珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测

石创 ,  彭光荣 ,  龙祖烈 ,  李振升 ,  郑立庆 ,  曹雨菡 ,  熊万林

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4604 -4616.

PDF (4887KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4604 -4616. DOI: 10.3799/dqkx.2025.144

珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测

作者信息 +

Characteristics of Deep Hydrocarbon Source Rocks and Prediction of Effective Source Kitchen Distribution in Enping 17 Sub-Sag, Pearl River Mouth Basin

Author information +
文章历史 +
PDF (5003K)

摘要

为明晰珠江口盆地恩平17洼主力烃源岩特征和有效烃源灶分布,系统分析洼陷地质背景、烃源岩发育环境和地化特征,借助热压模拟实验分析烃源岩生烃特征,建立烃源岩TOC概率神经网络预测模型,结合烃源岩热演化模拟和有效烃源岩TOC下限判识,预测有效烃源灶分布.结果表明恩平17洼主要发育文昌组半深湖-深湖相和浅湖相两套烃源岩,半深湖-深湖相烃源岩油气产率均较高,具有“生油集中,晚期爆发式生气”特征;浅湖相烃源岩气产率相对较高,具有“宽窗持续生气,生气下限较高”的特征.有效烃源灶分布于TOC大于1.2%的区域,平面上主要分布在洼陷中心和北部近洼区,垂向上主要分布于文四段,其次为文三段和文五段,相带上以半深湖-深湖相为主,其次为浅湖相,在高热演化作用下,油气兼生,具备发育规模天然气潜力,为珠江口盆地富油洼陷寻找天然气提供资源基础.

Abstract

In order to fully understand the characteristics of main source rocks and the distribution of effective source kitchen in Enping 17 sub-sag, it systematically analyzes the geological background of the depression, the development environment of hydrocarbon source rocks and the geochemical characteristics, the hydrocarbon generation characteristics of hydrocarbon source rocks by means of thermal pressure simulation experiments, establishes the TOC probability neural network prediction model of hydrocarbon source rocks, and predicts the distribution of effective source kitchen in combination with the thermal evolution simulation of hydrocarbon source rocks and the identification of the TOC lower limit of effective hydrocarbon source rocks.The results indicate that the Enping 17 sub-sag mainly develops two sets of hydrocarbon source rocks, the semi deep-deep lake and shallow lake facies of the Wenchang Formation. The oil and gas production rates of the semi deep-deep lake facies are relatively high, with the characteristics of concentrated oil generation and late explosive gas generation. Shallow lacustrine mudstone has a relatively high gas production rate and is characterized by wide window continuous gas generation and a high lower limit of gas generation. The effective source kitchen of Wenchang Formation in Enping 17 sub-sag are distributed in the areas where the TOC of source rocks is greater than 1.2%, mainly distributed in the sub-sag center and the northern near sub-sag on the plane, mainly distributed in the 4th member of Wenchang Formation vertically, followed by the 3rdand 5th member of Wenchang Formation. The facies are dominated by semi deep-deep lake facies, while the shallow lake facies source rocks are another set of important source rocks in this area. Under the high thermal evolution, oil and gas are generated simultaneously in the sub-sag, which has the development of large-scale natural gas potential, provides a resource basis for searching for natural gas in oil rich sag of the Pearl River Mouth basin.

Graphical abstract

关键词

烃源岩 / 有效烃源灶 / TOC预测 / 文昌组 / 恩平17洼 / 珠江口盆地 / 石油地质.

Key words

source rock / effective hydrocarbon kitchen / TOC prediction / Wenchang Formation / Enping 17 sub-sag / Pearl River Mouth basin / petroleum geology

引用本文

引用格式 ▾
石创,彭光荣,龙祖烈,李振升,郑立庆,曹雨菡,熊万林. 珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测[J]. 地球科学, 2025, 50(12): 4604-4616 DOI:10.3799/dqkx.2025.144

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

恩平17洼是珠江口盆地恩平凹陷重要的油气富集区,围绕着恩平17洼,历经多年的油气勘探和地质研究,发现了多个中型油田群,证实恩平17洼为富烃洼陷,展示出该区巨大的勘探潜力.恩平凹陷已发现油气主要分布在恩平17洼南、北两侧构造带的新近系储层中,其古近纪断裂在晚中新世构造活化期多未继承性活动,新近系缺少直接沟通文昌组烃源岩的长期活动断裂,前人研究显示洼陷中生成的石油经文昌组砂岩输导体系与隆起带断裂输导体系进行“先横后纵”运移,系统总结出区域性砂岩输导层(中转站)及断裂体系进行“接力式”运移和通过“断裂复合汇聚脊”进行远源富集等成藏模式,诠释了新近系成藏过程(吴静等,2021;朱定伟等,2021).在古近系勘探进程中,围绕恩平17洼洼中隆区,先后钻探两口探井,获得天然气发现,虽未取得商业突破,但具有重要的领域意义,为珠江口盆地浅水区富油洼陷寻找天然气开拓了领地.虽然恩平凹陷获得大量的石油发现,但受前期钻井数量和研究手段的限制,对该凹陷主力烃源岩生烃机理以及有效烃源灶的研究相对较少,因此笔者通过对洼陷结构的细致研究,结合已钻井地球化学分析明确主力烃源岩生烃机理,借助地球物理方法和盆地模拟手段预测有效烃源灶分布,为该区下一步勘探提供基础支撑.

1 区域地质背景

恩平凹陷位于珠江口盆地一级构造单元珠一坳陷最西端,西边为阳江凹陷,东边为西江凹陷,南北分别与番禺低隆起及海南隆起相邻,凹陷总体走向为NE⁃SW 向,面积约5 000 km2,海水深度为80~100 m(图 1).恩平凹陷是古近纪开始发育的断陷-拗陷盆地,经历了裂陷阶段(晚白垩世至早渐新世)、拗陷阶段(晚渐新世至中中新世)以及断块升降阶段(晚中新世至今),形成了下断上坳双层结构和先陆相后海相2种沉积体系(高阳东等,2021;赵鹏等,2021).根据凹陷结构特征及文昌组分布范围,恩平凹陷可进一步划分为3个次洼,分别是恩平17洼、恩平18洼和恩平12洼.3个次洼均为北断南超型箕状半地堑.钻井揭示恩平凹陷自下而上发育: 始新统文昌组和恩平组,渐新统珠海组,中新统珠江组、韩江组和粤海组,上新统万山组及第四系.其中,裂陷阶段湖相沉积广泛发育,文昌组和恩平组是烃源岩发育层系,恩平组烃源岩由于埋深浅、类型差是次要源岩;钻井原油地球化学特征显示具有高C30 4⁃甲基甾烷特征,是珠江口盆地文昌组半深湖-深湖相烃源岩的主要标志,间接证实了凹陷文昌组半深湖-深湖相优质烃源岩的存在(熊万林等,2020).文昌组是主力生烃层系,自下而上分为6个层段,分别是文六段、文五段、文四段、文三段、文二段和文一段,文六段至文四段统称为文昌组下段,文三段至文一段统称为文昌组上段.

2 烃源岩发育条件

2.1 烃源岩发育地质背景

恩平17洼裂陷期受北部NE向低角度边界拆离断层F1主控,西部高角度近N⁃S向边界走滑断层F2起次级控洼作用.F1沿走向分段差异活动,从早文昌期到晚文昌-恩平期逐渐由中低角度断层向低角度断层转变;而F2从早文昌期到晚文昌期逐渐由中等角度断裂向高角度断裂转变.两条断裂多于恩平末期停止活动(蔡国富等,2022).早文昌期,F1处于软连接状态,断层西南部具有强烈的重力滑脱特征,断层上盘断块掀斜作用强烈,恩平17洼形成为窄条形深断箕状半地堑,沉积中心由边界控洼断层控制(图2).随着断陷作用不断加剧,湖盆持续扩大,形成欠补偿环境,有利于稳定的厚层半深湖-深湖相沉积发育,三角洲规模较小.晚文昌期,F1北东段和西南段发生硬连接,成为完整的拆离断层,凹陷中部和北部断层活化并派生出多条调节断层,造成沉降中心向洼陷中北部迁移,湖盆面积大幅扩张并连通成片,形成宽缓湖盆(图2).随着沉降中心持续向洼陷中北部迁移,F1横向伸展量占据较大断层滑移调剂空间,半深湖-深湖相向洼陷中北部小规模拓展(蔡国富等,2022;彭光荣等,2022).

2.2 烃源岩发育环境分析

岩石中的元素在岩石风化、搬运和沉积过程中受外部环境的影响,会发生规律性的分散和富集,使得元素的含量或不同元素间的比值出现规律性变化.通过元素地球化学方法表征烃源岩发育的古沉积环境已在油气勘探领域广泛应用(石创等,2020a;彭光荣等,2023).恩平17洼未揭示文昌组下段地层,钻井仅钻遇文昌组上段,文昌组上段泥岩生物标志物特征显示C30 4⁃甲基甾烷含量非常低,双杜松烷含量高,与已发现原油生物标志化合物特征差异显著(图3).恩平17洼主体发现两类原油,第一类原油富含C30 4⁃甲基甾烷,双杜松烷含量极低,与邻区番禺4洼(已证实富烃洼陷)文昌组下段半深湖-深湖相烃源岩相似(图3);第二类原油同样富含C30 4⁃甲基甾烷,双杜松烷含量中等(图3),推测可能为半深湖-深湖相与浅湖相源岩生成的混源油(熊万林等,2020).因此,恩平17洼早文昌期湖泊古环境类比番禺4洼,通过常量和微量元素测试化验结果分析恩平17洼恩平期、晚文昌期以及番禺4洼早文昌期的古气候、古水深、古氧相和古生产力等环境指标(表1),每项指标均采用两种常用判识参数,提升分析结果可靠性.古水深分析采用Mn/Fe和V/Cr,两种参数均随水深增加而增大;古气候分析采用MgO和Sr/Cu,参数值越大表明气候越干燥;古氧相分析采用Th/U和V/(V+Ni),水体还原性越强Th/U值越小,V/(V+Ni)值越大;古生产力分析采用P/Ti和P/Al,参数值越大表明水体古生产力水平越高(石创,2022;雷闯等,2024).类比番禺4洼早文昌期沉积环境推测恩平17洼早文昌期气候湿热,湖盆水体较深,整体处于亚还原环境,水体营养程度较高,有利于优质烃源岩的发育;晚文昌期气候略微转凉,但湖泊其他古环境仍有利于烃源岩发育;恩平期湖泊古环境指标均总体降低,特别是古生产力降低明显,烃源岩发育条件变差.

3 钻井样品烃源岩及其生烃特征

3.1 烃源岩地球化学特征

恩平17洼共有3口钻井钻遇文昌组上段泥岩,其中,E1和E2井位于洼中隆起区,E3井位于洼陷西南缘(图1).E1和E2钻井遇较厚文昌组上段地层(文一段-文三段),E3井仅钻遇文昌组表层(文一段).洼陷烃源岩有机质丰度是是衡量洼陷油气资源潜力的重要依据(薛楠等,2023).选取总有机碳含量(TOC)、生烃潜量(S1+S2)、氢指数(HI)和岩石热解峰温(Tmax)来评价恩平17洼文昌组烃源岩有机质丰度和类型,通过烃源岩综合评价图判识得到,文昌组上段泥岩TOC在0.9%~4.2%,均值为1.7%,S1+S2分布在0.5~6.5 mg/g,均值1.7 mg/g,为中等-好有机质丰度的烃源岩;HI普遍较低,介于38~158 mg/g,均值为91 mg/g,有机质类型以Ⅱ1⁃II2型为主(图4).

有机质成熟度分析是研究烃源岩生烃过程的基础,通过Tmax、产率指数(PI)和镜质体反射率(Ro)可较好评估烃源岩有机质成熟度(杨海波等,2024).恩平17洼文昌组镜质体反射率(Ro)和岩石热解峰温(Tmax)相对较高,Ro多位于1.0%附近,Tmax普遍大于460 ℃,显示文昌组上段烃源岩已达到成熟-高成熟阶段(图5),为该富油洼陷未来勘探寻找规模天然气提供依据.洼陷较高的地温梯度(3.2~3.3 ℃/100 m)和钻遇文昌组埋深大(大于4 000 m)是本地区烃源岩高热演化的主要原因.

已钻井泥岩生物标志物特征显示文昌组上段泥岩姥植比主体介于2.1~2.4,C30 4⁃甲基甾烷含量非常低,双杜松烷含量高(图3),指示陆源高等植物输入明显,是珠江口盆地浅水区典型的浅湖相泥岩特征(熊万林等,2020).受钻井位置、相带和热演化程度的影响,已钻井氢指数普遍较低,难以真实反映洼陷烃源岩生烃潜力.

3.2 烃源岩生烃特征

恩平17洼已证实发育文昌组两种类型烃源岩:(1)文昌组半深湖-深湖相烃源岩(原油生物标志物特征揭示);(2)文昌组浅湖相烃源岩(钻井泥岩生物标志物证实).原油生物标志化合物特征证实恩平17洼发育类似番禺4洼文昌组下段半深湖-深湖相烃源岩,因此,选取番禺4洼文昌组下段半深湖-深湖相泥岩和E1井实钻浅湖相泥岩进行黄金管高温高压封闭体系模拟实验,进而研究恩平17洼不同类型烃源岩的生烃特征.

对于半深湖-深湖相泥岩,藻类勃发型湖盆的番禺4洼文昌组下段半深湖-深湖相泥岩生烃窗口较窄(图6),在EasyRo约1.1%达到生油高峰,最大油产率可达近700 mg/g·TOC,在EasyRo为1.3%~2.0%快速生气,烃气最大产率可达近550 mg/g·TOC,在2.5% EasyRo之后达到“生气下限”,整体呈现出早期快速生油,晚期“爆发式”生气特征.恩平17洼文昌组上段浅湖相泥岩生烃窗口较宽,0.8% EasyRo阶段最大油产率仅约108 mg/g·TOC(图6),远低于藻类勃发型湖盆番禺4洼文昌组下段半深湖-深湖相泥岩油产率,但烃气最大产率较高,可达到近250 mg/g·TOC,同样呈现出在EasyRo 1.3%~2.0%快速生气,之后受原油裂解气贡献影响生气产率持续增加.综合文昌组泥岩产油气特征可知,文昌组半深湖-深湖相泥岩具有较高的生烃能力,油气产率均较高,具有“生油集中,晚期爆发式生气”特征.文昌组浅湖相泥岩具有较好的生干酪根裂解气能力,且气产率相对较高,具有“宽窗持续生气”特征,“生气下限”高于半深湖-深湖相泥岩,对于较高地温、较大埋深的恩平凹陷而言,此类烃源岩可作为一类较好的生干酪根裂解气能力较强的气源岩,为珠江口盆地富油洼陷寻找天然气提供资源基础.

4 有效烃源灶分布预测

烃源灶是指具有高丰度有机质源岩的集合,是一系列能生烃源岩的集合体,并非指单层源岩(杨海波等,2024),特指有机质丰度高、类型好、生烃潜力大、达到生油门限且证实为已发现油气聚集提供油气源的烃源岩发育区(王力等,2005).

4.1 文昌组烃源岩有机碳地球物理预测

4.1.1 烃源岩有机碳测井预测

前人研究显示烃源岩TOC与电阻率、自然伽马、声波时差、中子孔隙度和密度测井之间具有较弱的相关关系,其中,与前4项测井参数之间有弱的正相关关系,与密度测井呈较弱负相关关系,通过五元回归方程建立烃源岩TOC测井参数定量预测模型(式1),预测精度显著提高(石创等,2020b).

式(1)中:k1k2k3k4k5C均为常数;CNL为中子孔隙度测井参数,%;DT为声波时差测井参数,μs·ft-1GR为自然伽马测井参数,API;RT为电阻率测井参数,Ω·m;DEN为密度测井参数,g·cm-3.

根据上述原理并结合实测TOC数据,建立恩平17洼3口钻井文昌组烃源岩TOC单井预测模型.

E1井:TOC=-0.001GR+0.178RT+0.641 R’=0.860,

E2井:TOC=(0.755CNL-0.656DT-0.152GR-0.001RT+38.002)/DEN+8.315

R’=0.826,
E3井:TOC=(0.156RT+97.056)/DEN-36.83 R’=0.988.

式(2)~(4)中,由于E1井和E3井缺少部分测井参数,因此选择了2种测井参数进行TOC预测;E2井文二段和文三段缺少CNL和DEN,取值为0.

分析测井预测结果得到3口钻井预测结果相关系数较高,均大于0.8.文昌组TOC测井预测结果显示E1井文昌组烃源岩TOC最大可达3.9%,平均值为1.6%,为中等-好烃源岩;E2井由于砂泥互层,烃源岩TOC差异较大,文昌组烃源岩预测TOC最大可达6.5%,平均值为1.3%,中等-极好烃源岩均有发育,非均质性强;E3井位于洼陷边缘,钻遇文昌组顶部薄层泥岩,文昌组烃源岩预测TOC最大可达2.9%,平均值为1.6%,以中等烃源岩为主,总体预测结果与实测结果吻合(图7).

4.1.2 烃源岩有机碳地球物理预测

为了匹配时间域的地震数据资料,对测井数据进行准确的时深转换.以时深转换后的文昌组烃源岩TOC测井预测曲线为目标,通过HRS软件中Emerge模块分析目标曲线与地震属性的关联性,优选属性组合,建立地震属性与TOC之间的最佳拟合方程(石创等,2019),最终提取6个属性与烃源岩TOC测井预测曲线进行拟合分析,建立烃源岩TOC地球物理预测模型(式5).

TOC=3.164 256×10-1A1-6.137 585×10-5A2+8.377 158×10-4A3-2.667 656×10-10A4+

1.436 242×10-9A5+2.672 651×10-9A6+

4.835 621,

式(5)中:A1为时间、A2为地震道X坐标、A3为主频、A4为余弦瞬时相位、A5为滤波、A6为振幅加权余弦相位.此组合相关性最高,达到0.76,误差最小,为0.62%.在此基础上引入概率神经网络对模型进行优化,优化后的模型相关系数达到0.89,误差减小到0.59%.运用模型于地震数据体,得到恩平17洼高精度文昌组烃源岩TOC数据体.

恩平17洼文昌组烃源岩TOC地球物理预测平面显示,洼陷中心文昌组烃源岩TOC主体分布在2.5%~5.0%,为好-极好烃源岩,洼陷中心文昌组烃源岩TOC明显高于洼陷边缘,表明洼陷中心是优质烃源岩的主要发育场所;受珠琼运动一幕的影响,早文昌期(文六段-文五段沉积早期)主体发育规模有限的滨浅湖相沉积(彭光荣等,2022),TOC预测结果显示文昌组底部烃源岩TOC分布普遍小于3.0%,主要发育中等-好烃源岩(图8);文昌组沉积中期(文五段沉积末期-文三段沉积期),洼陷主体沉积了半深湖-深湖相泥岩,垂向上沉积体系具有良好的继承性(彭光荣等,2022),TOC预测结果显示文昌组中部烃源岩TOC主要分布在4.0%~5.0%,为极好烃源岩(图8);文昌组沉积末期(文二段-文一段沉积期),洼陷沉降中心北移,在洼陷中心和北部发育小规模半深湖-深湖相沉积,TOC主要分布在2.5%~4.0%,以好烃源岩为主(图8).

4.2 文昌组烃源岩热演化模拟

前人基于低温热年代学年龄测试,明确珠江口盆地珠一坳陷自47.8 Ma以来经历两期加热,分别为距今49~38 Ma和距今38~33.9 Ma,各凹陷构造沉降差异小,基底热流演化作用相似,不同凹陷达到最高古地温时间为距今33.9 Ma,之后温度缓慢降低(唐晓音等,2016;胡圣标等,2019).在低温热年代学反演基础上,前人采用非瞬时多期次有限伸展模型,对珠一坳陷进行虚拟井构造正演模拟,结果表明,珠一坳陷新生代以来在始新世经历两期明显的裂陷拉张过程,第一期构造拉张总体强于第二期.第一期为49~38 Ma,该时期主体受珠琼运动一幕影响,坳陷处于断陷裂谷鼎盛发育阶段;第二期为38.0~33.9 Ma,该时期受珠琼运动二幕影响,坳陷处于断陷裂谷发育末期;33.9 Ma后为裂后热沉降期,以区域沉降为主,且沉降速率明显减小(施和生等,2020;庞雄等,2021).构造正演模拟进一步明确了珠一坳陷在33.9 Ma达到最高古地温.

基于上述研究成果,在恩平17洼实测Ro数据约束下,采用Sweeney et al.(1990)提出的生烃动力学模型,利用Petromod盆地模拟软件恢复恩平17洼文昌组各三级层序烃源岩热演化史(杨梅华等,2023;高阳东等,2024).模拟结果显示随着埋深的增加,各三级层序烃源岩热演化程度显著增高,埋深最浅的文一段烃源岩热演化主体已达到高成熟阶段(Ro>1.3%),普遍高于珠一坳陷文昌组排烃门限(Ro=0.7%),文昌组烃源岩已达到高成熟-过成熟演化阶段,油气兼生(图9).

4.3 有效烃源灶下限判识与分布

烃源岩的有效性是划分有效烃源岩灶的关键.研究认为,有效有效烃源岩是指能够生成并排出烃类而形成工业油气藏的烃源岩(杨帆等,2024).烃源岩具备生排烃能力需富含有机质,同时达到生排烃门限,且生烃量超过自身吸附量(Tissot et al.,1984Peters et al.,2005).有机质丰度可通过TOC表征,卢双舫(2008)认为TOC分布在0.3%~0.5%为烃源岩的下限值.烃源岩在达到排烃门限,同时生成的烃类要满足自身吸附后才能排出,因此需要确定烃源岩发生排烃时的门限深度和TOC下限.前人研究显示,珠江口盆地珠一坳陷文昌组烃源岩排烃门限深度约3 500 m,对应Ro约0.7%(朱明等,2019).烃源岩的岩石热解参数游离烃(S1,mg/g)和烃指数(S1/TOC,mg/g)与TOC的相对关系变化可用来确定有效烃源岩TOC下限(高岗等,2013).研究表明烃源岩生烃早期,生烃量与TOC有较好的线性关系,发生排烃作用后线性关系偏离原趋势(匡立春等,2014).S1是烃源岩中游离烃含量,生烃早期烃源岩未发生排烃作用,S1即为生烃量,排烃作用发生后,S1TOC的线性关系趋势出现拐点,该拐点对应的TOC值即为烃源岩发生排烃作用的TOC下限值.烃源岩TOCS1S1/TOC关系图显示恩平17洼文昌组有效烃源岩TOC下限约为1.2%(图10).

烃源岩热演化模拟结果显示文昌组烃源岩已达到高成熟-过成熟演化阶段,因此,恩平17洼有效烃源岩灶的划分主要依据烃源岩TOC,即TOC大于1.2%分布区即为有效烃源灶分布区,平面上主要分布在洼陷中心和北部近洼区,垂向上主要分布于文四段,其次为文三段和文五段(图8),相带上该区主力油气源岩为半深湖-深湖相烃源岩,在高热演化作用下,文昌组浅湖相烃源岩为该地区另一套重要源岩,恩平17洼具备发育规模天然气潜力,为珠江口盆地富油洼陷寻找天然气提供资源基础.

5 结论

(1)早文昌期受边界控洼断层控制,恩平17洼为窄条形深断箕状半地堑,沉积中心集中在控洼断层活动性强的部位,为烃源岩发育提供可容纳空间,半深湖-深湖相沉积靠近控洼断裂(洼陷中心处)发育;晚文昌期受控洼断裂拆离作用影响,造成沉降中心向洼陷中北部迁移,半深湖-深湖相向洼陷中北部小规模拓展.

(2)钻井揭示恩平17洼文昌组上段浅湖相烃源岩,有机质类型为Ⅱ1⁃Ⅱ2,而已发现原油生物标志化合物特征类似于番禺4洼文昌组下段半深湖-深湖相烃源岩,间接证实恩平17洼半深湖-深湖相烃源岩发育.文昌组半深湖-深湖相泥岩具有较高的生烃能力,油气产率均较高,具有“生油集中,晚期爆发式生气”特征.文昌组浅湖相泥岩具有较好的生干酪根裂解气能力,且气产率相对较高,具有“宽窗持续生气”特征,“生气下限”高于半深湖-深湖相泥岩.

(3)基于地质-地化-地球物理联合方法优选地震属性,建立烃源岩TOC概率神经网络预测模型,通过烃源岩热解参数(S1TOC),结合盆地模拟结果,明确恩平17洼文昌组烃源岩已达到高成熟-过成熟演化阶段,洼陷有效烃源灶分布于烃源岩TOC大于1.2%的区域,平面上主要分布在洼陷中心和北部近洼区,垂向上主要分布于文四段,其次为文三段和文五段,相带上以半深湖-深湖相为主,其次为浅湖相烃源岩,在高热演化作用下,恩平17洼具备发育规模天然气潜力.

参考文献

[1]

Cai,G.F.,Peng,G.R.,Wu,J.,et al.,2022.Sedimentary Filling Response to Detachment Structural Deformation in Shallow⁃Water Continental Shelf of Pearl River Mouth Basin:A Case Study of Enping Sag.Earth Science,47(7):2391-2409 (in Chinese with English abstract).

[2]

Gao,G.,Wang,Y.H.,Liu,G.D.,et al.,2013.Confirmation and Distribution Features of Effective Source Rocks in Yinger Sag,Jiuquan Basin.Petroleum Geology & Experiment,35(4):414-418,425(in Chinese with English abstract).

[3]

Gao,Y.D.,Zhang,X.T.,Li,Z.G.,et al.,2021.Variability in Sequence Stratigraphic Architectures of Lower⁃Middle Miocene Pearl River Delta,Northern Enping Sag,Pearl River Mouth Basin:Implications for Lithological Trap Development.Earth Science,46(5):1758-1770 (in Chinese with English abstract).

[4]

Gao,Y.D.,Zhu,W.L.,Peng,G.R.,et al.,2024.Evaluation of Source Rocks and Prediction of Oil and Gas Resources Distribution in Baiyun Sag,Pearl River Mouth Basin,China.Petroleum Exploration and Development,51(5):986-996 (in Chinese with English abstract).

[5]

Hu,S.B.,Long,Z.L.,Zhu,J.Z.,et al.,2019.Characteristics of Geothermal Field and the Tectonic⁃Thermal Evolution in Pearl River Mouth Basin.Acta Petrolei Sinica,40(Suppl.1):178-187(in Chinese with English abstract).

[6]

Kuang,L.C.,Gao,G.,Xiang,B.L.,et al.,2014.Lowest Limit of Organic Carbon Content in Effective Source Rocks from Lucaogou Formation in Jimusar Sag.Petroleum Geology & Experiment,36(2):224-229 (in Chinese with English abstract).

[7]

Lei,C.,Ye,J.R.,Yin,S.Y.,et al.,2024.Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag,East China Sea Basin:Evidence from Element Geochemistry of Paleocene Mudstones.Earth Science,49(7):2359-2372 (in Chinese with English abstract).

[8]

Lu,S.F.,Zhang,M.,2008.Oil and Gas Geochemistry.Petroleum Industry Press,Beijing,201-206(in Chinese ).

[9]

Pang,X.,Zheng,J.Y.,Mei,L.F.,et al.,2021.Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin,Northern South China Sea,China.Petroleum Exploration and Development,48(5):1069-1080 (in Chinese with English abstract).

[10]

Peng,G.R.,Long,Z.L.,Shi,Y.L.,et al.,2022.Discussion on Integrated Geological and Geophysical Identification Method for Spatial Distribution of Favorable Source Rocks in Depression with Lack of Drilling Data:A Case Study of Enping 17 Sag,Zhu Ⅰ Depression,Pearl River Mouth Basin.Petroleum Geology & Experiment,44(6):1116-1122 (in Chinese with English abstract).

[11]

Peng,G.R.,Shi,C.,Long,Z.L.,et al.,2023.Relationship between Element Geochemical Characteristics and Organic Matter Enrichment of Wenchang Formation Mudstones in Enping Sub⁃Sag 21,Pearl River Mouth Basin.Marine Geology Frontiers,39(6):65-74 (in Chinese with English abstract).

[12]

Peters,K.E.,Walters,C.C.,Moldowan,J.M.,2005.The Biomarker Guide:Biomarkers and Isotopes in Petroleum Exploration and Earth History(Second ed.).Cambridge University Press,Cambridge.

[13]

Shi,C.,2022.REE Characteristics and Geological Significance of Mudstones from Wenchang Formation in Eastern Yangjiang Sag of Pearl River Mouth Basin.Bulletin of Geological Science and Technology,41(3):166-172 (in Chinese with English abstract).

[14]

Shi,C.,Long,Z.L.,Zhu,J.Z.,et al.,2020a.Element Geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and Their Environmental Implications.Marine Geology & Quaternary Geology,40(5):79-86(in Chinese with English abstract).

[15]

Shi,C.,Zhu,J.Z.,Long,Z.L.,et al.,2020b.TOC Prediction for Source Rocks of Wenchang Formation with a Joint Logging and Seismic Method in the Panyu 4 Sag in Pearl River Mouth Basin.Marine Geology Frontiers,36(2):26-32(in Chinese with English abstract).

[16]

Shi,C.,Zhu,J.Z.,Long,Z.L.,et al.,2019.Prediction of Total Organic Carbon in Source Rocks by Probabilistic Neural Network:A Case Study of Southern Lufeng Area in Pearl River Mouth Basin.Fault⁃Block Oil & Gas Field,26(5):561-565 (in Chinese with English abstract).

[17]

Shi,H.S.,Du,J.Y.,Mei,L.F.,et al.,2020.Huizhou Movement and Its Significance in Pearl River Mouth Basin,China.Petroleum Exploration and Development,47(3):447-461 (in Chinese with English abstract).

[18]

Sweeney,J.J.,Burnham,A.K.,1990.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1).AAPG Bulletin,74:1559-1570.https://doi.org/10.1306/0c9b251f⁃1710⁃11d7⁃8645000102c1865d.

[19]

Tang,X.Y.,Huang,S.P.,Yang,S.C.,et al.,2016.Correcting on Logging⁃Derived Temperatures of the Pearl River Mouth Basin and Characteristics of Its Present Temperature Field.Chinese Journal of Geophysics,59(8):2911-2921 (in Chinese with English abstract).

[20]

Tissot,B.P.,Welte,D.H.,1984.Petroleum Formation and Occurrence.Springer,Berlin,Heidelberg,https://doi.org/10.1007/978⁃3⁃642⁃87813⁃8

[21]

Wang,L.,Jin,Q.,2005.Tertiary Hydrocarbon Kitchen in Western Qaidam Basin and Its Control on Hydrocarbon Accumulation.Oil & Gas Geology,26(4):467-472 (in Chinese with English abstract).

[22]

Wu,J.,Zhu,D.W.,Zhao,P.,et al.,2021.Controls of Faulted Composite Accumulation Ridge on the Long Distance Migration and Accumulation of Neogene Hydrocarbon:A Case Study of the Eastern Yangjiang Sag and the Enping Sag in the Pearl River Mouth Basin.Geotectonica et Metallogenia,45(1):131-139 (in Chinese with English abstract).

[23]

Xiong,W.L.,Zhu,J.Z.,Yang,X.Y.,et al.,2020.Study on the Genetic Sources and Accumulation Processes of Oil and Gas in the North Uplift Structural Belt of Enping Sag.China Offshore Oil and Gas,32(1):54-65 (in Chinese with English abstract).

[24]

Xue,N.,Shao,X.Z.,Zhu,G.Y.,et al.,2023.Geochemical Characteristics and Formation Environment of Source Rocks of Triassic Chang 7 Member in Northern Pingliang Area,Ordos Basin.Lithologic Reservoirs,35(3):51-65 (in Chinese with English abstract).

[25]

Yang,F.,Cao,Z.L.,Liu,H.L.,et al.,2024.Source Rock Evaluation and Prediction of Effective Hydrocarbon Kitchen Distribution of Upper Triassic in Junggar Basin.Petroleum Geology & Experiment,46(2):380-392 (in Chinese with English abstract).

[26]

Yang,H.B.,Feng,D.H.,Yang,X.Y.,et al.,2024.Characteristics of Source Rocks and Thermal Evolution Simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin.Lithologic Reservoirs,36(5):156-166 (in Chinese with English abstract).

[27]

Yang,M.H.,Zuo,Y.H.,Duan,X.G.,et al.,2023.Hydrocarbon Kitchen Evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Enlightenment to Hydrocarbon Accumulation.Earth Science,48(2):582-595 (in Chinese with English abstract).

[28]

Zhao,P.,Peng,G.R.,Wu,J.,et al.,2021.Accumulation and Key Controls of Lateral Cross⁃Fault Hydrocarbon Migration:A Case Study of the Enping Sag in the Pearl River Mouth Basin.Geotectonica et Metallogenia,45(1):148-157.(in Chinese with English abstract).

[29]

Zhu,D.W.,Peng,G.R.,Zhang,Z.T.,et al.,2021.Model of Oil-Gas Cross⁃Fault Migration,Evaluation and Application:A Case in the Enping Sag of Pearl River Mouth Basin.Geotectonica et Metallogenia,45(1):140-147 (in Chinese with English abstract).

[30]

Zhu,M.,Zhang,X.T.,Huang,Y.P.,et al.,2019.Source Rock Characteristics and Resource Potential in Pearl River Mouth Basin.Acta Petrolei Sinica,40(Suppl.1):53-68(in Chinese with English abstract).

基金资助

自然资源部“十四·五”全国油气资源评价项目(QGYQZYPJ2022⁃3)

中国海洋石油集团总公司“十四·五”重大科技项目(KJGG2022⁃0403)

AI Summary AI Mindmap
PDF (4887KB)

58

访问

0

被引

详细

导航
相关文章

AI思维导图

/