plotter 8.4(Java)完成.对于测试年龄大于1 000 Ma的样品,因具有放射性的Pb大量存在而应用207Pb/ 206Pb的表面年龄;对于小于1 000 Ma的样品因其Pb含量少和Pb校正的不稳定性,采用206Pb/238U的表面年龄.不谐和度大于10%或普通铅校正大于2%的数据不予应用.Hf同位素则以193 nm ArF 准分子激光剥蚀系统和多接收器型号电感耦合等离子体质谱仪(MC⁃ICP⁃MS),使准分子激光发生器产生的深紫外光束经匀化光路聚焦于锆石表面,能量密度为3.5 J/cm2,束斑直径为50 μm,频率为8 Hz,共剥蚀40 s,剥蚀气溶胶由氦气送入MC⁃ICP⁃MS完成测试.测试过程中每隔5颗样品锆石,依次测试1颗标准锆石(包括GJ⁃1、91500、Plešovice、Mud Tank、Penglai),以检验锆石Hf同位素比值数据质量.全岩地球化学实验在廊坊诚信地质公司完成测试.将野外采集2个剖面合计10份样品进行清理,剔除其表面风化部分并粉碎,得到200目以下规格,研磨后测试,分析误差小于5%.

3 结果

3.1 砂岩碎屑组分特征

(1)鹤庆吉地坪(样品23⁃3⁃1)砂岩. 砂岩由石英(含量~5%)、长石(含量~5%)、岩屑(含量~60%)和填隙物(含量~30%)组成,偶见黑云母(图3b, 3c).呈不规则粒状,磨圆度较差,次棱角状为主,具波状消光,粒径为0.06~0.50 mm.钾长石(Kfs)含量多于斜长石(Pl)且土化蚀变,粒径与石英相当.斜长石为板条状、次棱角状‒次圆状,具聚片双晶,有绢云母化、土化蚀变.黑云母为片状,具褐黄‒浅褐黄多色性,平行消光,片径(长向方向)在0.10~0.40 mm.岩屑形状不规则,岩屑粒径均为0.10~0.40 mm,磨圆度较好,次圆状为主,主要为长英质(Lvf)和微晶状火山岩屑(Lvm),包括中酸性喷出岩、花岗岩、凝灰岩,未见板条状火山岩屑(Lvl),另同时见石英岩、泥质粉砂岩岩屑.填隙物有同成分机械碎细物、云母、粘土矿物和不透明矿物.孔隙式胶结,云母为鳞片状,可能为火山尘蚀变产物,含量约为15%.粘土矿物颗粒微细,集中不均匀分布,含量约为5%.不透明矿物为不规则粒状,不显光性,粒径为0.02~ 0.15 mm,散状分布,为赤、褐铁矿,含量小于5%.偶见鳞片状海绿石,绿色,干涉色受自身颜色影响,呈不规则状集合体分布,集合体粒径0.15 mm砂岩碎屑颗粒计点统计显示吉地坪腊美组的碎屑颗粒共计901颗(附表1),其中石英Q(Qm+Qp)共计192粒,长石F为160粒,岩屑为549粒.

(2)鹤庆后本菁(样品23⁃3⁃5)砂岩.砂岩由石英(含量~10%)、长石(含量~5%)、岩屑(含量~65%)和填隙物(含量~20%)组成(图3e, 3f).石英为他形粒状,磨圆度一般,次棱角状‒次圆状,无色透明,具波状消光,粒径为0.06~0.50 mm.长石以钾长石(Kfs)为主,轻微土化蚀变,少量斜长石(Pl),具聚片双晶,有绢云母化、土化蚀变,为板条状、不规则粒状,粒径与石英相当,磨圆度一般,次棱角状‒次圆状.岩屑形状不规则,磨圆度较好,次圆状为主,主要为长英质(Lvf)和微晶状火山岩屑(Lvm),成分有中酸性喷出岩、凝灰岩、石英岩等,粒径为0.10~0.60 mm.填隙物有同成分机械碎细物、火山尘、粘土矿物和不透明矿物(赤褐铁矿).孔隙式胶结,火山尘多已脱玻化,含量不足5%.粘土矿物颗粒微细,不均匀分布且含量不足5%.不透明矿物为不规则粒状,不显光性,填隙状分布,含量约为10%.偶见鳞片状海绿石,绿色,呈不规则状集合体分布,集合体粒径为0.20 mm.砂岩碎屑颗粒计点统计显示后本菁腊美组的碎屑颗粒共计938颗(附表1),其中石英Q(Qm+Qp)共计222粒,长石F为157粒,岩屑为559粒.

3.2 锆石LA⁃ICP⁃MS U⁃Pb 年龄、锆石微量元素及Lu⁃Hf同位素特征

3.2.1 鹤庆吉地坪砂岩

砂岩样品(23⁃3⁃1) 搜集76个点中共获得谐和度大于等于90%的有效年龄数据(图5a, 5b),其U⁃Pb年龄变化范围为239~ 264 Ma,呈现单一主峰为~254 Ma,无零散年龄颗粒(附表4).锆石颗粒形态总体呈现颗粒状和短柱状,晶型颗粒完整,次棱角‒次圆状,局部可见破碎带和包裹体颜色较暗,环带发育,粒径大部分在100~120 μm,长宽比在1.5∶1~1.8∶1(图4a),Th/U 比值均>0.1(图5a).对所有测试的77个点进行微量元素测试分析(附表5),所有锆石颗粒显示明显的Eu负异常,其中62颗锆石具有轻稀土亏损、重稀土富集且曲线明显上倾的特征,伴有明显的Ce、Sm正异常,显示典型的岩浆来源(Corfu, 2003Hoskin, 2003);14颗锆石颗粒(如图4a中9号、79号)显示Ce略正异常、轻稀土与重稀土均富集且分别呈下倾和上倾曲线的特征(图6a),见核边和增生结构颗粒,显示非典型岩浆锆石.76颗锆石微量元素测定结果显示Nb含量为2.34×10-6~114.95×10-6,Hf含量为6 206.7×10-6~11 322×10-6,Th含量为23.78×10-6~681.46×10-6,U含量为43.79×10-6~924.94×10-6,Ta含量为0.92×10-6~16.69×10-6,Zr含量为0.40~0.46.Th/Nb比值为1.67~31.19,Hf/Th比值为14.26~305.97, Nb/Hf比值除一粒锆石(0.02)外,均小于0.01,Th/U比值为0.33~12.61,Nb/Ta比值为2.52~13.81,Zr/Hf比值为37.81~70.82.上述14颗锆石的La元素含量较高,为4.13~990.59,Th/U比值为0.41~1.42,数值并不分散,Nb/Ta比值为2.57~7.64,平均值为4.16, Zr/Hf比值为40.67~64.64,平均值为56.72,数值较为均一.而岩浆锆石Nb/Ta比值为1.0~4.6,变质锆石为0.3~1.3(Tomaschek et al., 2003),考虑到其重稀土含量不低(李长民,2009),因而并不考虑变质锆石.结合其稀土元素配分模式图以及阴极发光图特征,推测其为岩浆锆石后期受热液改造导致的轻稀土富集,其中高La元素含量应与其内包裹体有关(Zhong et al., 2018Zou et al., 2019).

样品23⁃3⁃1中的249~263 Ma 年龄10个锆石颗粒作Lu⁃Hf同位素测试(附表8).除了一个锆石的176Lu/177Hf>0.002(样品23⁃3⁃1⁃2, 0.002 199)外,其余9个锆石颗粒的176Lu/177Hf比率均小于0.002.这一观察结果表明,在锆石形成后Hf的累积可以忽略不计,所测量的Hf同位素可能反映出锆石系统在其形成时的特征(Wu et al., 2008).碎屑锆石表现出εHft)值和TDM年龄的范围.249~263 Ma的锆石的176Hf/177Hf为0.282 634~0.282 807,对应的εHft)为0.5~6.7(图7b),TDM为636~859 Ma,TDMC为856~1 244 Ma,fLu/Hf的平均值为-0.96.

3.2.2 鹤庆后本菁砂岩

砂岩样品(23⁃3⁃5) 中共计75个点获得谐和度大于等于90%的有效年龄数据(图5c, 5d),其U⁃Pb年龄变化范围为243~808 Ma,主峰值呈现较为单一年龄峰为~255 Ma,另有706 Ma和808 Ma零散年龄2颗分布(附表6).锆石颗粒形态总体呈现颗粒状和短柱状,晶型颗粒完整,次棱角状,局部可见破碎带,颜色较暗,环带发育,粒径大部分在80~110 μm,长宽比在1.8∶1~1.2∶1(图4b),Th/U 比值均>0.1(图5b).在对所有测试的75个点进行微量元素测试分析,结果见附表7.所有锆石颗粒显示明显的Eu负异常,61个锆石颗粒具有自La至Lu元素的显著增长特征,曲线为明显的上倾,显示为Ce、Sm正异常,显示高温岩浆来源(Corfu, 2003Hoskin et al., 2003);1颗锆石(图4b中45号)显示轻稀土富集的下倾曲线以及重稀土上倾曲线特征;13颗粒锆石(如图4b中9号、38号)显示轻稀土较为富集和平坦,Ce、Sm略微正异常,以及重稀土上倾曲线的特征(图6b).所有75颗锆石微量元素测定显示Nb含量为1.48×10-6~99.27×10-6,Hf含量为5 639.4×10-6~11 370×10-6,Th含量为20.11×10-6~747.18×10-6,U含量为33.09×10-6~939.06×10-6, Th/Nb比值为1.78~195.71,Hf/Th比值为10.02~401.08,Nb/Hf比值除2粒锆石(0.01)外,均小于0.01,Th/U比值为0.44~4.66,Nb/Ta比值为2.23~6.62,Zr/Hf比值为40.88~73.80.上述14颗锆石的La元素含量较高,为5.87~223.74,Th/U比值为0.53~1.11,数值并不分散,Nb/Ta比值为2.46~6.62,平均值为3.75, Zr/Hf比值为49.20~73.80,平均值为61.28.显示其重稀土含量不低(李长民,2009),因而并不考虑变质锆石.结合其稀土元素配分模式图以及阴极发光图特征,推测其与吉地坪砂岩锆石类似,均为后期受热液改造的岩浆锆石.

样品23⁃3⁃5中选取8个248~262 Ma锆石颗粒作Lu⁃Hf同位素测试(附表9).除了一个锆石的176Lu/177Hf>0.002(样品23⁃3⁃5⁃3, 0.002 221)外,其余7个锆石颗粒的176Lu/177Hf比率均小于0.002.这一观察结果表明,在锆石形成后Hf的累积可以忽略不计,所测量的Hf同位素可能反映出锆石系统在其形成时的特征(Wu et al., 2008).碎屑锆石表现出εHft)值和TDM年龄的范围.248~262 Ma的锆石的176Hf/177Hf为0.282 606到0.282 782,对应的εHft)为-0.5到5.9(图7b),TDM为709~932 Ma,TDMC为908~1 313 Ma,fLu/Hf的平均值为-0.95.

3.3 全岩地球化学特征

3.3.1 鹤庆吉地坪腊美组样品

腊美组的细砂岩、粉砂‒泥岩(样品23⁃3⁃1)5个样品与后元古代澳大利亚页岩(PAAS)相比,表现出略低的SiO2(56.18%~67.86%, 平均值为62.25%, PAAS=62.8%)、Al2O3(13.42%~16.57%, 平均值为14.95%, PAAS=18.9%)、MgO (0.76%~1.65%, 平均值为1.19%, PAAS=2.20%),略高的Fe2O3(5.02%~9.01%, 平均值为7.59%, PAAS=7.22%) 、Na2O(1.12%~1.66%, 平均值为1.38%, PAAS=1.2%)和较高的K2O(5.4%~7.5%, 平均值为6.10%, PAAS=3.7%)含量,全碱(Na2O+K2O) (5.95%~8.97%, 平均值为7.48%, PAAS=4.9%)高.Al2O3/SiO2=0.24,小于PAAS的0.30,显示成熟度略低,同时CaO含量极低(0.28%, PAAS=1.3%).

样品的微量元素测试结果如附表2.微量元素蛛网图(图8a)显示砂岩样品除Rb、Ba、Th、U、Sr等大离子亲石元素外,其余元素含量相对于上地壳明显富集,同时伴有Ba、Sr和Ti的负异常;样品的球粒陨石标准化REE配分模式(图8c)显示Eu/Eu*=0.61~0.63,负Eu异常并不明显,(La/Yb)N=7.38~9.03,平均值为8.19,呈轻稀土略微富集,重稀土较为平坦的分布模式.

3.3.2 鹤庆后本菁腊美组样品

后本菁粉砂岩‒泥岩(样品23⁃3⁃5)5个样品(附表3)表现出较后元古代澳大利亚页岩(PAAS)相比略高的SiO2(65.17%~71.58%, 平均值为66.62%, PAAS=62.8%)和Fe2O3(5.95%~9.48%, 平均值为7.68%, PAAS=7.22%),略低的Al2O3(11.85%~13.50%, 平均值为13.00%, PAAS=18.9%),较高的K2O(5.36%~6.68%, 平均值为6.28%, PAAS=3.7%),较低的Na2O(0.14%~1.26%, 平均值为0.56%, PAAS=1.2%)和MgO (0.32%~1.16%, 平均值为0.69%, PAAS=2.20%), 全碱(Na2O+K2O)平均含量(5.50%~7.66%, 平均值为6.85%, PAAS=4.9%)较高,Al2O3/SiO2=0.20,小于PAAS的0.30,显示成熟度略低,同时CaO含量低(0.31%, PAAS=1.3%).

样品的微量元素测试结果如附表2.微量元素蛛网图(图8b)显示砂岩样品除大离子亲石元素外,其余元素含量相对于上地壳明显富集,同时伴有Ba、Sr和Ti的负异常;样品的球粒陨石标准化REE配分模式(图8d)显示Eu/Eu*=0.61~0.63,平均值为0.55,负Eu异常并不明显,(La/Yb)N=7.15~8.18,平均值为7.58,显示轻稀土略微富集,重稀土较为平坦的分布模式.

4 讨论

4.1 腊美组砂岩的古风化特征

碎屑颗粒的风化、剥蚀作为沉积“源‒汇系统”(source⁃to⁃sink system)分析至关重要的因素,需要多方考虑.源岩的化学风化强度受其化学成分、风化持续时间、气候条件以及大地构造等因素控制(何谋惷等,2023).碎屑颗粒在源岩风化过程中,Na、K、Ca元素被大量释放,其在风化壳或沉积物中的残留量是源岩化学风化强度评价的敏感指标(Nesbitt et al.,1997).沉积岩的化学变异指数(CIA) 作为反映沉积岩源区化学风化作用程度 (Nesbitt and Young, 1982)参数,可定性反映古气候环境,并在粒度不同碎屑岩及火成岩、变质岩中均有报道.CIA值以80和60为界,大于80(CIA=80~100)表明较强源区风化作用,介于60~80(CIA=60~80)表明风化强度中等,小于60则表明初级风化强度.CIA联合A⁃CN⁃K判别图(Fedo et al., 1995)可对物源风化作用趋势及其源岩成分追溯(Nesbitt and Young, 1982),并能较好分析母岩地球化学组分.沉积岩成分变异指数ICV(Cox et al., 1995)代表细碎屑岩沉积物成分成熟度,其值以1为界,大于1表明岩石成分不成熟,代表活动构造环境中的初次沉积,小于1则显示为岩石处于较为平静的构造活动环境,同时再循环程度较强.另外,沉积岩全岩微量元素的Th/U⁃Th比值与风化作用强度呈正相关,不同比值掲示不同源区背景及风化强度(McLennan, 1993).腊美组10个细碎屑岩样品显示CIA值范围为62.79~69.58,平均值为65.27,投点于A⁃CN⁃K判别图中等强度风化区域且呈非线性式分布,其ICV值显示范围为1.12~1.57,均大于1,表明其岩石成分不成熟,形成于活动构造环境中的初次沉积;同时源岩经历了中等强度的化学风化,且风化程度趋向一致.腊美组80%的样品Th/U比值为3.80~4.83,平均值为4.09,大于UCC的3.80,表明其离源岩区较近且经历了较强的构造抬升运动并接受快速剥蚀沉积,也侧面反映了其碎屑岩组分不成熟(图9).

4.2 腊美组物源综合分析

峨眉山大火成岩省主要由玄武岩、超基性‒基性侵入岩、正长岩、粗面岩、流纹岩和花岗质岩石组成(Xu et al., 2001,2010Xiao et al., 2004Zhou et al., 2006Huang et al., 2022b).腊美组砂岩碎屑组分均以少石英、长石,多岩屑特别长英质和微晶状火山岩屑,未见明显板条状岩屑及碳酸盐岩颗粒,结合其石英和长石颗粒均次棱角状.Gazzi⁃Dickinson砂岩碎屑组分投点Q⁃F⁃L图(图10a)和Qm⁃F⁃Lt图(图10b)腊美组均落在岩浆弧物源区,其中Qm⁃F⁃Lt图中,投点区域位于岩浆弧物源中的火山岩物质为主、侵入岩物质为辅的区域(V>P),显示物源与火山喷发物质有较多关联性,与薄片镜下鉴定结论一致.观察野外剖面沉积学特征,反映腊美组两个剖面来源具有同一性且为搬运距离不远的长英质岩浆岩.

两个样品碎屑锆石分别呈现~254 Ma(图11c)和~255 Ma(图11b)单一年龄峰值,在峨眉山大火成岩省(ELIP)幕式岩浆事件范围内,与其中的中酸性岩浆活动(251~255 Ma)(Zhong et al., 2007,2009Xu et al., 2008Shellnutt et al., 2008) 时间一致,而晚于峨眉山玄武岩为主的主喷发期(259~261 Ma)(Zhong et al., 2007He et al., 2007Shellnutt et al., 2009),同时又与古特提斯洋闭合及华南周缘大洋汇聚板块边缘岩浆弧活动(300~ 200 Ma)在同一时限.锆石阴极发光图下两个砂岩的颗粒晶型完整,呈次棱角‒次圆状,局部可见破碎带和包裹体,颜色较暗,环带发育,同样显示近距离岩浆锆石来源.其锆石微量元素Nb/Hf、Th/U以及Hf/Th、Th/Nb比值均与板内/非造山环境岩浆锆石(Yang et al., 2012)范围一致(图6c, 6d),而区别于弧造山带,且大部分与峨眉山流纹岩(Xu et al., 2010Cheng et al., 2017Hei et al., 2018)区域(图6c, 6d)有较好匹配度.对两个样品18个Hf同位素投点测试显示其εHft)仅一个为负值且在CHUR(0)线附近,其余均为正值.这一结果与 εHft)值以负为主的古特提斯洋闭合相关江达维西岛弧(DWCA)、泛大洋弧岩浆岩和华南PTB火山岩(图7b)无直接关联,而与以εHft)正值为主的ELIP长英质岩类有关系(图7b),综合考虑物源排除扬子板外来源,仅考虑板内的ELIP长英质岩类.

腊美组全岩地球化学主量元素分析显示较PAAS略低的Al2O3、较高的K2O和全碱(Na2O+K2O)含量,略低的MgO、较低的CaO含量和Al2O3/SiO2比值,成熟度略低.K2O/Na2O⁃SiO2比值显示砂岩为被动陆缘沉积(图11a),与已报道的结论(崔克信,2004;马永生等,2009)相一致.微量元素蛛网图(图8a, 8b)显示砂岩样品具较明显的Sr、Ba、Ti负异常,与Nb、Ta明显负异常的弧相关岩浆岩,以及与有Nb和Sr负异常的峨眉山玄武岩相异,而与Sr、Ba、Ti负异常、整体元素较富集的峨眉山流纹岩及粗面岩有高度相似性;REE配分模式图(图8c, 8d)显示腊美组砂岩与轻稀土略富集、重稀土较平坦且略负Eu异常的峨眉山流纹岩和粗面岩有高度相似性,而相异于无Eu异常曲线缓倾的峨眉山玄武岩模式.Sc元素常用以示踪镁铁质源岩,Th常富集于长英质火山岩中,Th/Sc、Zr/Sc等均是常用源区示踪指标(Mclennan, 1993),而Zr、Ti之间相关性可用以判断岩浆活动构造环境和火成岩类型(Pearce,1982).Co/Th⁃La/Sc、Th/Sc⁃Zr/Sc和Ti⁃Zr比值图共同显示腊美组砂岩主体接近和处于长英质火山岩来源区域(图12c),其中Ti⁃Zr比值提示砂岩来源于板内,且其线性分布的样品暗示来源具有同一性.考虑腊美组砂岩碎屑组分特点,结合其碎屑锆石主峰值以及Hf同位素的投点区域,认为其物源与弧岩浆岩无关,而主要来源于板内近源搬运的ELIP流纹岩、粗面岩、正长岩为主的长英质火山岩.

位于本次研究区域以南70 km的洱源县邓川镇地区已报道青天堡组的砂岩物源特征.其以 ~257 Ma和~258 Ma的碎屑锆石年龄主峰值为标志,以与腊美组相似的全岩地球化学主微量元素特征、Hf同位素εHft)范围(+1.6~+5.9),结合其砂岩碎屑(包括副矿物锆石)颗粒的特点,显示其为近源搬运的峨眉山高钛玄武岩和流纹岩(韩超,2023)来源,这一结论也为其多种方法所得分析互为印证.青天堡组与腊美组在砂岩碎屑组分、碎屑锆石年龄峰值以及全岩地球化学数据提示两者物源具有相似性但又有区别,前者以峨眉山大火成岩省高钛玄武岩为主.另一方面,在邓川以南的上沧地区对早三叠世流纹质砾石样品(Tcg4)的相同方法研究,显示其(Huang et al.,2022a; 韩超,2023)除砂岩碎屑组分相异外,与鹤庆腊美组相似,物质主要为峨眉山流纹岩单一来源.故邓川、鹤庆和上沧三地,砂岩、砾石物源均与峨眉山流纹岩有直接联系,且对峨眉山玄武岩剥蚀有直接响应.已报道峨眉山流纹岩主要出露在鹤庆以南大理宾川和以东的攀枝花一带,且含有地壳重熔和峨眉山高钛玄武岩同化‒分异结晶两类来源(Hei et al., 2018),后者被认为是上沧下三叠统砾石的主要物质来源(Huang et al., 2022a; 韩超,2023).另后本菁砂岩中含706 Ma和808 Ma年龄颗粒,此赋存于早三叠世沉积的新元古代颗粒在扬子西南被广泛报道(Yang et al., 2014; 张英利等,2016;朱民等,2016;周寅生等,2022;邓旭升等,2025),被认为是来源于扬子基底再旋回沉积或峨眉山大火成岩省岩浆的捕获晶或围岩.但前者再循环沉积或前寒武系基底会产生高Al2O3/TiO2值、低ICV值以及少量沉积/变质岩屑(邓旭升等,2025).腊美组砂岩中可见零星石英岩岩屑,但具有不高的Al2O3/TiO2值(6.06~13.42,平均值为7.57)、大于1的ICV值,结合岩相古地理(崔克信,2004;马永生等,2009)及所报道扬子西南早三叠沉积物源特点,认定此年龄颗粒更倾向于来自峨眉山大火成岩省岩浆的捕获晶或围岩.结合以上分析,可知丽江盆地鹤庆早三叠世腊美组与南部的上沧流纹质砾石和邓川青天堡组砂岩物源为近源的宾川、攀枝花一带的峨眉山流纹岩及中基性火山岩,反映丽江盆地南部下三叠统沉积物源来自扬子板内,与其西部造山带和岛弧无关联.

目前已报道的如川西南的峨眉、马边、美姑、盐源,鹤庆地区,贵州的会泽,川西的都江堰、宝兴(Meng et al., 2022)等地区,下三叠统碎屑岩均与康滇古陆及其上的峨眉山大火成岩省有关(Yang et al., 2012,2014Huang et al., 2014Yu et al., 2016),仍然未发现与造山带/弧岩浆来源有关.但在南部右江盆地滇黔桂一带研究显示:右江盆地下三叠统碎屑岩(Yang et al., 2012,2014)有造山带/弧岩浆岩的来源,盆地南边(晚二叠世期间)较北部(晚二叠世末期至早三叠世)更早开始出现造山带/弧岩浆岩物质(韩超,2023),并被认为是来自于古特提斯洋的西向俯冲,显示盆地早三叠世已经开始由南向北接受西南印支造山带的影响.华南西部早三叠世期间在右江盆地区域已经开始盆山转换,在丽江盆地仍然为被动陆缘沉积.

4.3 丽江盆地早三叠世岩相古地理及构造特征分析

根据1∶20万地质调查报告和前期研究成果 (四川省地质矿产研究所专题研究组,1987;崔克信,2004;马永生等,2009),联合腊美组砂岩碎屑年龄分布,编制了早三叠世丽江盆地及其周缘岩相古地理特征(图13a)和构造演化图(图13b~13d).

早三叠世期间,丽江盆地西部、西北部与古特提斯分支的金沙江洋相连,北部、东北部与盐源盆地水体相通,东部、东南和西南则为康滇古陆和以羌塘‒昌都‒思茅地体为代表的冈瓦纳多弧盆体系为沉积范围所限(图13a).盆地大体以丽江‒吉地 坪‒中窝‒北衙一线分为东西两个沉积相区.东部盐源‒宁蒗‒战河‒菁河范围内发育滨岸水下冲积扇‒河口湾‒潮间砂泥混合坪相沉积,沉积物以成熟度较低的陆源碎屑为主,局部含有碳酸盐薄层,岩石组合自东向西由古陆至盆地大体呈砾岩‒含砾砂岩‒粗砂岩‒中细粒砂岩分布,碎屑流成因,部分具大型板状交错层理的细粒碎屑多为牵引流特征,在盐源盐塘‒宁蒗‒菁河一带发育由砾岩、含砾砂岩和玄武岩屑砂岩大型冲积扇,在永胜、宾川两地分别发育两个小型冲积扇,分布范围较小,砾岩‒含砾砂岩含量不到10%(四川省地质矿产研究所专题研究组,1987);西部在鹤庆‒洱源‒大理一线发育潮上‒潮间砂泥混合坪相沉积,沉积颗粒较细,以粉砂岩或泥页岩为主,不见砾岩,岩石组合主要为岩屑砂岩和凝灰质泥岩,颜色以紫红色为主,砂岩以粉砂为主,火山岩碎屑含量超过90%,含微量海绿石,胶结物多见铁染泥质,沿盆地西南部边缘地区的邓川‒大理地区局部有小型冲积扇,分布有砾岩(韩超,2023).可见盆地形成过程中受东部古陆影响较大.

晚二叠世末期(261~252 Ma),丽江盆地东侧的康滇古陆受峨眉山地幔柱上升而持续抬升(四川省地质矿产研究所专题研究组,1987;何斌等,2006)发生了峨眉山大火成岩省的主喷发事件(图13b).扬子西南以宾川和攀枝花一带为中心,在261~258 Ma期间先后形成了地幔来源的低钛玄武岩、高钛玄武岩及基性‒超基性侵入岩;随后在258~252 Ma期间因地壳物质的加入,由玄武岩结晶分异形成中酸性岩浆的流纹岩(Hei et al., 2018; Huang et al., 2022b)、粗面岩(Xu et al., 2010)等覆盖于玄武岩之上(图13c),同时局部开始风化剥蚀;至早三叠世(251~247 Ma)抬升于地表的大火成岩省玄武岩、流纹岩等受风化剥蚀被就近搬运为其西侧的丽江盆地提供物源 (图13d),因物质组分比率差异而呈现出流纹岩或高钛玄武岩为主或混合物源等特征.因此,早三叠世期间丽江盆地仍为被动陆缘沉积,主要接受来自峨眉山大火成岩省的物质,无西部造山带和岛弧物质来源.金沙江洋此时为残余洋状态,意味着扬子与西部冈瓦纳弧盆体系在扬子西南地区并无碰撞.

5 结论

(1)野外观测与镜下鉴定、统计显示鹤庆腊美组砂岩均来自近源搬运的长英质火山岩物质.

(2)鹤庆腊美组两个砂岩样品碎屑锆石分别呈现~254 Ma和~255 Ma单一年龄峰值,为高温岩浆成因,与峨眉山大火成岩省中酸性岩浆活动(251~255 Ma)时间一致,与板内/非造山环境岩浆锆石具有锆石微量元素一致性,而区别于弧造山带.

(3)腊美组砂岩Hf同位素投点测试显示其

εHft)值与以正值为主的ELIP长英质岩类有关系.

(4)全岩地球化学数据显示腊美组与峨眉山流纹岩、粗面岩、正长岩具有主微量元素一致的特征;对样品的CIA和ICV值分析,结合微量元素Th/U比值,显示腊美组砂岩离源岩区较近且经历了较强的构造抬升运动并接受快速剥蚀沉积.

(5)腊美组物源主要来自近源搬运的峨眉山大火成岩省的流纹岩、粗面岩和正长岩,早三叠世期间丽江盆地仍为被动陆缘沉积,无西部弧盆体系物质来源.

附表见https://doi.org/10.3799/dqkx.2025.138.

参考文献

[1]

Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America, 210: 231. https://doi.org/10.1130/mem210

[2]

Chen, H. L., Zhu, M., Chen, S. Q., et al., 2020. Basin⁃Orogen Patterns and the Late Triassic Foreland Basin Conversion Process in the Western Yangtze Block, China. Journal of Asian Earth Sciences, 194: 104311. https://doi.org/10.1016/j.jseaes.2020.104311

[3]

Cheng, L. L., Wang, Y., Herrin, J. S., et al., 2017. Origin of K⁃Feldspar Megacrysts in Rhyolites from the Emeishan Large Igneous Province, Southwest China. Lithos, 294/295: 397-411. https://doi.org/10.1016/j.lithos.2017.10.018

[4]

Chung, S. L., Jahn, B. M., 1995. Plume⁃Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian⁃Triassic Boundary. Geology, 23(10): 889. https://doi.org/10.1130/0091⁃7613(1995)0230889:pliigo>2.3.co;2

[5]

Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469

[6]

Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016⁃7037(95)00185⁃9

[7]

Cui, K. X., 2004. Atlas of Palaeogeography and Its Evolution in Southwest China. Seismological Press, Beijing, 25-130 (in Chinese).

[8]

Deng, X. S., Yang, J. H., He, B., et al., 2025. Response of Lower Triassic Clastic Rocks in Northwest Guizhou to Emei Mountain Igneous Province. Acta Sedimentologica Sinica, 43(4): 1293-1307 (in Chinese with English abstract).

[9]

Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222. https://doi.org/10.1130/0016⁃7606(1983)94222:ponaps>2.0.co;2

[10]

Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002

[11]

Fedo, C. M., Wayne Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921. https://doi.org/10.1130/0091⁃7613(1995)0230921:uteopm>2.3.co;2

[12]

Gao, C. L., Wang, J., Liu, M., et al., 2024. Boundary Changes of Jurassic⁃Cretaceous Prototype Basin of Southern Junggar and Responses of Sedimentary Provenance and Depositional Systems. Earth Science, 49(1): 103-122 (in Chinese with English abstract).

[13]

Gao, Q. L., 2013. Felsic Volcanism in South China across the Permian⁃Triassic Boundary (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[14]

Han, C., 2023. Provenance of the Late Permian⁃Early Triassic Clastic Rocks in the Western Margin of the South China and Its Implications for the Subduction Polarity of the Paleo⁃Tethyan Branch Ocean (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[15]

He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U⁃Pb Dating of Silicic Ignimbrites, Post⁃Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3/4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021

[16]

He, B., Xu, Y. G., Xiao, L., et al., 2006. Sedimentary Responses to Uplift of Emeishan Mantle Plume and Its Implications. Geological Review, 52(1): 30-37 (in Chinese with English abstract).

[17]

He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo⁃Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo⁃Tethys Ignimbrite Flare⁃Up?. Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011

[18]

He, H. Y., Wang, Y. J., Qian, X., et al., 2018. The Bangxi⁃Chenxing Tectonic Zone in Hainan Island (South China) as the Eastern Extension of the Song Ma⁃Ailaoshan Zone: Evidence of Late Paleozoic and Triassic Igneous Rocks. Journal of Asian Earth Sciences, 164: 274-291. https://doi.org/10.1016/j.jseaes.2018.06.032

[19]

He, M. C., Ding, Z. J., Wang, X., et al., 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280-3295 (in Chinese with English abstract).

[20]

Hei, H. X., Su, S. G., Wang, Y., et al., 2018. Rhyolites in the Emeishan Large Igneous Province (SW China) with Implications for Plume⁃Related Felsic Magmatism. Journal of Asian Earth Sciences, 164: 344-365. https://doi.org/10.1016/j.jseaes.2018.05.032

[21]

Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027

[22]

Huang, H., Cawood, P. A., Hou, M. C., et al., 2022a. Zircon U⁃Pb Age, Trace Element, and Hf Isotopic Constrains on the Origin and Evolution of the Emeishan Large Igneous Province. Gondwana Research, 105: 535-550. https://doi.org/10.1016/j.gr.2021.09.023

[23]

Huang, H., Huyskensm, M., Yinm, Q. Z., et al., 2022b. Eruptive Tempo of Emeishan Large Igneous Province: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian⁃Lopingian Boundary. Geology, 50(9): 1083-1087.

[24]

Huang, H., Du, Y. S., Yang, J. H., et al., 2014. Origin of Permian Basalts and Clastic Rocks in Napo, Southwest China: Implications for the Erosion and Eruption of the Emeishan Large Igneous Province. Lithos, 208/209: 324-338. https://doi.org/10.1016/j.lithos.2014.09.022

[25]

Lei, Y. L., Li, B. L., Chen, Z. X., 2010. Tectonic Evolution on the Western Border Area of Upper Yangtze Plate. Geological Publishing House, Beijing, 1-181 (in Chinese).

[26]

Li, C. M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 32(3): 161-174 (in Chinese with English abstract).

[27]

Li, P. W., Gao, R., Guan, Y., et al., 2009. Paleomagnetic Constraints on the Closure Time of Paleo⁃Tethys: Implications for the Tectonic Setting of Formation of Triassic Songpan⁃Ganzi Flysch Complex. Acta Geoscientica Sinica, 30(1): 39-50 (in Chinese with English abstract).

[28]

Ma, Y.S., Chen, H.D., Wang, G.L., 2009. Sequence Stratigraphy and Paleogeography of South China. Science Press, Beijing, 116-152 (in Chinese).

[29]

McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303.

[30]

Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeo⁃Geographic Evolution of Eastern Tethys. J. Asian Earth Sci., 66: 1-33.

[31]

Meng, L. F., Chen. W., Shen, T., et al., 2022. A Study on the Provenance of Early to Late Triassic Clastic Rocks from the Northwestern Sichuan Basin, Southwestern China: Constraints on the Early Mesozoic Tectonic Evolution of the Western Yangtze Block. Frontiers in Earth Science, 10: 1-12.

[32]

Miao, Y., Tian, Y. F., Wu, L., et al., 2021. Zircon U⁃Pb Chronology, Petrochemistry and Its Implications for Rodinia Supercontinent Tectonic Evolution in the Lower Triassic Feixianguan Formation in the Daibu Area, Southwest of Upper Yangtze. Acta Geologica Sinica, 95(12): 3739-3757 (in Chinese with English abstract).

[33]

Munteanu, M., Yao, Y., Wilson, A. H., et al., 2013. Panxi Region (South West China): Tectonics, Magmatism and Metallogenesis. A Review. Tectonophysics, 608: 51-72. https://doi.org/10.1016/j. tecto. 2013. 09. 008

[34]

Nesbitt, H. W., Fedo, C. M., Young, G. M., 1997. Quartz and Feldspar Stability, Steady and Non‐Steady‐State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. The Journal of Geology, 105(2): 173-192.

[35]

Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0

[36]

Pan, G. T., Wang, L. Q., Li, X. Z., et al., 2001. The Tectonic Framework and Spatial Allocation of the Archipelagic Arc Basin Systems on the Qinghai⁃Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract).

[37]

Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 528-548.

[38]

Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter, 21(1): 115-144. https://doi.org/10.1111/j.1751⁃908X.1997.tb00538.x

[39]

Shellnutt, J.G., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu⁃Hf Isotopic Compositions of Metaluminous and Peralkaline A⁃Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35(1): 45-55. https://doi.org/10.1016/j.jseaes.2008.12.003

[40]

Shellnutt, J. G., Zhou, M.F., Yan, D.P., et al., 2008. Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine, 145(3): 373-388. https://doi.org/10.1017/s0016756808004524

[41]

Shen, L. W., Yu, J. H., O’Reilly, S. Y., et al., 2018. Subduction⁃Related Middle Permian to Early Triassic Magmatism in Central Hainan Island, South China. Lithos, 318/319: 158-175. https://doi.org/10.1016/j.lithos.2018.08.009

[42]

Sichuan Institute of Geology and Mineral Resources, 1987. Triassic Statigraphy and Sedimentary Facies of Yanyuan⁃Lijiang Region. Geological Publishing House, Beijing, 48-104 (in Chinese).

[43]

Song, F., He, Y. Y., Niu, Z. J., et al., 2024. Nanhuan⁃Sinian Sedimentary Strata Correlation and Its Provenance Feature in Southeastern Part of South China Block: Implications for Tectonic Evolution. Earth Science, 49(9): 3411-3427 (in Chinese with English abstract).

[44]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[45]

Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford.

[46]

Tomaschek, F., Kennedy, A. K., Villa, I. M., et al., 2003. Zircons from Syros, Cyclades, Greece—Recrystallization and Mobilization of Zircon during High⁃Pressure Metamorphism. Journal of Petrology, 44(11): 1977-2002. https://doi.org/10.1093/petrology/egg067

[47]

Wang, B. D., Wang, L. Q., Chen, J. L., et al., 2014. Triassic Three⁃Stage Collision in the Paleo⁃Tethys: Constraints from Magmatism in the Jiangda⁃Deqen⁃Weixi Continental Margin Arc, SW China. Gondwana Research, 26(2): 475-491. https://doi.org/10.1016/j.gr.2013.07.023

[48]

Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian⁃Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract).

[49]

Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian⁃Triassic Boundary, South China: Constraints from Trace Elements and Hf⁃Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011

[50]

Wang, Y. N., Wang, Q. F., Deng, J., et al., 2021. Late Permian⁃Early Triassic Mafic Dikes in the Southwestern Margin of the South China Block: Evidence for Paleo⁃Pacific Subduction. Lithos, 384/385: 105994. https://doi.org/10.1016/j.lithos.2021.105994

[51]

Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U⁃Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002

[52]

Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low⁃Ti and High⁃Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume⁃Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002

[53]

Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian⁃Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/S0024⁃4937(01)00055⁃X

[54]

Xu, Y. G., Chung, S. L., Shao, H., et al., 2010. Silicic Magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and Their Link with the End⁃Guadalupian Biological Crisis. Lithos, 119(1/2): 47-60. https://doi.org/10.1016/j.lithos.2010.04.013

[55]

Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U⁃Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. https://doi.org/10.1016/j.gca.2008.04.019

[56]

Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian⁃Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261/262: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018

[57]

Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012-143

[58]

Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Mixed Volcanogenic⁃Lithogenic Sources for Permian Bauxite Deposits in Southwestern Youjiang Basin, South China, and Their Metallogenic Significance. Sedimentary Geology, 341: 276-288. https://doi.org/10.1016/j.sedgeo.2016.04.016

[59]

Yunnan Geological Bureau, 1966. 1:200 000 Regional Geological Survey Report of Heqing Area, 35-46 (in Chinese).

[60]

Zhang, Y. L., Wang, Z. Q., Wang, G., et al., 2016. Chromian Spinel, Zircon Age Constraints on the Provenance of Early Triassic Feixianguan Formation Sandstones from Huize Area, Upper Yangtze Region. Geological Review, 62(1): 54-72 (in Chinese with English abstract).

[61]

Zhao, X. X., Coe, R. S., 1987. Palaeomagnetic Constraints on the Collision and Rotation of North and South China. Nature, 327(6118): 141-144. https://doi.org/10.1038/327141a0

[62]

Zhong, H., Zhu, W. G., Chu, Z. Y., et al., 2007. SHRIMP U⁃Pb Zircon Geochronology, Geochemistry, and Nd⁃Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China. Chemical Geology, 236(1-2): 112-133. https://doi.org/10.1016/j.chemgeo.2006.09.004

[63]

Zhong, H., Zhu, W. G., Hu, R. Z., et al., 2009. Zircon U⁃Pb Age and Sr⁃Nd⁃Hf Isotope Geochemistry of the Panzhihua A⁃Type Syenitic Intrusion in the Emeishan Large Igneous Province, Southwest China and Implications for Growth of Juvenile Crust. Lithos, 110(1-4): 109-128. https://doi.org/10.1016/j.lithos.2008.12.006

[64]

Zhong, S. H., Feng, C. Y., Seltmann, R., et al., 2018. Can Magmatic Zircon be Distinguished from Hydrothermal Zircon by Trace Element Composition? The Effect of Mineral Inclusions on Zircon Trace Element Composition. Lithos, 314/315: 646-657. https://doi.org/10.1016/j.lithos.2018.06.029

[65]

Zhou, M. F., Zhao, J. H., Qi, L., et al., 2006. Zircon U⁃Pb Geochronology and Elemental and Sr⁃Nd Isotope Geochemistry of Permian Mafic Rocks in the Funing Area, SW China. Contributions to Mineralogy and Petrology, 151(1): 1-19. https://doi.org/10.1007/s00410⁃005⁃0030⁃y

[66]

Zhou, Y. S., Yang, J. H., Huang, Y., et al., 2022. Provenance of the Lower Triassic Feixianguan Formation in Southwestern Guizhou Province and Reconstruction of Volcanic Denudation Sequence in the Emeishan Large Igneous Province. Acta Geologica Sinica, 96(7): 2348-2364 (in Chinese with English abstract).

[67]

Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo⁃Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144/145: 145-160. https://doi.org/10.1016/j.lithos.2012.04.020

[68]

Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy⁃Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031

[69]

Zhu, M., Chen, H. L., Yu, L., et al., 2018. Provenance of the Early Triassic in the Southwestern Sichuan Basin, Upper Yangtze, and Its Implications for Tectonic Evolution. Canadian Journal of Earth Sciences, 55(1): 70-83. https://doi.org/10.1139/cjes⁃2017⁃0092

[70]

Zhu, M., Chen, H. L., Zhou, J., et al., 2016. Provenance of Early Triassic in Yanyuan Basin, Upper Yangtze and Its Implication for the Tectonic Evolution. Earth Science, 41(8): 1309-1321 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42062014)

江西省教育厅科学技术研究项目(A00129)

AI Summary AI Mindmap
PDF (3342KB)

34

访问

0

被引

详细

导航
相关文章

AI思维导图

/