高产热花岗岩与锂成矿作用:以赣西地区宜丰‒奉新巨型锂矿田为例

吴俊华 , 龚敏 , 李国猛 , 吴赞华 , 季浩 , 周建廷 , 况二龙 , 李艳军

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2643 -2666.

PDF (11313KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2643 -2666. DOI: 10.3799/dqkx.2025.148

高产热花岗岩与锂成矿作用:以赣西地区宜丰‒奉新巨型锂矿田为例

作者信息 +

High Heat Producing Granites and Related Lithium Mineralization: Insights from Giant Yifeng⁃Fengxin Lithium Ore Field, West Jiangxi Province

Author information +
文章历史 +
PDF (11583K)

摘要

花岗岩型锂矿床成矿岩体通常具有较高的放射性产热率,但高产热花岗岩与锂成矿之间的联系尚不清楚.选取赣西地区新探明的宜丰‒奉新巨型花岗岩型锂矿田为主要研究对象,对不同花岗岩开展了系统的岩石学和主微量地球化学研究.结果表明,成矿花岗岩具有从边部到中心,从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩的明显岩性分带.这些花岗岩具有富SiO2、Al2O3、Na2O、K2O、P2O5而贫CaO、TiO2、MgO、FeO*的强过铝质高钾钙碱性特征.较低的Nb/Ta和Zr/Hf比值以及较高的10 000×Ga/Al比值指示其属于高分异的S型花岗岩.而且这些花岗岩可能经历了明显的石英、长石、云母、独居石、褐帘石和锆石的分离结晶且分异演化程度逐渐升高.黑云母花岗岩因富集U和Th而具有最高的产热率(属于高产热花岗岩),其高产热属性可能继承自幔源岩浆加入的岩浆源区.随着结晶分异程度的升高,不同岩性的产热率逐渐降低而锂含量逐渐升高.高产热岩浆岩对锂成矿的控制作用主要体现在:(1)提供成矿金属来源;(2)延长岩浆的固结时限,使得分离结晶作用和/或金属向热液中的迁移得以充分进行,促进锂的富集成矿.放射性衰变产热可能是华南高分异花岗岩成岩成矿作用的另一种热驱动机制.高产热花岗岩研究将有助于深入理解花岗岩型锂矿的形成机制及锂与钨锡、铌钽、铀等矿种的成因联系,有望为这些矿种的找矿勘查带来启示.

Abstract

Granite related lithium deposits are generally characterized by high radiogenic heat productions. However, the genetic relationship between the high heat producing granites (HHP) and Li mineralization is poorly understood. In the study, the newly discovered giant Yifeng-Fengxin granite related lithium ore field in West Jiangxi Province was selected to further constrain the relationship between the HHP and Li mineralization. Petrology and major and trace elemental geochemistry were carried out on Li-related granites, including biotite granite, two-mica granite, muscovite granite, and lepidolite granite. The results show that all the granites roughly belong to strongly peraluminous and high-K calc-alkaline series with obvious enrichments of SiO2, Al2O3, Na2O, K2O, and P2O5, but depletions of CaO, TiO2, MgO, and FeO*. Low Nb/Ta and Zr/Hf ratios and high 10 000×Ga/Al ratios indicate that they could be highly fractionated S-type granites. From biotite granite, two-mica granite, to muscovite granite and lepidolite granite, they underwent distinct fractional crystallization of quartz, feldspar, mica, monazite, allanite and zircon with gradually increased differentiation degree. Biotite granite exhibits the highest radiogenic heat production among all granite types due to the concentration of U and Th, and can be regarded as HHP. The high heat production of biotite granite may be inherited from its source region with some mantle magma injection. With the increase of evolution degree, the radiogenic heat production of different types of granites generally decreased while the lithium content increased gradually. In conclusion, the control of HHP on Li mineralization may be reflected in two aspects: (1) HHP and its parental magma provide the dominant source of lithium metal; and (2) radiogenic heat released by the decay of heat producing elements considerably prolongs the suprasolidus lifetime of granitic magmas, and the fractional crystallization and/or the diffusion of Li (and other metals) from melt to hydrothermal can be allowed to proceed more completely before the solidus is reached. Thus, radiogenic heat production may be another thermal drive mechanism for the rare metal mineralization of highly differentiated granite in South China. The study of HHP will enhance the understanding of the mineralization of granite-type lithium deposits and the metallogenetic relationship between Li, W-Sn, Nb-Ta, U and other metal deposits, which is expected to bring enlightenment for the prospection and exploration of these metals.

Graphical abstract

关键词

高产热花岗岩 / 花岗岩型锂矿床 / 锂成矿作用 / 宜丰‒奉新锂矿田 / 赣西地区 / 地球化学 / 岩石学.

Key words

high heat producing granite / granite⁃related lithium deposit / lithium mineralization / Yifeng⁃Fengxin lithium ore field / West Jiangxi Province / geochemistry / petrology

引用本文

引用格式 ▾
吴俊华,龚敏,李国猛,吴赞华,季浩,周建廷,况二龙,李艳军. 高产热花岗岩与锂成矿作用:以赣西地区宜丰‒奉新巨型锂矿田为例[J]. 地球科学, 2025, 50(07): 2643-2666 DOI:10.3799/dqkx.2025.148

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

锂(Lithium),因其独特的性能被广泛应用于新能源、新材料、医药、航空航天和国防科技等领域,是国内外公认的战略性矿产之一,并被誉为“21世纪能源金属”和“白色石油” (毛景文等, 2019; 蒋少涌和王微, 2022; 王登红等, 2022).全球锂矿的成因类型主要有硬岩型、卤水型和黏土型等 (Bowell et al., 2020Cabello, 2021Benson et al., 2023).花岗岩型锂矿是除伟晶岩型之外的另一种硬岩型锂矿,并以其规模大、易开采的优点迅速成为我国锂矿勘查和开发的重要类型 (吴福元等, 2023).该类型矿床多伴生Rb⁃Cs⁃Nb⁃Ta⁃W等稀有金属,通常与演化程度较高的白云母花岗岩和/或锂云母花岗岩密切相关,且一般发育强钠化、黄玉化和云英岩化等类型蚀变 (Bastos Neto et al., 2009Wu et al., 2018Pollard, 2021Yin et al., 2022).典型矿床有法国Beauvoir (Cuney et al., 1992)、捷克Cínovec (Qiao et al., 2024)和我国的雅山414(Yin et al., 2022)和黄山‒松树岗 (Liu et al., 2022)等.目前,对花岗岩型锂矿的成因认识主要有三种:(1)成矿完全由岩浆结晶分异作用控制 (Li et al., 2017Pollard, 2021Yin et al., 2022; 刘泽等, 2023; 徐净等, 2023; 姜军胜等, 2024);(2)岩浆‒热液阶段的流体交代作用导致了锂的富集 (Huang et al., 2002Wu et al., 2018Xu et al., 2023);(3)锂成矿由二者复合作用控制(龚敏等, 2023; Ouyang et al., 2023;刘金宇等, 2024; Putzolu et al., 2024).

由于富集U、Th、K等高产热元素,一些放射性产热率(Radiogenic Heat Production,RHP)大于 5 μWm-3的花岗岩通常被定义为高产热花岗岩(High Heat Production Granites,HHP) (Somarin and Mumin, 2012Kromkhun et al., 2013).越来越多的研究表明,高产热花岗岩与W⁃Sn、Nb、REE、Au、U等金属的成矿关系密切,如云南个旧、湖南千里山等 (Kromkhun et al., 2013Liu et al., 2023Zhang et al., 2023a).高产热花岗岩对这些金属成矿的控制作用主要体现在:(1)为成矿提供金属来源 (廖煜钟, 2019);(2)延长岩浆的超固相线时限 (McLaren et al., 1999Zhang et al., 2020Liao et al., 2021aLiu et al., 2023)和(3)驱动成岩后热液流体循环 (Mohammadi et al., 2019Magyarosi, 2022Zhang et al., 2023a)等三个方面.值得注意的是,花岗岩型锂矿相关的成矿岩体通常具有较高的U、Th、K含量而具有远高于正常花岗岩的放射性产热率(约为2 μWm-3) (Artemieva et al., 2017).某些成锂花岗岩的产热率甚至超过了5 μWm-3而可以被划分为高产热花岗岩(如雅山岩体和灵山岩体等) (Li et al., 2015Liu et al., 2022).但是,目前对成锂花岗岩高产热属性的形成机制以及高产热对锂富集成矿的控制作用还知之甚少.

赣西地区宜丰‒奉新锂矿田是我国近年来探明的一处巨型花岗岩型锂矿资源基地 (陈祥云等, 2023).矿田内包括茜坑、大港、白水洞等超大型、大型矿床7处,已探明Li2O资源量超920.75×104 t,远景资源量超1 500×104 t,一举奠定了所在地宜春市“亚洲锂都”的地位 (陈祥云等, 2023; 楼法生等, 2023).目前,学者对宜丰‒奉新锂矿田的成矿地质特征 (周建廷等, 2011; 李仁泽等, 2020)、成岩成矿时代 (姜宝亮等, 2022; 聂晓亮等, 2022; 龚敏等, 2023; 李艳军等, 2023)、成矿机制 (王成辉等, 2019; 刘泽等, 2023; Ouyang et al., 2023Xu et al., 2023; 刘金宇等, 2024)以及伴生稀有金属(徐净等, 2023; 姜军胜等, 2024)等展开了较为广泛的研究.但是,高产热花岗岩与锂成矿作用的关系研究仍未见报道.本文以宜丰‒奉新锂矿田为例,在详细野外地质调查和室内岩相学观察基础上,对矿田内多个矿床中的代表性岩矿石样品进行了系统采集,通过综合分析本次和前人对各类岩相的主微量元素结果,探讨(1)成锂花岗岩的岩石类型及成因;(2)不同岩相的放射性产热率、变化趋势及高产热的成因;(3)高产热花岗岩对锂成矿的控制作用.期望对花岗岩型锂矿床成因研究和勘查工作带来启示.

1 区域地质背景

赣西宜丰‒奉新锂矿田位于华南扬子板块和华夏板块之间的缝合带——江南造山带的中段(图1a).该区域由前寒武纪和晚中生代地质单元组成.其中,前寒武纪主要由中‒新元古代变质沉积岩(双

桥山群和冷家溪群等)、花岗岩(如九岭岩体)和少量基性岩组成 (周国庆等, 1989; Wang et al., 2014; 王孝磊等, 2017; Zhang et al., 2023b).变质沉积岩为一套断陷盆地环境下形成的火山‒碎屑岩沉积建造,岩性主要为变余细砂岩、砂岩、粉砂岩、板岩和千枚岩组成 (Wang et al., 2014; 王孝磊等, 2017; 王艳等, 2018).九岭岩体以英云闪长岩、花岗闪长岩和中‒粗粒黑云母花岗闪长岩为主,出露面积约为2 500 km2,是华南新元古代出露面积最大的复式花岗岩体 (黄兰椿和蒋少涌, 2012; Wang et al., 2017; 张福神等, 2020).晚中生代地质单元主要为花岗岩基以及少量基性岩脉、细晶岩脉,如幕阜山 (Li et al., 2020)和甘坊复式岩体 (龚敏等, 2023).这些晚中生代复式岩体的分布通常受北东‒北北东向断裂影响,在类型上多为S型花岗岩,并与稀有金属成矿密切相关.赣西地区所在的江南造山带中段分布有以雅山414锂铌钽矿床 (Wu et al., 2018; Pollard, 2021; Yin et al., 2022)、宜丰‒奉新锂矿田为代表的多个超大型‒大型锂(铌钽)矿床(田),使其成为我国乃至世界范围内最大的花岗岩锂成矿带 (陈祥云等, 2023).除此之外,该区域还发育有大湖塘钨多金属矿田 (黄兰椿和蒋少涌, 2012)、香炉山钨矿床 (赵文和张怀瑾, 2022)、花山洞钨矿床 (陈浩文等, 2023)、村前铜多金属(王强等, 2012)等众多矿床(田),彰显了其成矿优越性.

2 矿田地质特征

宜丰‒奉新锂矿田内出露地层主要为新元古界双桥山群和第四系.前者主要为变余凝灰质细砂岩‒砂质千枚岩和变余砂岩‒粉砂质板岩等浅变质岩(王成辉等, 2019);后者主要见诸沟谷及低洼处.构造以断裂为主,主要有北东向的上富‒兰溪断裂和东西向的上富‒甘坊断裂(周建廷等, 2011).矿田内岩浆岩广泛出露,具多期多阶段侵入的特点.侵入岩主要有新元古代九岭岩体和中生代晚侏罗世甘坊复式岩体.九岭岩体(825~ 820 Ma)以黑云母花岗闪长岩和英云闪长岩为主 (段政等, 2019).甘坊复式岩体(150~130 Ma)从边部向中心表现出明显的岩性分带,分别为黑云母花岗岩、二云母二长花岗岩、白云母(二长)花岗岩和钠化白云母花岗岩等(李艳军等, 2023)(图2).此外,矿田还发育有少量花岗细晶岩脉、霏细斑岩脉等脉岩(龚敏等, 2023; 刘金宇等, 2024).矿田内发育超大型、大型花岗岩型锂矿床7处,分布于甘坊岩体的不同部位.矿床大体呈东西向分布,自西向东依次为茜坑、石家里、茅岭、狮子岭、大港、圳口里、白水洞、水南‒港口等(图2).在甘坊岩体的南部、西部和东部,还产出有同安、东坑等细晶岩/霏细斑岩型锂矿床,且品位较高(曾闰灵等, 2023)(图2).除锂矿化之外,这些矿床还伴生有铌钽、铷铯等矿化(徐净等, 2023; 姜军胜等, 2024).

这些矿床均与甘坊复式岩体密切相关,具有岩体即为矿体的特点,且矿床地质特征大体相同.在甘坊岩体的各岩相中,边部的黑云母花岗岩(图3a、3b)和二云母二长花岗岩(图3c)(下文简称为二云母花岗岩)一般Li2O含量较低;中部的白云母(二长)花岗岩(图3d、3e)和钠化白云母花岗岩(图3f)Li2O含量较高,构成了锂矿的主体.矿体形态较规则,呈层状、似层状,走向大致呈东西向,厚度较稳定 (陈祥云等, 2023).矿体(白云母(二长)花岗岩和钠化白云母花岗岩)与下盘围岩(黑云母花岗岩和二云母花岗岩)呈渐变过渡关系.白云母(二长)花岗岩的Li2O品位为0.2~0.3 wt.%.钠化白云母花岗岩多产出于白云母花岗岩的中心和顶部,Li2O品位多在0.4 wt.%以上,在浅部(岩体顶部)甚至可超过0.6 wt.%.

白云母(二长)花岗岩(下文简称白云母花岗岩)是主要的矿石类型之一.通常呈浅肉红色‒灰白色,中细粒花岗结构,块状构造(图3d、3e).矿物组合为石英(40 vol.%)、钠长石(25 vol.%)、斜长石(15 vol.%)、钾长石(10 vol.%)、白云母(10 vol.%)(图4c).副矿物为锆石、独居石、磷灰石、锡石、褐帘石等.钠化白云母花岗岩多为高品位矿石.相比白云母花岗岩,岩石更白、粒度稍细、钠长石和白云母的含量更高,而钾长石和斜长石含量则更低(图3f、图4d).副矿物中则可能出现铌钽铁矿和磷钇矿.前人研究认为,云母族矿物为锂的主要载体且发育环带结构(龚敏等, 2023)(图4c、4d).云母可能存在两个序列:白云母→锂白云 母→锂云母序列和铁叶云母→黑鳞云母→铁锂云母→锂云母序列(刘泽等, 2023).此外,还可能存在磷锂铝石(王成辉等, 2019).由于钠化白云母花岗岩中锂云母含量相较白云母花岗岩更高(龚敏等, 2023),为了区分此二者,下文将钠化白云母花岗岩简称为锂(白)云母花岗岩.

矿田内围岩蚀变发育且种类较多.与锂成矿密切相关的蚀变类型有锂云母化、云英岩化、钠长石化、硅化及萤石化等(陈祥云等, 2023; 龚敏等, 2023; Xu et al., 2023).蚀变具有明显的空间分带.在平面上,岩体中心以强的钠长石化和云英岩化为主,从内向外蚀变强度逐渐减弱.外围的二云母花岗岩、黑云母花岗岩中也常出现热液白云母和黑鳞云母蚀变.在垂向上,蚀变分带与平面上类似,自上而下云英岩化和钠长石化的蚀变强度逐渐减弱.

3 分析方法

本次选取宜丰‒奉新锂矿田内大港、白水洞、枧下窝和水南‒港口等矿床为重点研究对象,采集各类岩(矿)石的地表及岩心样品超过150件,并选取风化较弱、代表性强的样品22件用于后续测试.其中,黑云母花岗岩3件、二云母花岗岩5件、白云母花岗岩14件.

全岩主微量测试工作在核工业北京地质研究院完成.主量元素分析采用X射线荧光光谱法(XRF)完成.首先,样品被粉碎至200目以下,并置于干燥器中烘干;以无水四硼酸锂‒氟化锂为助溶剂、硝酸铵为氧化剂,在1 150~1 250 ℃温度条件下,熔样10~15 min,将样品制成玻璃熔片;利用利浦PW2404X射线荧光光谱仪对待测样品熔片进行测试,主量各元素分析谱线均为Kα,标准曲线参照国家标准物质岩石系列GBW07101⁃14.

微量元素含量采用电感耦合等离子质谱法(ICP⁃MS)分析.(1)105 ℃左右条件下,将样品粉末置于烘箱中烘干12 h;(2)准确称取50 mg样品置于Teflon弹中,并依次加入高纯HNO3、HF和HC1O4,将溶样弹置于电热板在140 ℃温度条件下开盖加热蒸干以除去SiO2;(3)再次加入高纯HNO3和HF,之后将Teflon弹放入钢套,拧紧后置于烘箱中,在190 ℃条件下加热48 h;(4)待Teflon弹冷却后,开盖置于电热板上,在140 ℃条件下蒸干,加入2 mL高纯HNO3,相同条件下再次蒸干以除去残余的HF;(5)再次向Teflon弹中加入2 mL的HNO3,装入钢套,待冷却后拧紧,置于烘箱中190 ℃条件下加热12 h以完全提取样品;(6)冷却后将样品从Teflon弹中转移到聚乙烯料瓶,利用德国Finnigan⁃MAT的HR⁃ICP⁃MS(ElementⅠ)对样品进行测试.测试遵从DZ/T0223-2001方法.

4 分析结果

表1列举了此次测试的22件各类花岗岩样品的主微量分析结果.同时收集了前人发表的矿田内狮子岭、东槽等矿床中的9件黑云母花岗岩、13件二云母花岗岩、22件白云母花岗岩和14件锂(白)云母花岗岩样品和同安矿床8件花岗细晶岩样品的主微量成分数据(附表1).此外,宜春414矿床二云母花岗岩、白云母花岗岩和锂(白)云母花岗岩的主微量数据也被一并整理,以作对比(附表2).两个矿田(床)中所有类别花岗岩主微量元素特征也被分别呈现在图5图6中.

4.1 全岩主量元素含量

除细晶岩外,宜丰‒奉新锂矿田内花岗岩类均具有较高的SiO2含量(主要为69.48~75.60 wt.%),在TAS图解中大多落在花岗岩区域(图5a).这些花岗岩通常具有富K2O(主要为2.76~5.47 wt.%)和Na2O(主要为2.21~7.80 wt.%)的特点,属于高钾钙碱性系列(图5b、5c).从黑云母花岗岩→二云母花岗岩→白云母花岗岩→锂(白)云母花岗岩,岩石的K2O含量逐渐降低(平均值依次为4.67 wt.%、 4.40 wt.%、3.69 wt.%和3.40 wt.%)而Na2O含量持续升高(平均值依次为3.15 wt.%、3.29 wt.%、 3.97 wt.%和4.14 wt.%),与黑云母和钾长石含量逐渐降低而钠化蚀变逐渐增强趋势吻合(图3).这些花岗岩的Al2O3含量和铝饱和指数(A/CNK)也较高,分别为13.49~20.42 wt.%和1.10~2.03,显示强过铝质特征(图5d).而且随着岩性变化,Al2O3含量(平均值依次为14.99 wt.%、15.21 wt.%、 15.65 wt.%和17.08 wt.%)和A/CNK比值(平均值依次为1.37、1.41、1.42和1.52)同样呈上升趋势.此外,这些花岗岩也相对富P,P2O5平均含量均超过了0.28 wt.%且逐渐升高(平均值依次为0.28 wt.%、0.40 wt.%、0.51 wt.%和0.52 wt.%)(附表1).但是,花岗岩类相对贫Ca(CaO = 0.05~1.19 wt.%)、Mg(MgO=0.01~0.39 wt.%)和Fe(FeO*=0.13~4.14 wt.%),且通常极度贫Ti(绝大多数样品的TiO2含量不超过0.25 wt.%).白云母花岗岩和锂(白)云母花岗岩的TiO2含量几乎低于检出限(附表1).总体上,宜丰‒奉新花岗岩具有富Si、Al、Na、K和P而贫Ca、Ti、Mg和Fe的强过铝质高钾钙碱性特征,这与414矿床中的二云母花岗岩‒白云母花岗岩的特征相似(图5).

花岗细晶岩SiO2含量(66.95~68.28 wt.%)略低于其他类型花岗岩,但具有更高的A/NK值(1.88~2.73)和P2O5含量(0.51~1.35 wt.%)(图5附表1).

4.2 全岩微量元素含量

宜丰‒奉新锂矿田内花岗岩和细晶岩均具有极低的稀土元素总量(ΣREE≤ 152.31 ppm).从黑云母花岗岩→二云母花岗岩→白云母花岗岩→锂(白)云母花岗岩→花岗细晶岩,稀土元素总量依次降低:24.68~152.31 ppm、16.61~49.28 ppm、≤ 10.41 ppm、≤ 3.31 ppm、≤检出限(图6a和附表1).

由于锂(白)云母花岗岩和花岗细晶岩的稀土元素含量过低,在此不做过多探讨.黑云母花岗岩、二云母花岗岩和白云母花岗岩的轻重稀土含量之比(LREE/HREE)分别为4.68~16.53、5.10~12.61和1.26~5.65(附表1),显示出相对富集轻稀土的、中等程度的稀土分馏.相应地,在球粒陨石标准化稀土元素配分图上,这三类花岗岩呈现出略微右倾的配分模式(图6a).这三类岩石的Eu/Eu*依次为0.26~0.70、0.26~0.54和0.10~0.52(附表1),表明具有中等偏弱的Eu负异常.对比雅山414矿床,两个矿床(田)的花岗岩类具有可类比的稀土元素特征.其中,宜丰‒奉新矿田黑云母花岗岩‒二云母花岗岩具有与雅山二云母花岗岩相当的稀土元素含量和配分模式;两者的白云母花岗岩稀土配分模式类似;而宜丰‒奉新锂(白)云母花岗岩和细晶岩的配分曲线也落入了雅山锂(白)云母花岗岩的范围,不过后者变化性更大(图6a).

在原始地幔标准化微量元素蛛网图上(图6b),宜丰‒奉新锂矿田花岗岩具有类似的变化模式.例如,它们均呈现出明显的Rb、U、Ta、Pb、P和Hf的富集以及Ba、Nb、Ti和REEs的亏损.不过,特定微量元素在不同岩性之间的富集/亏损程度不尽相同.从黑云母花岗岩→二云母花岗岩→白云母花岗 岩→锂(白)云母花岗岩→花岗细晶岩,Rb、Ta和P的富集程度逐渐增强,Pb的富集程度逐渐减弱;Ba、Ti和REEs的亏损程度逐渐增强,Nb的亏损程度逐渐减弱(图6b和附表1).与上述稀土元素特征类似,宜丰‒奉新锂矿田成矿花岗岩的微量元素特征与414矿床二云母花岗岩、白云母花岗岩和锂(白)云母花岗岩的微量元素富集/亏损特征基本一致(图6b).

4.3 放射性产热率特征

华南地区一些钨锡、锂、稀有金属成矿花岗岩通常具有较高的放射性产热率,例如,湖南千里山岩体等 (Liao et al., 2021bLiu et al., 2023).基于Rybach (1988)建议的放射性产热率计算公式:

RHP=10-5×ρ×(9.52CU+2.56CTh+ 3.48CK),

其中,放射性产热率RHP的单位为μWm-3,密度ρ取花岗岩类的平均密度2.67 g/cm3CUCThCK分别为岩石中U、Th和K的元素含量,单位为ppm,K的含量由岩石中K2O的含量换算而来.本文利用此次获得的和已发表的U、Th、K含量数据计算了宜丰‒奉新和雅山414不同类型花岗岩及细晶岩的放射性产热率(表1和附表1~2).结果显示,宜丰‒奉新锂矿田内黑云母花岗岩具有最高的放射性产热率(2.30~10.39 μWm-3),基本上可以被定义为高产热花岗岩 (Kromkhun et al., 2013).从黑云母花岗岩→二云母花岗岩→白云母花岗岩→锂(白)云母花岗岩→细晶岩,放射性产热率平均值依次为4.91 μWm-3、 2.85 μWm-3、2.17 μWm-3、1.82 μWm-3和 2.89 μWm-3附表1).除细晶岩略高之外,产热率呈逐渐降低趋势.对于雅山414矿床,同样可以得到类似结论:从二云母花岗岩到白云母花岗岩再到锂(白)云母花岗岩,岩石的放射性产热率逐渐降低(附表2).

5 讨论

5.1 岩石成因类型

华南地区的锂及稀有金属成矿母岩通常被认为是演化程度较高的高分异花岗岩 (吴福元等, 2017, 2023; 郭春丽等, 2024).在宜丰‒奉新锂矿田,从复式岩体的边缘到中心,岩相逐渐由黑云母花岗岩、二云母花岗岩过渡为白云母花岗岩,甚至是锂(白)云母花岗岩(图2),这与高分异花岗岩的岩性分带相吻合(Kovalenko and Kovalenko, 1984).随着岩性自外而内的变化,对应花岗岩的体积逐渐减小(图2)、粒度逐渐变细、黑云母和钾长石含量逐渐降低、而钠长石含量逐渐升高(图3),这样的趋势也显示出宜丰‒奉新花岗岩属于演化程度逐渐升高的高分异花岗岩(吴福元等, 2017).此外,矿田内出露的同安花岗细晶岩脉和东坑霏细斑岩脉(图2)也是岩浆高度结晶分异的又一典型岩石学标志(Dill, 2015).

宜丰‒奉新锂矿田成矿花岗岩的全岩主微量元素变化也反映了高分异花岗岩的特征.从黑云母花岗岩、二云母花岗岩到白云母花岗岩和锂(白)云母花岗岩,岩石的Na2O、P2O5、Al2O3含量和A/CNK比值逐渐升高;而K2O和TiO2含量则逐渐降低(图5附表1),呈现出向更偏碱性、更过铝质和更富磷贫钛的方向演化的趋势 (郭春丽等, 2024).稀土元素方面,上述岩性的ΣREE总含量和LREE/HREE比值逐渐降低(图6附表1),同样符合大多数高分异花岗岩的特征 (李洁和黄小龙, 2013).微量元素组成的改变也能指示岩浆的结晶分异程度(Gelman et al., 2014).黑云母花岗岩→二云母花岗岩→白云母花岗岩→锂(白)云母花岗岩逐渐升高的Rb(平均值依次为494 ppm、 1 217 ppm、1 739 ppm和2 201 ppm)、Cs含量(平均值依次为123 ppm、449 ppm、386 ppm和 520 ppm)也暗示了成矿花岗岩演化程度的提高(附表1).由于其相似的地球化学性质,K和Rb、Zr和Hf、Nb和Ta等微量元素组合通常在多数岩浆体系中保持同步变化而具有稳定的比值.这些特征元素的比值被认为往往随着岩浆结晶分异的升高而降低,而被作为判别高分异花岗岩的重要参数(Halliday et al., 1991Green, 1995; 吴福元等, 2017).宜丰‒奉新锂矿田花岗岩类逐渐降低的K/Rb(平均值依次为89.25、42.31、18.05和13.31)、Zr/Hf(平均值依次为32.59、22.58、11.42和10.02)和Nb/Ta比值(平均值依次为4.03、1.81、1.78和1.62)也是其属于高分异花岗岩的又一力证(图7a和附表1).

另一方面,从I⁃、S⁃和A型花岗岩成因分类的角度(Chappell and White, 1974),宜丰‒奉新锂矿田各类花岗岩较高的10 000×Ga/Al比值(图7b和附表1)暗示其可能为A型花岗岩(苏玉平和唐红峰, 2005; 蒋少涌等, 2008).然而,经过充分分异的I/S型花岗岩也可以产生较高的10 000×Ga/Al比值 (Li et al., 2007; 吴福元等, 2023).在图7b中,多数宜丰‒奉新花岗岩落入了高分异I/S型花岗岩区域,表明其可能属于此类岩石.另外,A型和I型花岗岩通常具有较低的A/CNK值(1.0~1.1)而表现为弱过铝质花岗岩(刘金宇等, 2024),而宜丰‒奉新锂矿田中黑云母花岗岩的A/CNK值最低,平均值也达到了1.37,明显高于A型和S型花岗岩,显示强过铝质S型花岗岩的特征(图5d).宜丰‒奉新花岗岩丰富的云母和石英含量(图3图4),也与雅山等S型花岗岩类似(杨泽黎等, 2014).因此,这些特征表明宜丰‒奉新锂矿田内花岗岩类更可能为高分异的S型花岗岩.宜丰‒奉新锂矿田黑云母花岗岩、二云母花岗岩、白云母花岗岩和锂(白)云母花岗岩的SiO2平均含量均超过了70 wt.%(附表1),表明经历了明显的石英的分离结晶.微量元素含量/比值的协变图解(图8)被用来进一步判别岩浆的结晶分异过程.通常,钾长石和斜长石的分离结晶会分别导致Ba和Sr在残余熔体中的亏损(李献华等, 2007).从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩的Ba(平均值依次为199 ppm、 68 ppm、6.63 ppm和5.86 ppm)和Sr含量(平均值依次为53.72 ppm、28.03 ppm、20.91 ppm和16.93 ppm)呈逐渐降低趋势(图8a~8b),表明宜丰‒奉新矿田花岗岩经历了明显的长石的分离结晶过程.而且,微量元素蛛网图上Ba的亏损更为突出(图6b),暗示钾长石的分离结晶可能占主导地位.在Ta⁃Ta/Nb图解中(图8c),宜丰‒奉新矿田花岗岩表现出一定程度的云母的分离结晶趋势,但弱于雅山414矿床花岗岩,这也可能是后者比前者更富Nb、Ta的原因之一(Xie et al., 2019Xu et al., 2023).值得一提的是,云母也是Ti的重要载体矿物(Stepanovet al., 2014),云母的分离结晶可能导致了宜丰‒奉新花岗岩Ti的极度亏损(图6b).另外,从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩,岩石的(La/Yb)N比值随着La含量的降低而减小(图6a和附表1).这与独居石和褐帘石等富稀土矿物的分离结晶趋势相吻合(图8d),暗示了宜丰‒奉新矿田成矿花岗岩形成过程中可能存在明显的独居石和褐帘石的分离结晶.对于黑云母花岗岩而言,似乎还存在一定的锆石的分离结晶(图8d),这也与其较高的Zr含量(主要为78.9~158 ppm)相一致.

因此,宜丰‒奉新锂矿田花岗岩可能为高分异的S型花岗岩,且经历了明显的石英、钾长石、斜长石、云母、独居石、褐帘石和锆石的分离结晶作用.这些特征与414矿床成矿花岗岩类似.

5.2 高放射性产热率的成因

通过对比不同岩性的放射性产热率、Zr/Hf比值和Li含量,不难看出,黑云母花岗岩虽然具有较低的分异程度和Li含量,却具有最高的放射性产热率(图9).为了了解U、Th和K对单位产热率的贡献,将每个元素相应的产热率投到三角图中(图10a) (蔺文静等, 2024).对于所有宜丰‒奉新花岗岩和细晶岩而言,U对单位产热率的贡献最高,超过了40%(图10a).不同岩石U对单位产热率的贡献存在差异:对黑云母花岗岩产热率的贡献在40%~60%;对二云母花岗岩、白云母花岗岩和锂(白)云母花岗岩产热率的贡献超过了60%;而对于细晶岩而言,这个比例高达80%~95%(图10a).在U、Th、K2O含量与RHP的二元图解中(图10b~10d),U与RHP呈现出明显的线性关系(图10b),也说明U是对宜丰‒奉新花岗岩和细晶岩产热率影响最大的元素.值得注意的是,对于黑云母花岗岩来说,除了U之外,Th对单位产热率的贡献也达到了30%~50%(图10a、10c).由此可见,U、Th等高产热元素在黑云母花岗岩中的富集是产热率较高的主要原因.414矿床的二云母花岗岩也有类似特征(图10).

前人认为,过碱质岩浆在充分分离结晶的情况下可以导致U、Th、REEs等元素在残余熔体中的富集而形成高产热花岗岩 (Cuney, 2014).但是,宜 丰‒奉新黑云母花岗岩具有高的A/CNK比值,属于典型的过铝质岩浆岩(图5c),似乎不可能由过碱质母岩浆分离结晶形成(Bea, 2012Cuney, 2014).另一方面,在一些高产热花岗岩的形成过程中,岩浆上升过程中的结晶分异作用可能只是次要作用,而富集高产热元素的岩浆源区才是形成高产热岩浆岩的先决条件 (Bea, 2012Zhang et al., 2023a).虽然,宜丰‒奉新成矿花岗岩的岩石类型(I/S型)和岩浆源区还存在争议,但有学者认为在其形成过程中存在幔源物质的加入(吴福元等, 2023; 郭春丽等, 2024).富集U、Th等高产热元素的幔源岩浆在源区的注入可能是宜丰‒奉新锂矿田黑云母花岗岩高产热属性的来源.值得注意的是,高产热岩浆在浅部岩浆房的分离结晶作用可能导致了从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩产热率的降低.在浅部低温条件下,U、Th等高产热元素可能随着锆石、独居石等副矿物的分离结晶率先在黑云母花岗岩中富集 (Bea, 2012; 龚敏等, 2023).随着分离结晶的进行,残余熔体中的高产热元素逐渐亏损,进而导致产热率随分异程度的升高而降低(图8a~8d).

5.3 高产热花岗岩对锂成矿的控制作用

前人研究认为,高产热花岗岩对稀有金属成矿的控制作用主要体现在以下几个方面:(1)U、Th、K等高产热元素与W、Sn、Nb、Ta等成矿元素都属于不相容元素,高产热花岗岩往往也是钨锡成矿母岩 (廖煜钟, 2019);(2)高产热元素的放射性衰变产热能够大幅延长岩浆的固结时间,有利于成矿金属向热液流体中的扩散 (McLaren et al., 1999; Zhang et al., 2020; Liao et al., 2021a; Liu et al., 2023);(3)放射性元素的持续产热能够使岩浆在固结成岩之后依然保持较高的温度水平,高产热岩体与围岩的温度差能够有效驱动流体循环并萃取、搬运成矿元素(Mohammadi et al., 2019Magyarosi, 2022).

对于以宜丰‒奉新矿田为代表的花岗岩型锂矿而言,具有高产热属性的黑云母花岗岩与Li2O品位较高的白云母花岗岩、锂(白)云母花岗岩表现出明显的同源岩浆分异演化的岩相学(图2图3)和地球化学特征(图5~图8),高产热的黑云母花岗岩(更确切地说是其母岩浆)可能就是锂的主要来源.不同封闭温度矿物的年代学研究和数值模拟计算表明,高的放射性产热率可以大大延长高发热岩浆的固结时限(最高可达同等规模正常产热花岗岩浆固结时长的85%) (Zhang et al., 2020; Liao et al., 2021a; Liu et al., 2023).虽然,究竟是岩浆晚期分离结晶作用还是岩浆‒热液阶段流体交代作用在花岗岩型锂矿成矿过程中起主导作用还尚存争议 (Li et al., 2017Wu et al., 2018; 龚敏等, 2023; 刘泽等, 2023; Xu et al., 2023;刘金宇等, 2024),但岩浆固结时限的延长似乎对两种作用都有利.一方面,岩浆处于超固相态的时间越长越有利于分离结晶作用的充分进行,使得岩浆向分异程度更高、更富锂的白云母花岗岩、锂(白)云母花岗岩端元演化(图9).另一方面,可能与钨锡等金属类似,较长的固结时限有利于尽可能多的锂等成矿金属从残余熔体向热液流体中的迁移、富集,进而促进锂在岩浆‒热液阶段通过自交代作用富集成矿 (Audétat et al., 2000; 张德会等, 2004; 赵博等, 2014; Liu et al., 2023).由于花岗岩型锂矿被认为通常发生在岩浆演化晚阶段或岩浆‒热液阶段,固结成岩后高产热岩驱动岩浆期后流体循环并成矿的作用对花岗岩型锂矿而言并不明显.不过,这种作用在一些与高产热花岗岩相关的铀矿床中相当重要(Mohammadi et al., 2019).

以宜丰‒奉新锂矿田为代表的,与高产热花岗岩相关的锂成矿作用似乎可以被归纳如下:(1)幔源岩浆底侵诱发了古老地壳发生部分熔融并混合形成了富含U、Th、K等高产热元素和Li、W、Sn、Nb、Ta等成矿元素的成矿母岩浆;(2)母岩浆经过复杂的分异演化最终上升到地壳浅部形成岩浆房;(3)在浅部岩浆房中,高产热元素随着锆石、独居石等副矿物的率先结晶进入黑云母花岗岩中并使其具有较高的放射性产热率,残余熔体则进一步分离结晶形成产热率逐步降低的二云母花岗岩、白云母花岗岩和锂(白)云母花岗岩.在此过程中,由于U、Th、K的放射性衰变产热,高产热岩浆的超固相态寿命被大幅延长,使得分离结晶作用和/或金属向热液流体中的迁移得以充分进行,最终导致了锂等金属在演化程度更高的白云母花岗岩、锂(白)云母花岗岩中的富集成矿(图11).

吴福元等 (2023)在归纳总结南岭高分异花岗岩成岩成矿作用时强调,与喜马拉雅淡色花岗岩(及稀有金属成矿)的岩浆沿拆离断层长距离迁移而产生的构造驱动分异机制不同的是,南岭花岗岩的高分异成岩成矿作用主要与深部幔源岩浆注入而导致的热驱动有关.本研究表明,除了深部岩浆加热这一热驱动机制之外,高产热元素在浅部岩浆房的放射性衰变产热可能也是华南高分异花岗岩成岩成矿作用的一种不容忽视的热驱动机制.高产热花岗岩研究可能会为深入理解华南花岗岩型锂及其他稀有金属成因机制提供新的角度.利用数值模拟和实验岩石学的方法对放射性衰变产热对岩浆房动力学的影响开展研究可能是今后的方向之一.除了锂矿之外,华南地区的一些钨锡、铌钽和铀矿都与高产热花岗岩具有明显的时空耦合关系.对高产热花岗岩的深入研究能够为剖析这些矿种的成因联系提供纽带.更重要的是,开发利用航空或地面放射性测量等精准识别成矿高产热花岗岩体(如甘坊、雅山和灵山等)的方法技术体系将为钨锡、铌钽、锂、铀等相关矿产的找矿勘查带来新的启示.

6 结论

(1)岩石学和主微量元素特征表明宜丰‒奉新锂矿田内成矿花岗岩属于高分异的S型花岗岩.从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩,经历了明显的石英、钾长石、斜长石、云母、独居石、褐帘石和锆石的分离结晶作用.

(2)黑云母花岗岩具有最高的放射性产热率(RHP平均值=4.91 μWm-3),可以被定义为高产热花岗岩.从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩,放射性产热率逐渐降低;结晶分异程度和全岩锂含量逐渐升高.三种高产热元素中,U对单位产热率的贡献最大,其次为Th.黑云母花岗岩的高产热属性可能继承自其岩浆源区,而岩浆上升过程中的结晶分异作用贡献较小.

(3)高产热花岗岩及其母岩浆是锂等成矿金属的主要来源.放射性元素衰变产热大大延长了岩浆的固结时限,使得分离结晶作用和/或金属向热液流体中的迁移得以充分进行,最终导致了锂的富集成矿.放射性衰变产热可能是高分异花岗岩成岩成矿作用的另一种不容忽视的热驱动机制.高产热花岗岩研究将有助于深入理解花岗岩型锂矿的形成机制及锂与钨锡、铌钽、铀等矿种的成因联系,有望为这些矿种的找矿勘查带来启示.

参考文献

[1]

Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE 2017. Earth⁃Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003

[2]

Audétat, A., Günther, D., Heinrich, C. A., 2000. Causes for Large⁃Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA⁃ICP⁃MS Evidence from the Mole Granite, Australia. Economic Geology, 95(8): 1563-1581. https://doi.org/10.2113/gsecongeo.95.8.1563

[3]

Bastos Neto, A. C., Pereira, V. P., Ronchi, L. H., et al., 2009. The World⁃Class Sn, Nb, Ta, F (Y, REE, Li) Deposit and the Massive Cryolite Associated with the Albite⁃Enriched Facies of the Madeira A⁃Type Granite, Pitinga Mining District, Amazonas State, Brazil. The Canadian Mineralogist, 47(6): 1329-1357. https://doi.org/10.3749/canmin.47.6.1329

[4]

Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat⁃Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017

[5]

Benson, T. R., Coble, M. A., Dilles, J. H., 2023. Hydrothermal Enrichment of Lithium in Intracaldera Illite⁃Bearing Claystones. Science Advances, 9(35): eadh8183. https://doi.org/10.1126/sciadv.adh8183

[6]

Bowell, R. J., Lagos, L., de los Hoyos, C. R., et al., 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259-264. https://doi.org/10.2138/gselements.16.4.259

[7]

Cabello, J., 2021. Lithium Brine Production, Reserves, Resources and Exploration in Chile: An Updated Review. Ore Geology Reviews, 128: 103883.https://doi.org/10.1016/j.oregeorev.2020.103883

[8]

Chappell, B., White, A., 1974.Two Contrasting Granite Types. Pacific Geology, 8: 173-174.

[9]

Chen, H. W., Liu, Z. J., Wang, G., et al., 2023. Geochemical Characteristics and Petrogenesis of Jinningian Metallogenic Granite in Huashandong Tungsten Deposit, Jiangxi Province. China Tungsten Industry, 38(3): 1-11, 38 (in Chinese with English abstract).

[10]

Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite⁃Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957-3960 (in Chinese with English abstract).

[11]

Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de la Société Géologique de France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75

[12]

Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz⁃Lepidolite Albite Granite (Massif Central, France): The Disseminated Magmatic Sn⁃Li⁃Ta⁃Nb⁃Be Mineralization. Economic Geology, 87(7): 1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766

[13]

Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022

[14]

Duan, Z., Liao, S. B., Chu, P. L., et al., 2019. Zircon U⁃Pb Ages of the Neoproterozoic Jiuling Complex Granitoid in the Eastern Segment of the Jiangnan Orogen and Its Tectonic Significance. Geology in China, 46(3): 493-516 (in Chinese with English abstract).

[15]

Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

[16]

Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005

[17]

Gong, M., Wu, J. H., Ji, H., et al., 2023. Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite⁃Associated Lithium Deposit, West Jiangxi Province. Earth Science, 48(12): 4370-4386 (in Chinese with English abstract).

[18]

Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃X

[19]

Guo, C. L., Zhang, B. W., Zheng, Y., et al., 2024. Granite⁃Type Lithium Deposits in China: Important Characteristics, Metallogenic Conditions, and Genetic Mechanism. Acta Petrologica Sinica, 40(2): 347-403 (in Chinese with English abstract).

[20]

Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1-3): 107-114. https://doi.org/10.1016/0009⁃2541(91)90051⁃R

[21]

Huang, L. C., Jiang, S. Y., 2012. Zircon U⁃Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric⁃Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract).

[22]

Huang, X. L., Wang, R. C., Chen, X. M., et al., 2002. Vertical Variations in the Mineralogy of the Yichun Topaz⁃Lepidolite Granite, Jiangxi Province, Southern China. The Canadian Mineralogist, 40(4): 1047-1068. https://doi.org/10.2113/gscanmin.40.4.1047

[23]

Jiang, B. L., Zhao, J., Lin, M. H., et al., 2022. Zircon U⁃Pb Age of Ore⁃Forming Magmatic Rocks in Baishuidong Lithium Niobium Tantalum Deposit, Yifeng County, Jiangxi Province and Its Significance. World Nonferrous Metals, (19): 73-75 (in Chinese with English abstract).

[24]

Jiang, J. S., Guo, X. R., Xu, J., et al., 2024. Genesis of Rb Mineralization of the Dongshang Rare Metal Granite in Jiangxi Province. Geological Bulletin of China, 43(1): 86-100 (in Chinese with English abstract).

[25]

Jiang, S. Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super⁃Rich Integrated Ore?Earth Science, 47(10): 3869-3871 (in Chinese with English abstract).

[26]

Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A⁃Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi⁃Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract).

[27]

Kovalenko, V. I., Kovalenko, N. I., 1984. Problems of the Origin, Ore⁃bearing and Evolution of Rare⁃Metal Granitoids. Physics of the Earth and Planetary Interiors, 35(1-3): 51-62. https://doi.org/10.1016/0031⁃9201(84)90033⁃5

[28]

Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic⁃ Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011

[29]

Li, J., Huang, X. L., 2013. Mechanism of Ta⁃Nb Enrichment and Magmatic Evolution in the Yashan Granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English abstract).

[30]

Li, J., Huang, X. L., He, P. L., et al., 2015. In Situ Analyses of Micas in the Yashan Granite, South China: Constraints on Magmatic and Hydrothermal Evolutions of W and Ta⁃Nb Bearing Granites. Ore Geology Reviews, 65: 793-810. https://doi.org/10.1016/j.oregeorev.2014.09.028

[31]

Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare⁃Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb⁃Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237.https://doi.org/10.1016/j.oregeorev.2019.103237

[32]

Li, R. Z., Zhou, Z. B., Peng, B., et al., 2020. A Discussion on Geological Characteristics and Genetic Mechanism of Dagang Superlarge Lithium⁃Bearing Porcelain Stone Deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015-1029 (in Chinese with English abstract).

[33]

Li, S. H., Li, J. K., Chou, I. M., et al., 2017. The Formation of the Yichun Ta⁃Nb Deposit, South China, through Fractional Crystallization of Magma Indicated by Fluid and Silicate Melt Inclusions. Journal of Asian Earth Sciences, 137: 180-193. https://doi.org/10.1016/j.jseaes.2016.11.016

[34]

Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U⁃Pb Zircon, Geochemical and Sr⁃Nd⁃Hf Isotopic Constraints on Age and Origin of Jurassic I⁃ and A⁃Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat⁃Slab? Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018

[35]

Li, X. H., Li, W. X., Li, Z. X., 2007. Re⁃Discussion on Genetic Types and Tectonic Significance of Early Yanshanian Granite in Nanling. Chinese Science Bulletin, 52(9): 981-991 (in Chinese).

[36]

Li, Y.J., Wu, J.H., Gong, M., et al., 2023. Multi⁃Phase Diagenetic Mineralization of Giant Lithium at the Southern Edge of the Jiuling Area in the Jiangnan Orogen. The 10th National Symposium on Mineralisation Theory and Search Methods. Chinese Society for Mineralogy, Petrology and Geochemistry, Xian, 2 (in Chinese).

[37]

Liao, Y. Z., 2019. The Qianlishan Granite Genetically Related to the Zoning of Shizhuyuan Ore⁃Field (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[38]

Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445.https://doi.org/10.1016/j.oregeorev.2021.104445

[39]

Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W⁃Sn⁃Mo⁃Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598⁃021⁃84902⁃6

[40]

Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract).

[41]

Liu, J. Y., Wang, C. H., Liu, S. B., et al., 2024. Petrogenesis and Rare Metal Mineralization of Shiziling Granite⁃Type Lithium Deposit in Northwestern Jiangxi Province: Constraints from Petrogeochemistry and Zircon U⁃Pb Geochronology. Mineral Deposits, 43(1): 195-214 (in Chinese with English abstract).

[42]

Liu, T., Jiang, S. Y., Su, H. M., et al., 2022. Petrogenesis of Ta⁃Nb Mineralization Related Early Cretaceous Lingshan Granite Complex, Jiangxi Province, Southeast China: Constraints from Geochronology, Whole⁃Rock and In⁃Situ Mineral Geochemistry, and Nd⁃Hf Isotopic Compositions. Ore Geology Reviews, 143: 104788. https://doi.org/10.1016/j.oregeorev.2022.104788

[43]

Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012

[44]

Liu, Z., Chen, Z. Y., Wang, C. H., 2023. Mineralogical Characteristics and Metallogenic Mechanism of Shiziling Li⁃Ta Deposit in Northwest Jiangxi. Acta Petrologica Sinica, 39(7): 2045-2062 (in Chinese with English abstract).

[45]

Lou, F. S., Xu, Z., Huang, H., et al., 2023. Geological Characteristics and Prospecting Significance of Low Grade Super Large Granite Mica⁃Type Lithium Deposits in Jiangxi Province. Journal of East China University of Technology (Natural Science), 46(5): 425-436 (in Chinese with English abstract).

[46]

Magyarosi, Z., 2022. Late⁃Magmatic Processes in the St. Lawrence Granite: Implications for Fluorite Mineralization. Journal of Geochemical Exploration, 239: 107014. https://doi.org/10.1016/j.gexplo.2022.107014

[47]

Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2

[48]

Mao, J. W., Yuan, S. D., Xie, G. Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract).

[49]

McLaren, S., Sandiford, M., Hand, M., 1999. High Radiogenic Heat⁃Producing Granites and Metamorphism—An Example from the Western Mount Isa Inlier, Australia. Geology, 27(8): 679-682. https://doi.org/10.1130/0091⁃7613(1999)0270679:HRHPGA>2.3.CO;2

[50]

Middlemost, E.A., 1986.Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, London.

[51]

Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9

[52]

Mohammadi, N., McFarlane, C. R. M., Lentz, D. R., 2019. U⁃Pb Geochronology of Hydrothermal Monazite from Uraniferous Greisen Veins Associated with the High Heat Production Mount Douglas Granite, New Brunswick, Canada. Geosciences, 9(5): 224. https://doi.org/10.3390/geosciences9050224

[53]

Nie, X. L., Wang, S. L., Liu, S., et al., 2022. Geological and Geochemical Characteristics of the Xikeng Lithium Deposit and the 40Ar/39Ar Chronology of Lepidolite of the Deposit in Jiangxi Province, China. Acta Mineralogica Sinica, 42(3): 285-294 (in Chinese with English abstract).

[54]

Ouyang, Y. P., Zeng, R. L., Meng, D. L., et al., 2023. Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization. Minerals, 13(4): 503. https://doi.org/10.3390/min13040503.

[55]

Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc⁃Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745

[56]

Pollard, P. J., 2021. The Yichun Ta⁃Sn⁃Li Deposit, South China: Evidence for Extreme Chemical Fractionation in F⁃Li⁃P⁃Rich Magma. Economic Geology, 116(2): 453-469. https://doi.org/10.5382/econgeo.4801

[57]

Putzolu, F., Seltmann, R., Dolgopolova, A., et al., 2024. Influence of Magmatic and Magmatic⁃Hydrothermal Processes on the Lithium Endowment of Micas in the Cornubian Batholith (SW England). Mineralium Deposita, 59(6): 1067-1088. https://doi.org/10.1007/s00126⁃024⁃01248⁃5

[58]

Qiao, S. L., John, T., Loges, A., 2024. Formation of Topaz⁃Greisen by a Boiling Fluid: A Case Study from the Sn⁃W⁃Li Deposit, Zinnwald/Cínovec. Economic Geology, 119(4): 805-828. https://doi.org/10.5382/econgeo.5074

[59]

Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel,R., Stegena, L., Rybach, L., eds., Handbook of Terrestrial Heat⁃Flow Density Determination. Springer Netherlands, Amsterdam, 125-142.

[60]

Somarin, A. K., Mumin, A. H., 2012. The Paleo⁃Proterozoic High Heat Production Richardson Granite, Great Bear Magmatic Zone, Northwest Territories, Canada: Source of U for Port Radium? Resource Geology, 62(3): 227-242. https://doi.org/10.1111/j.1751⁃3928.2012.00192.x

[61]

Stepanov, A., Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1-8. https://doi.org/10.1007/s00410⁃014⁃1009⁃3

[62]

Su, Y. P., Tang, H. F., 2005. Trace Element Geochemistry of A⁃Type Granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245-251 (in Chinese with English abstract).

[63]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, of London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[64]

Wang, C. H., Wang, D. H., Chen, C., et al., 2019. Progress of Research on the Shiziling Rare Meatals Mineralization from Jiuling⁃Type Rock and Its Significance for Prospecting. Acta Geologica Sinica, 93(6): 1359-1373 (in Chinese with English abstract).

[65]

Wang, D., Wang, X. L., Cai, Y., et al., 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology, 58(9): 1781-1810. https://doi.org/10.1093/petrology/egx074

[66]

Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2022. New Progress and Trend in Ten Aspects of Lithium Exploration Practice and Theoretical Research in China in the Past Decade. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract).

[67]

Wang, Q., Sun, Y., Zhang, X. H., et al., 2012. Zircon LA⁃ICP⁃MS U⁃Pb Age of Plagiogranite Porphyry in the Cunqian Copper Polymetallic Deposit of Jiangxi Province and Its Geological Implications. Geology in China, 39(5): 1143-1150 (in Chinese with English abstract).

[68]

Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract).

[69]

Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023

[70]

Wang, Y., Ma, C. Q., Wang, L. X., et al., 2018. Zircon U⁃Pb Geochronology, Geochemistry and Sr⁃Nd⁃Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth. Earth Science, 43(3): 635-654 (in Chinese with English abstract).

[71]

Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36 (in Chinese with English abstract).

[72]

Wu, F.Y., Liu, X.C., Ji, W.Q.,et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia SinicaTerrae, 47(7): 745-765 (in Chinese).

[73]

Wu, M. Q., Samson, I. M., Zhang, D. H., 2018. Textural Features and Chemical Evolution in Ta⁃Nb Oxides: Implications for Deuteric Rare⁃Metal Mineralization in the Yichun Granite⁃Marginal Pegmatite, Southeastern China. Economic Geology, 113(4): 937-960. https://doi.org/10.5382/econgeo.2018.4577

[74]

Xie, L., Liu, Y., Wang, R. C., et al., 2019. Li⁃Nb⁃Ta Mineralization in the Jurassic Yifeng Granite⁃Aplite Intrusion within the Neoproterozoic Jiuling Batholith, South China: A Fluid⁃Rich and Quenching Ore⁃Forming Process. Journal of Asian Earth Sciences, 185: 104047. https://doi.org/10.1016/j.jseaes.2019.104047

[75]

Xu, J., Hou, W. D., Wang, L. Y., et al., 2023. Rb Mineralization during Magmatic Differentiation: Insight from Mineralogical Study on the Ganfang Rare Metal Granite, Jiangxi Province. Acta Geologica Sinica, 97(11): 3766-3792 (in Chinese with English abstract).

[76]

Xu, Z., Zhang, Y., Pan, J. Y., et al., 2023. In Situ LA⁃ ICP⁃MS Analyses of Muscovite: Constraints on Granite⁃Type Li Mineralization in Northwestern Jiangxi, South China. Ore Geology Reviews, 156: 105402. https://doi.org/10.1016/j.oregeorev.2023.105402

[77]

Yang, Z. L., Qiu, J. S., Xing, G. F., et al., 2014. Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization. Acta Geologica Sinica, 88(5): 850-868 (in Chinese with English abstract).

[78]

Yin, R., Huang, X. L., Wang, R. C., et al., 2022. Rare⁃Metal Enrichment and Nb⁃Ta Fractionation during Magmatic⁃Hydrothermal Processes in Rare⁃Metal Granites: Evidence from Zoned Micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): egac093. https://doi.org/10.1093/petrology/egac093

[79]

Zeng, R. L., Zhang, J. R., He, L., et al., 2023. Chronology and Genesis of the Tong’an Granitic Aplite in Yifeng, Jiangxi Province. Acta Geologica Sinica, 97(11): 3750-3765 (in Chinese with English abstract).

[80]

Zhang, D. H., Zhang, W. H., Xu, G. J., 2004. The Ore Fluid Geochemistry of F⁃Rich Silicate Melt⁃Hydrous Fluid System and Its Metallogeny-The Current Status and Problems. Earth Science Frontiers, 11(2): 479-490 (in Chinese with English abstract).

[81]

Zhang, F. S., Xu, J., Zhang, J., et al., 2020. Geochemical Characteristics, Zircon U⁃Pb Age and Geological Significance of New Proterozoic Granites in Jiuling Area, Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(1): 12-20 (in Chinese with English abstract).

[82]

Zhang, T., Zhang, D. H., Danyushevsky, L. V., et al., 2020. Timing of Multiple Magma Events and Duration of the Hydrothermal System at the Yu’erya Gold Deposit, Eastern Hebei Province, China: Constraints from U⁃Pb and Ar⁃Ar Dating. Ore Geology Reviews, 127: 103804. https://doi.org/10.1016/j.oregeorev.2020.103804

[83]

Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023a. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr⁃Nd⁃Hf⁃O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974

[84]

Zhang, Z. Y., Hou, Z. Q., Lü, Q. T., et al., 2023b. Crustal Architectural Controls on Critical Metal Ore Systems in South China Based on Hf Isotopic Mapping. Geology, 51(8): 738-742. https://doi.org/10.1130/G51203.1

[85]

Zhao, B., Bao, B., Yu, L., et al., 2014. Further Discussion on the Metallogenic Effect of F⁃Rich Silicate Melt⁃ Solution Fluid System. Geological Science and Technology Information, 33(4): 123-134, 142 (in Chinese with English abstract).

[86]

Zhao, W., Zhang, H. J., 2022. Geochemical Characteristics of Skarn Minerals and Causative Granites of the Xianglushan Tungsten Skarn Deposit, Jiangxi, South China. Acta Petrologica Sinica, 38(2): 483-494 (in Chinese with English abstract).

[87]

Zhou, G. Q., Shu, L. S., Wu, H. L., 1989. The High Temperature and Pressure Metamorphic Rocks Relatied to Ophiolite in Northeastern Jiangxi and a Discussion on the Superimposition Metamorphism. Acta Petrologica et Mineralogica, 8(3): 220-231, 219 (in Chinese with English abstract).

[88]

Zhou, J. T., Wang, G. B., He, S. F., et al., 2011. Diagenesis and Mineralization of Ganfang Rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345-351, 358 (in Chinese with English abstract).

基金资助

江西省“科技+地质”联合计划项目(2023KDG01004)

江西省地质局第一地质大队科技项目(2024YDDKY001)

自然资源部2024年度部省合作项目(2024ZRBSHZ127)

AI Summary AI Mindmap
PDF (11313KB)

122

访问

0

被引

详细

导航
相关文章

AI思维导图

/