基于多尺度特征增强的黑土有机质含量高光谱卫星遥感反演
陈伟涛 , 徐佳辉 , 王锐 , 王瑞禛 , 杨汉水
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4909 -4918.
基于多尺度特征增强的黑土有机质含量高光谱卫星遥感反演
Hyperspectral Remote Sensing Inversion of Black Soil Organic Matter Content Based on Multi⁃Scale Feature Enhancement
,
东北黑土区作为我国重要的粮食产区,近年来土壤有机质含量持续降低.利用高光谱遥感技术反演黑土有机质含量,对掌握黑土地现状和制定保护措施具有重要意义.针对黑土空间和光谱特征的尺度差异性导致土壤有机质含量反演精度差的问题,构建了一种基于多尺度特征增强的土壤有机质含量遥感反演模型.通过构建多尺度特征增强结构,从不同尺度提取光谱特征;在此基础上引入跳跃连接,将初始光谱特征与卷积网络中提取的深层复杂特征进行融合,增强模型对光谱信息的表达能力.与传统偏最小二乘回归和随机森林模型相比,该模型不仅提升了对黑土多尺度特征的捕捉能力,也提高了对黑土光谱关系的建模能力.该模型可确保在复杂环境下仍能准确反演黑土地有机质含量,对促进黑土地土壤有机质遥感智能反演和保护具有重要的理论意义和实际应用价值.
The northeastern black soil region, recognized as a critical grain-producing area in China, has experienced a continuous decline in soil organic matter (SOM) content in recent years. The application of hyperspectral remote sensing technology for SOM content retrieval plays a crucial role in assessing the current status of black soil and implementing conservation measures. To address the low retrieval accuracy resulting from scale discrepancies in spatial and spectral characteristics of black soil, this study developed a remote sensing retrieval model with multi-scale feature enhancement. By constructing a multi-scale feature enhancement structure, spectral features were systematically extracted at different scales. Furthermore, skip connections were incorporated to effectively integrate initial spectral features with deep hierarchical features derived from convolutional networks, thereby strengthening the model's spectral representation capacity. When benchmarked against traditional methods such as partial least squares regression and random forest models, the proposed model demonstrates enhanced capability in capturing multi-scale black soil features and establishing spectral relationships. This advancement enables accurate SOM content retrieval under complex conditions, providing both theoretical significance and practical value for advancing intelligent remote sensing retrieval and sustainable conservation of black soil resources.
黑土地 / 土壤有机质 / 深度学习 / 资源一号02D卫星 / 高光谱遥感.
black soil / soil organic matter / deep learning / ZY-1 02D satellite / hyperspectral remote sensing
| [1] |
Angelopoulou,T.,Tziolas,N.,Balafoutis,A.,et al.,2019.Remote Sensing Techniques for Soil Organic Carbon Estimation:A Review.Remote Sensing,11(6).https://doi.org/10.3390/rs11060676 |
| [2] |
Bai,Z.J.,Chen,S.C.,Hong,Y.S.,et al.,2023.Estimation of Soil Inorganic Carbon with Visible Near-Infrared Spectroscopy Coupling of Variable Selection and Deep Learning in Arid Region of China.Geoderma,437:116589.https://doi.org/10.1016/j.geoderma.2023.116589 |
| [3] |
Chen,S.C.,Richer-de-Forges,A.C.,Leatitia Mulder,V.,et al.,2021.Digital Mapping of the Soil Thickness of Loess Deposits over a Calcareous Bedrock in Central France.Catena,198:105062.https://doi.org/10.1016/j.catena.2020.105062 |
| [4] |
Chen,C.Q.,Dai,H.M.,Feng,Y.L.,et al.,2022.Sentinel-2A Based Inversion of the Organic Matter Content of Soil in the Sunwu Area.Geophysical and Geochemical Exploration,46(5):1141-1148 (in Chinese with English abstract). |
| [5] |
Han,X.Z.,Li,N.,2018.Research Progress of Black Soil in Northeast China.Scientia Geographica Sinica,38(7):1032-1041 (in Chinese with English abstract). |
| [6] |
İnik,O.,İnik,Ö.,Öztaş,T.,et al.,2023.Prediction of Soil Organic Matter with Deep Learning.Arabian Journal for Science and Engineering,48(8):10227-10247.https://doi.org/10.1007/s13369-022-07575-x |
| [7] |
Li,H.D.,Liang,Y.Z.,Xu,Q.S.,et al.,2009.Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration.Analytica Chimica Acta,648(1):77-84.https://doi.org/10.1016/j.aca.2009.06.046 |
| [8] |
Li,Y.Y.,Li,W.,Liu,Y.,et al.,2014.Study on the Prediction of Soil Organic Matter Content Based on Hyperspectral Remote Sensing.Chinese Journal of Soil Science,45(6):1313-1318 (in Chinese with English abstract). |
| [9] |
Liu,Y.,Lu,Y.Y.,Chen,D.Y.,et al.,2023.Simultaneous Estimation of Multiple Soil Properties under Moist Conditions Using Fractional-Order Derivative of Vis-NIR Spectra and Deep Learning.Geoderma,438:116653.https://doi.org/10.1016/j.geoderma.2023.116653 |
| [10] |
Loiseau,T.,Chen,S.,Mulder,V.L.,et al.,2019.Satellite Data Integration for Soil Clay Content Modelling at a National Scale.International Journal of Applied Earth Observation and Geoinformation,82:101905.https://doi.org/10.1016/j.jag.2019.101905 |
| [11] |
Odebiri,O.,Mutanga,O.,Odindi,J.,2022.Deep Learning-Based National Scale Soil Organic Carbon Mapping with Sentinel-3 Data.Geoderma,411:115695.https://doi.org/10.1016/j.geoderma.2022.115695 |
| [12] |
Qi,Y.B.,Wang,Y.Y.,Chen,Y.,et al.,2017.Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province.Journal of Natural Resources,32(6):1074-1086 (in Chinese with English abstract). |
| [13] |
Shen,Z.F.,Ramirez-Lopez,L.,Behrens,T.,et al.,2022.Deep Transfer Learning of Global Spectra for Local Soil Carbon Monitoring.ISPRS Journal of Photogrammetry and Remote Sensing,188:190-200.https://doi.org/10.1016/j.isprsjprs.2022.04.009 |
| [14] |
Urbina-Salazar,D.,Vaudour,E.,Richer-de-Forges,A.C.,et al.,2023.Sentinel-2 and Sentinel-1 Bare Soil Temporal Mosaics of 6-Year Periods for Soil Organic Carbon Content Mapping in Central France.Remote Sensing,15(9):2410.https://doi.org/10.3390/rs15092410 |
| [15] |
Wadoux,A.M.J.,Padarian,J.,Minasny,B.,2019.Multi-Source Data Integration for Soil Mapping Using Deep Learning.Soil,5(1):107-119.https://doi.org/10.5194/soil-5-107-2019 |
| [16] |
Wang,J.Y.,Yang,W.,Wang,Y.C.,et al.,2022.A Hyperspectral Prediction Model for Organic Matter Content in Soil Developed from Loess-Like Parent Material in Liaoning Province.Chinese Journal of Soil Science,53(6):1320-1330 (in Chinese with English abstract). |
| [17] |
Xu,X.B.,Zhai,X.Y.,2023.Mapping Soil Organic Matter Content during the Bare Soil Period by Using Satellite Data and an Improved Deep Learning Network.Sustainability,15(1):323.https://doi.org/10.3390/su15010323 |
| [18] |
Xu,Z.,Zhao,X.M.,Guo,X.,et al.,2019.Deep Learning Application for Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy.Computational Intelligence and Neuroscience,2019:3563761.https://doi.org/10.1155/2019/3563761 |
| [19] |
Yang,P.M.,Hu,J.,Hu,B.F.,et al.,2022.Estimating Soil Organic Matter Content in Desert Areas Using In Situ Hyperspectral Data and Feature Variable Selection Algorithms in Southern Xinjiang,China.Remote Sensing,14(20):5221.https://doi.org/10.3390/rs14205221 |
| [20] |
Zhang,X.L.,Lin,T.,Xu,J.F.,et al.,2019.DeepSpectra:An End-to-End Deep Learning Approach for Quantitative Spectral Analysis.Analytica Chimica Acta,1058:48-57.https://doi.org/10.1016/j.aca.2019.01.002 |
| [21] |
Zhang,L.,Cai,Y.Y.,Huang,H.L.,et al.,2022.A CNN-LSTM Model for Soil Organic Carbon Content Prediction with Long Time Series of MODIS-Based Phenological Variables.Remote Sensing,14(18):4441.https://doi.org/10.3390/rs14184441 |
| [22] |
Zhao,W.D.,Wu,Z.L.,Yin,Z.D.,et al.,2022.Attention-Based CNN Ensemble for Soil Organic Carbon Content Estimation with Spectral Data.IEEE Geoscience and Remote Sensing Letters,19:1-5.https://doi.org/10.1109/lgrs.2022.3201266 |
| [23] |
Zhao,W.D.,Wu,Z.L.,Yin,Z.D.,et al.,2023.Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,16:7733-7748.https://doi.org/10.1109/jstars.2023.3287583 |
| [24] |
Zhao,R.,Cui,X.M.,Liu,C.,2020.Inversion Estimation of Soil Organic Matter Content Based on GF-5 Hyperspectral Remote Sensing Image.China Environmental Science,40(8):3539-3545 (in Chinese with English abstract). |
| [25] |
Zheng,M.,Wang,X.,Li,S.J.,et al.,2022.Remote Sensing Inversion of Soil Organic Matter and Total Nitrogen in Black Soil Region.Scientia Geographica Sinica,42(8):1336-1347 (in Chinese with English abstract). |
| [26] |
Zhong,L.,Guo,X.,Xu,Z.,et al.,2021.Soil Properties:Their Prediction and Feature Extraction from the LUCAS Spectral Library Using Deep Convolutional Neural Networks.Geoderma,402:115366.https://doi.org/10.1016/j.geoderma.2021.115366 |
黑龙江省地质矿产局科研基金项目(20231960381)
地质探测与评估教育部重点实验室主任基金(GLAB2024ZR01)
东北地质科技创新中心区创基金项目(QCJJ2024-36)
/
| 〈 |
|
〉 |