高产热花岗岩与锂成矿作用:以赣西地区宜丰‒奉新巨型锂矿田为例
吴俊华 , 龚敏 , 李国猛 , 吴赞华 , 季浩 , 周建廷 , 况二龙 , 李艳军
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2643 -2666.
高产热花岗岩与锂成矿作用:以赣西地区宜丰‒奉新巨型锂矿田为例
High Heat Producing Granites and Related Lithium Mineralization: Insights from Giant Yifeng⁃Fengxin Lithium Ore Field, West Jiangxi Province
,
花岗岩型锂矿床成矿岩体通常具有较高的放射性产热率,但高产热花岗岩与锂成矿之间的联系尚不清楚.选取赣西地区新探明的宜丰‒奉新巨型花岗岩型锂矿田为主要研究对象,对不同花岗岩开展了系统的岩石学和主微量地球化学研究.结果表明,成矿花岗岩具有从边部到中心,从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩的明显岩性分带.这些花岗岩具有富SiO2、Al2O3、Na2O、K2O、P2O5而贫CaO、TiO2、MgO、FeO*的强过铝质高钾钙碱性特征.较低的Nb/Ta和Zr/Hf比值以及较高的10 000×Ga/Al比值指示其属于高分异的S型花岗岩.而且这些花岗岩可能经历了明显的石英、长石、云母、独居石、褐帘石和锆石的分离结晶且分异演化程度逐渐升高.黑云母花岗岩因富集U和Th而具有最高的产热率(属于高产热花岗岩),其高产热属性可能继承自幔源岩浆加入的岩浆源区.随着结晶分异程度的升高,不同岩性的产热率逐渐降低而锂含量逐渐升高.高产热岩浆岩对锂成矿的控制作用主要体现在:(1)提供成矿金属来源;(2)延长岩浆的固结时限,使得分离结晶作用和/或金属向热液中的迁移得以充分进行,促进锂的富集成矿.放射性衰变产热可能是华南高分异花岗岩成岩成矿作用的另一种热驱动机制.高产热花岗岩研究将有助于深入理解花岗岩型锂矿的形成机制及锂与钨锡、铌钽、铀等矿种的成因联系,有望为这些矿种的找矿勘查带来启示.
Granite related lithium deposits are generally characterized by high radiogenic heat productions. However, the genetic relationship between the high heat producing granites (HHP) and Li mineralization is poorly understood. In the study, the newly discovered giant Yifeng-Fengxin granite related lithium ore field in West Jiangxi Province was selected to further constrain the relationship between the HHP and Li mineralization. Petrology and major and trace elemental geochemistry were carried out on Li-related granites, including biotite granite, two-mica granite, muscovite granite, and lepidolite granite. The results show that all the granites roughly belong to strongly peraluminous and high-K calc-alkaline series with obvious enrichments of SiO2, Al2O3, Na2O, K2O, and P2O5, but depletions of CaO, TiO2, MgO, and FeO*. Low Nb/Ta and Zr/Hf ratios and high 10 000×Ga/Al ratios indicate that they could be highly fractionated S-type granites. From biotite granite, two-mica granite, to muscovite granite and lepidolite granite, they underwent distinct fractional crystallization of quartz, feldspar, mica, monazite, allanite and zircon with gradually increased differentiation degree. Biotite granite exhibits the highest radiogenic heat production among all granite types due to the concentration of U and Th, and can be regarded as HHP. The high heat production of biotite granite may be inherited from its source region with some mantle magma injection. With the increase of evolution degree, the radiogenic heat production of different types of granites generally decreased while the lithium content increased gradually. In conclusion, the control of HHP on Li mineralization may be reflected in two aspects: (1) HHP and its parental magma provide the dominant source of lithium metal; and (2) radiogenic heat released by the decay of heat producing elements considerably prolongs the suprasolidus lifetime of granitic magmas, and the fractional crystallization and/or the diffusion of Li (and other metals) from melt to hydrothermal can be allowed to proceed more completely before the solidus is reached. Thus, radiogenic heat production may be another thermal drive mechanism for the rare metal mineralization of highly differentiated granite in South China. The study of HHP will enhance the understanding of the mineralization of granite-type lithium deposits and the metallogenetic relationship between Li, W-Sn, Nb-Ta, U and other metal deposits, which is expected to bring enlightenment for the prospection and exploration of these metals.
高产热花岗岩 / 花岗岩型锂矿床 / 锂成矿作用 / 宜丰‒奉新锂矿田 / 赣西地区 / 地球化学 / 岩石学.
high heat producing granite / granite⁃related lithium deposit / lithium mineralization / Yifeng⁃Fengxin lithium ore field / West Jiangxi Province / geochemistry / petrology
| [1] |
Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE 2017. Earth⁃Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003 |
| [2] |
Audétat, A., Günther, D., Heinrich, C. A., 2000. Causes for Large⁃Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA⁃ICP⁃MS Evidence from the Mole Granite, Australia. Economic Geology, 95(8): 1563-1581. https://doi.org/10.2113/gsecongeo.95.8.1563 |
| [3] |
Bastos Neto, A. C., Pereira, V. P., Ronchi, L. H., et al., 2009. The World⁃Class Sn, Nb, Ta, F (Y, REE, Li) Deposit and the Massive Cryolite Associated with the Albite⁃Enriched Facies of the Madeira A⁃Type Granite, Pitinga Mining District, Amazonas State, Brazil. The Canadian Mineralogist, 47(6): 1329-1357. https://doi.org/10.3749/canmin.47.6.1329 |
| [4] |
Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat⁃Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017 |
| [5] |
Benson, T. R., Coble, M. A., Dilles, J. H., 2023. Hydrothermal Enrichment of Lithium in Intracaldera Illite⁃Bearing Claystones. Science Advances, 9(35): eadh8183. https://doi.org/10.1126/sciadv.adh8183 |
| [6] |
Bowell, R. J., Lagos, L., de los Hoyos, C. R., et al., 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259-264. https://doi.org/10.2138/gselements.16.4.259 |
| [7] |
Cabello, J., 2021. Lithium Brine Production, Reserves, Resources and Exploration in Chile: An Updated Review. Ore Geology Reviews, 128: 103883.https://doi.org/10.1016/j.oregeorev.2020.103883 |
| [8] |
Chappell, B., White, A., 1974.Two Contrasting Granite Types. Pacific Geology, 8: 173-174. |
| [9] |
Chen, H. W., Liu, Z. J., Wang, G., et al., 2023. Geochemical Characteristics and Petrogenesis of Jinningian Metallogenic Granite in Huashandong Tungsten Deposit, Jiangxi Province. China Tungsten Industry, 38(3): 1-11, 38 (in Chinese with English abstract). |
| [10] |
Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite⁃Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957-3960 (in Chinese with English abstract). |
| [11] |
Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de la Société Géologique de France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75 |
| [12] |
Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz⁃Lepidolite Albite Granite (Massif Central, France): The Disseminated Magmatic Sn⁃Li⁃Ta⁃Nb⁃Be Mineralization. Economic Geology, 87(7): 1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766 |
| [13] |
Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022 |
| [14] |
Duan, Z., Liao, S. B., Chu, P. L., et al., 2019. Zircon U⁃Pb Ages of the Neoproterozoic Jiuling Complex Granitoid in the Eastern Segment of the Jiangnan Orogen and Its Tectonic Significance. Geology in China, 46(3): 493-516 (in Chinese with English abstract). |
| [15] |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 |
| [16] |
Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005 |
| [17] |
Gong, M., Wu, J. H., Ji, H., et al., 2023. Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite⁃Associated Lithium Deposit, West Jiangxi Province. Earth Science, 48(12): 4370-4386 (in Chinese with English abstract). |
| [18] |
Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃X |
| [19] |
Guo, C. L., Zhang, B. W., Zheng, Y., et al., 2024. Granite⁃Type Lithium Deposits in China: Important Characteristics, Metallogenic Conditions, and Genetic Mechanism. Acta Petrologica Sinica, 40(2): 347-403 (in Chinese with English abstract). |
| [20] |
Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1-3): 107-114. https://doi.org/10.1016/0009⁃2541(91)90051⁃R |
| [21] |
Huang, L. C., Jiang, S. Y., 2012. Zircon U⁃Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric⁃Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract). |
| [22] |
Huang, X. L., Wang, R. C., Chen, X. M., et al., 2002. Vertical Variations in the Mineralogy of the Yichun Topaz⁃Lepidolite Granite, Jiangxi Province, Southern China. The Canadian Mineralogist, 40(4): 1047-1068. https://doi.org/10.2113/gscanmin.40.4.1047 |
| [23] |
Jiang, B. L., Zhao, J., Lin, M. H., et al., 2022. Zircon U⁃Pb Age of Ore⁃Forming Magmatic Rocks in Baishuidong Lithium Niobium Tantalum Deposit, Yifeng County, Jiangxi Province and Its Significance. World Nonferrous Metals, (19): 73-75 (in Chinese with English abstract). |
| [24] |
Jiang, J. S., Guo, X. R., Xu, J., et al., 2024. Genesis of Rb Mineralization of the Dongshang Rare Metal Granite in Jiangxi Province. Geological Bulletin of China, 43(1): 86-100 (in Chinese with English abstract). |
| [25] |
Jiang, S. Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super⁃Rich Integrated Ore?Earth Science, 47(10): 3869-3871 (in Chinese with English abstract). |
| [26] |
Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A⁃Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi⁃Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract). |
| [27] |
Kovalenko, V. I., Kovalenko, N. I., 1984. Problems of the Origin, Ore⁃bearing and Evolution of Rare⁃Metal Granitoids. Physics of the Earth and Planetary Interiors, 35(1-3): 51-62. https://doi.org/10.1016/0031⁃9201(84)90033⁃5 |
| [28] |
Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic⁃ Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011 |
| [29] |
Li, J., Huang, X. L., 2013. Mechanism of Ta⁃Nb Enrichment and Magmatic Evolution in the Yashan Granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English abstract). |
| [30] |
Li, J., Huang, X. L., He, P. L., et al., 2015. In Situ Analyses of Micas in the Yashan Granite, South China: Constraints on Magmatic and Hydrothermal Evolutions of W and Ta⁃Nb Bearing Granites. Ore Geology Reviews, 65: 793-810. https://doi.org/10.1016/j.oregeorev.2014.09.028 |
| [31] |
Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare⁃Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb⁃Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237.https://doi.org/10.1016/j.oregeorev.2019.103237 |
| [32] |
Li, R. Z., Zhou, Z. B., Peng, B., et al., 2020. A Discussion on Geological Characteristics and Genetic Mechanism of Dagang Superlarge Lithium⁃Bearing Porcelain Stone Deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015-1029 (in Chinese with English abstract). |
| [33] |
Li, S. H., Li, J. K., Chou, I. M., et al., 2017. The Formation of the Yichun Ta⁃Nb Deposit, South China, through Fractional Crystallization of Magma Indicated by Fluid and Silicate Melt Inclusions. Journal of Asian Earth Sciences, 137: 180-193. https://doi.org/10.1016/j.jseaes.2016.11.016 |
| [34] |
Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U⁃Pb Zircon, Geochemical and Sr⁃Nd⁃Hf Isotopic Constraints on Age and Origin of Jurassic I⁃ and A⁃Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat⁃Slab? Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 |
| [35] |
Li, X. H., Li, W. X., Li, Z. X., 2007. Re⁃Discussion on Genetic Types and Tectonic Significance of Early Yanshanian Granite in Nanling. Chinese Science Bulletin, 52(9): 981-991 (in Chinese). |
| [36] |
Li, Y.J., Wu, J.H., Gong, M., et al., 2023. Multi⁃Phase Diagenetic Mineralization of Giant Lithium at the Southern Edge of the Jiuling Area in the Jiangnan Orogen. The 10th National Symposium on Mineralisation Theory and Search Methods. Chinese Society for Mineralogy, Petrology and Geochemistry, Xi’an, 2 (in Chinese). |
| [37] |
Liao, Y. Z., 2019. The Qianlishan Granite Genetically Related to the Zoning of Shizhuyuan Ore⁃Field (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [38] |
Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445.https://doi.org/10.1016/j.oregeorev.2021.104445 |
| [39] |
Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W⁃Sn⁃Mo⁃Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598⁃021⁃84902⁃6 |
| [40] |
Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract). |
| [41] |
Liu, J. Y., Wang, C. H., Liu, S. B., et al., 2024. Petrogenesis and Rare Metal Mineralization of Shiziling Granite⁃Type Lithium Deposit in Northwestern Jiangxi Province: Constraints from Petrogeochemistry and Zircon U⁃Pb Geochronology. Mineral Deposits, 43(1): 195-214 (in Chinese with English abstract). |
| [42] |
Liu, T., Jiang, S. Y., Su, H. M., et al., 2022. Petrogenesis of Ta⁃Nb Mineralization Related Early Cretaceous Lingshan Granite Complex, Jiangxi Province, Southeast China: Constraints from Geochronology, Whole⁃Rock and In⁃Situ Mineral Geochemistry, and Nd⁃Hf Isotopic Compositions. Ore Geology Reviews, 143: 104788. https://doi.org/10.1016/j.oregeorev.2022.104788 |
| [43] |
Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012 |
| [44] |
Liu, Z., Chen, Z. Y., Wang, C. H., 2023. Mineralogical Characteristics and Metallogenic Mechanism of Shiziling Li⁃Ta Deposit in Northwest Jiangxi. Acta Petrologica Sinica, 39(7): 2045-2062 (in Chinese with English abstract). |
| [45] |
Lou, F. S., Xu, Z., Huang, H., et al., 2023. Geological Characteristics and Prospecting Significance of Low Grade Super Large Granite Mica⁃Type Lithium Deposits in Jiangxi Province. Journal of East China University of Technology (Natural Science), 46(5): 425-436 (in Chinese with English abstract). |
| [46] |
Magyarosi, Z., 2022. Late⁃Magmatic Processes in the St. Lawrence Granite: Implications for Fluorite Mineralization. Journal of Geochemical Exploration, 239: 107014. https://doi.org/10.1016/j.gexplo.2022.107014 |
| [47] |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2 |
| [48] |
Mao, J. W., Yuan, S. D., Xie, G. Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract). |
| [49] |
McLaren, S., Sandiford, M., Hand, M., 1999. High Radiogenic Heat⁃Producing Granites and Metamorphism—An Example from the Western Mount Isa Inlier, Australia. Geology, 27(8): 679-682. https://doi.org/10.1130/0091⁃7613(1999)0270679:HRHPGA>2.3.CO;2 |
| [50] |
Middlemost, E.A., 1986.Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, London. |
| [51] |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9 |
| [52] |
Mohammadi, N., McFarlane, C. R. M., Lentz, D. R., 2019. U⁃Pb Geochronology of Hydrothermal Monazite from Uraniferous Greisen Veins Associated with the High Heat Production Mount Douglas Granite, New Brunswick, Canada. Geosciences, 9(5): 224. https://doi.org/10.3390/geosciences9050224 |
| [53] |
Nie, X. L., Wang, S. L., Liu, S., et al., 2022. Geological and Geochemical Characteristics of the Xikeng Lithium Deposit and the 40Ar/39Ar Chronology of Lepidolite of the Deposit in Jiangxi Province, China. Acta Mineralogica Sinica, 42(3): 285-294 (in Chinese with English abstract). |
| [54] |
Ouyang, Y. P., Zeng, R. L., Meng, D. L., et al., 2023. Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization. Minerals, 13(4): 503. https://doi.org/10.3390/min13040503. |
| [55] |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc⁃Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 |
| [56] |
Pollard, P. J., 2021. The Yichun Ta⁃Sn⁃Li Deposit, South China: Evidence for Extreme Chemical Fractionation in F⁃Li⁃P⁃Rich Magma. Economic Geology, 116(2): 453-469. https://doi.org/10.5382/econgeo.4801 |
| [57] |
Putzolu, F., Seltmann, R., Dolgopolova, A., et al., 2024. Influence of Magmatic and Magmatic⁃Hydrothermal Processes on the Lithium Endowment of Micas in the Cornubian Batholith (SW England). Mineralium Deposita, 59(6): 1067-1088. https://doi.org/10.1007/s00126⁃024⁃01248⁃5 |
| [58] |
Qiao, S. L., John, T., Loges, A., 2024. Formation of Topaz⁃Greisen by a Boiling Fluid: A Case Study from the Sn⁃W⁃Li Deposit, Zinnwald/Cínovec. Economic Geology, 119(4): 805-828. https://doi.org/10.5382/econgeo.5074 |
| [59] |
Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel,R., Stegena, L., Rybach, L., eds., Handbook of Terrestrial Heat⁃Flow Density Determination. Springer Netherlands, Amsterdam, 125-142. |
| [60] |
Somarin, A. K., Mumin, A. H., 2012. The Paleo⁃Proterozoic High Heat Production Richardson Granite, Great Bear Magmatic Zone, Northwest Territories, Canada: Source of U for Port Radium? Resource Geology, 62(3): 227-242. https://doi.org/10.1111/j.1751⁃3928.2012.00192.x |
| [61] |
Stepanov, A., Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1-8. https://doi.org/10.1007/s00410⁃014⁃1009⁃3 |
| [62] |
Su, Y. P., Tang, H. F., 2005. Trace Element Geochemistry of A⁃Type Granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245-251 (in Chinese with English abstract). |
| [63] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, of London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [64] |
Wang, C. H., Wang, D. H., Chen, C., et al., 2019. Progress of Research on the Shiziling Rare Meatals Mineralization from Jiuling⁃Type Rock and Its Significance for Prospecting. Acta Geologica Sinica, 93(6): 1359-1373 (in Chinese with English abstract). |
| [65] |
Wang, D., Wang, X. L., Cai, Y., et al., 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology, 58(9): 1781-1810. https://doi.org/10.1093/petrology/egx074 |
| [66] |
Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2022. New Progress and Trend in Ten Aspects of Lithium Exploration Practice and Theoretical Research in China in the Past Decade. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract). |
| [67] |
Wang, Q., Sun, Y., Zhang, X. H., et al., 2012. Zircon LA⁃ICP⁃MS U⁃Pb Age of Plagiogranite Porphyry in the Cunqian Copper Polymetallic Deposit of Jiangxi Province and Its Geological Implications. Geology in China, 39(5): 1143-1150 (in Chinese with English abstract). |
| [68] |
Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract). |
| [69] |
Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023 |
| [70] |
Wang, Y., Ma, C. Q., Wang, L. X., et al., 2018. Zircon U⁃Pb Geochronology, Geochemistry and Sr⁃Nd⁃Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth. Earth Science, 43(3): 635-654 (in Chinese with English abstract). |
| [71] |
Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36 (in Chinese with English abstract). |
| [72] |
Wu, F.Y., Liu, X.C., Ji, W.Q.,et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia SinicaTerrae, 47(7): 745-765 (in Chinese). |
| [73] |
Wu, M. Q., Samson, I. M., Zhang, D. H., 2018. Textural Features and Chemical Evolution in Ta⁃Nb Oxides: Implications for Deuteric Rare⁃Metal Mineralization in the Yichun Granite⁃Marginal Pegmatite, Southeastern China. Economic Geology, 113(4): 937-960. https://doi.org/10.5382/econgeo.2018.4577 |
| [74] |
Xie, L., Liu, Y., Wang, R. C., et al., 2019. Li⁃Nb⁃Ta Mineralization in the Jurassic Yifeng Granite⁃Aplite Intrusion within the Neoproterozoic Jiuling Batholith, South China: A Fluid⁃Rich and Quenching Ore⁃Forming Process. Journal of Asian Earth Sciences, 185: 104047. https://doi.org/10.1016/j.jseaes.2019.104047 |
| [75] |
Xu, J., Hou, W. D., Wang, L. Y., et al., 2023. Rb Mineralization during Magmatic Differentiation: Insight from Mineralogical Study on the Ganfang Rare Metal Granite, Jiangxi Province. Acta Geologica Sinica, 97(11): 3766-3792 (in Chinese with English abstract). |
| [76] |
Xu, Z., Zhang, Y., Pan, J. Y., et al., 2023. In Situ LA⁃ ICP⁃MS Analyses of Muscovite: Constraints on Granite⁃Type Li Mineralization in Northwestern Jiangxi, South China. Ore Geology Reviews, 156: 105402. https://doi.org/10.1016/j.oregeorev.2023.105402 |
| [77] |
Yang, Z. L., Qiu, J. S., Xing, G. F., et al., 2014. Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization. Acta Geologica Sinica, 88(5): 850-868 (in Chinese with English abstract). |
| [78] |
Yin, R., Huang, X. L., Wang, R. C., et al., 2022. Rare⁃Metal Enrichment and Nb⁃Ta Fractionation during Magmatic⁃Hydrothermal Processes in Rare⁃Metal Granites: Evidence from Zoned Micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): egac093. https://doi.org/10.1093/petrology/egac093 |
| [79] |
Zeng, R. L., Zhang, J. R., He, L., et al., 2023. Chronology and Genesis of the Tong’an Granitic Aplite in Yifeng, Jiangxi Province. Acta Geologica Sinica, 97(11): 3750-3765 (in Chinese with English abstract). |
| [80] |
Zhang, D. H., Zhang, W. H., Xu, G. J., 2004. The Ore Fluid Geochemistry of F⁃Rich Silicate Melt⁃Hydrous Fluid System and Its Metallogeny-The Current Status and Problems. Earth Science Frontiers, 11(2): 479-490 (in Chinese with English abstract). |
| [81] |
Zhang, F. S., Xu, J., Zhang, J., et al., 2020. Geochemical Characteristics, Zircon U⁃Pb Age and Geological Significance of New Proterozoic Granites in Jiuling Area, Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(1): 12-20 (in Chinese with English abstract). |
| [82] |
Zhang, T., Zhang, D. H., Danyushevsky, L. V., et al., 2020. Timing of Multiple Magma Events and Duration of the Hydrothermal System at the Yu’erya Gold Deposit, Eastern Hebei Province, China: Constraints from U⁃Pb and Ar⁃Ar Dating. Ore Geology Reviews, 127: 103804. https://doi.org/10.1016/j.oregeorev.2020.103804 |
| [83] |
Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023a. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr⁃Nd⁃Hf⁃O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974 |
| [84] |
Zhang, Z. Y., Hou, Z. Q., Lü, Q. T., et al., 2023b. Crustal Architectural Controls on Critical Metal Ore Systems in South China Based on Hf Isotopic Mapping. Geology, 51(8): 738-742. https://doi.org/10.1130/G51203.1 |
| [85] |
Zhao, B., Bao, B., Yu, L., et al., 2014. Further Discussion on the Metallogenic Effect of F⁃Rich Silicate Melt⁃ Solution Fluid System. Geological Science and Technology Information, 33(4): 123-134, 142 (in Chinese with English abstract). |
| [86] |
Zhao, W., Zhang, H. J., 2022. Geochemical Characteristics of Skarn Minerals and Causative Granites of the Xianglushan Tungsten Skarn Deposit, Jiangxi, South China. Acta Petrologica Sinica, 38(2): 483-494 (in Chinese with English abstract). |
| [87] |
Zhou, G. Q., Shu, L. S., Wu, H. L., 1989. The High Temperature and Pressure Metamorphic Rocks Relatied to Ophiolite in Northeastern Jiangxi and a Discussion on the Superimposition Metamorphism. Acta Petrologica et Mineralogica, 8(3): 220-231, 219 (in Chinese with English abstract). |
| [88] |
Zhou, J. T., Wang, G. B., He, S. F., et al., 2011. Diagenesis and Mineralization of Ganfang Rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345-351, 358 (in Chinese with English abstract). |
江西省“科技+地质”联合计划项目(2023KDG01004)
江西省地质局第一地质大队科技项目(2024YDDKY001)
自然资源部2024年度部省合作项目(2024ZRBSHZ127)
/
| 〈 |
|
〉 |