西藏工布江达县隆桑斑岩型铜钼矿床成岩‒成矿时代及成矿潜力
吴昌益 , 郎兴海 , 邓煜霖 , 詹宏宇 , 王旭辉 , 李宸 , 郑洪山 , 高焕丽 , 何青 , 冯德新 , 郭柏卿
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4337 -4354.
西藏工布江达县隆桑斑岩型铜钼矿床成岩‒成矿时代及成矿潜力
Diagenetic⁃Metallogenic Age and Mineralization Potential of Longsang Porphyry Cu⁃Mo Deposit, Gongbu Jiangda County, Xizang
,
,
隆桑矿区是目前冈底斯成矿带东段正在开展矿产勘查工作的一个斑岩型铜钼矿区,为进一步厘定矿区成岩‒成矿时代,评价成矿潜力,开展了详细的野外地质调查、钻孔岩心编录,并对赋矿岩体黑云母花岗闪长岩和黑云母二长花岗斑岩开展锆石U-Pb定年和锆石微量元素分析、对辉钼矿脉开展Re-Os定年.测得赋矿岩体成岩年龄分别为(21.80±0.29) Ma和(21.68±0.23) Ma,辉钼矿成矿年龄为(19.1±0.6) Ma;此外,锆石微量元素具有较高的Ce/Nd、(Ce/Nd)/Y和较低的Dy/Yb比值,且有负Eu异常和正Ce异常,表明岩浆具有高氧逸度和含水性的特征,有利于铜、钼等成矿元素富集和运移.综上所述,隆桑矿区成岩‒成矿时代为中新世、成矿潜力较好,研究成果对丰富冈底斯东段矿床时空分布规律具有重要意义.
The Longsang deposit is a porphyry copper-molybdenum mining area where mineral exploration is currently underway in the eastern section of the Gangdese metallogenic belt. To further constrain the magmatic-mineralization age and evaluate the metallogenic potential of the ore-bearing intrusions, detailed field geological surveys, and drill core logging were conducted, and zircon U-Pb dating and trace element analysis were performed on the mineralized rock bodies of biotite granodiorite and biotite monzogranite porphyry, with Re-Os dating of molybdenite veins in this study. The results indicate that the ore-bearing intrusions in the Longsang deposit are of crystallization ages of (21.80±0.29) Ma and (21.68±0.23) Ma, while the molybdenite mineralization age is (19.1±0.6) Ma. Additionally, zircon trace elements exhibit high Ce/Nd, (Ce/Nd)/Y, and low Dy/Yb ratios, along with negative Eu anomalies and positive Ce anomalies, indicating that the magma had high oxygen fugacity and water content, which facilitated the enrichment and transport of ore-forming elements such as Cu and Mo. In conclusion, the Longsang deposit underwent diagenetic mineralization during the Miocene epoch, demonstrating significant mineralization potential. These findings provide valuable insights into the spatiotemporal distribution patterns of deposits in the eastern Gangdese belt, contributing to a deeper understanding of regional metallogeny.
冈底斯成矿带 / 斑岩型铜钼矿床 / 隆桑矿区 / 成岩‒成矿时代 / 成矿潜力 / 矿床地质 / 地球化学.
Gangdese / porphyry copper molybdenum deposits / Longsang deposit / diagenetic and metallogenic age / metallogenic potential / ore deposits / geochemistry
| [1] |
Burnham, A. D., Berry, A. J., Halse, H. R., et al., 2015. The Oxidation State of Europium in Silicate Melts as a Function of Oxygen Fugacity, Composition and Temperature. Chemical Geology, 411: 248-259. https://doi.org/10.1016/j.chemgeo.2015.07.002 |
| [2] |
Cao, K., Yang, Z. M., Hou, Z.Q., et al., 2021. Contrasting Porphyry Cu Fertilities in the Yidun Arc, Eastern Tibet: Insights from Zircon and Apatite Compositions and Implications for Exploration. Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards (Volume II). Society of Economic Geologists Special Publication, 24(2): 231-255. https://doi.org/10.5382/sp.24.13 |
| [3] |
Chen, R., Liu, Y. L., Guo, L. S., et al., 2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet. Acta Geologica Sinica⁃English Edition, 88(3): 780-800. https://doi.org/10.1111/1755⁃6724.1223 |
| [4] |
Ci, Q., Zheng, Y.Y., Wu, S., et al., 2025. Discovery and Significance of Beimulang Porphyry Cu⁃Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318 (in Chinese with English abstract). |
| [5] |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti⁃in⁃Zircon and Zr⁃in⁃Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410⁃007⁃0201⁃0 |
| [6] |
Gao, Y.M., Chen, Y.C., Tang, J.X., et al., 2012. A Study of Diagenetic and Metallogenic Geochronology of the Dagbo Cu (Mo) Deposit in Quxur County of Tibet and Its Geological Implications. Acta Geoscientica Sinica, 33(4): 613-623 (in Chinese with English abstract). |
| [7] |
He, Q., Lang, X.H., Wang, X.H., et al., 2023. Geological Characteristics, In⁃Situ Sulfur Isotope Composition, and Genesis of the Dongga Gold Deposit in Xiongcun Area, Tibet. Acta Geoscientica Sinica, 44(6):1000-1016 (in Chinese with English abstract). |
| [8] |
Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan⁃Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 |
| [9] |
Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract). |
| [10] |
Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth⁃Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482 |
| [11] |
Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn⁃Type Copper⁃Lead⁃Zinc Deposit in Xizang: Constraints from Garnet U⁃Pb Geochronology. Earth Science, 50(2): 621-638 (in Chinese with English abstract). |
| [12] |
Huang, Y., Li, G. M., Ding, J., et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu⁃Mo⁃Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geologica Sinica ⁃ English Edition, 91(1): 109-134. https://doi.org/10.1111/1755⁃6724.13066 |
| [13] |
Huang, Y.G., Han, F., Kang, Z.Q., et al., 2024. Geochronology and Geochemistry of the Linzizong Volcanic Succession, Namling Basin, Xizang. Earth Science, 49(3): 822-836 (in Chinese with English abstract). |
| [14] |
Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Zircon U⁃Pb and Molybdenite Re⁃Os Ages of the Lakange Porphyry Cu⁃Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China. Resource Geology, 66(2): 163-182. https://doi.org/10.1111/rge.12091 |
| [15] |
Li, Q.Y., Yang, Z.M., Wang, R., et al., 2021. Zircon Trace Elemental and Hf⁃O Isotopic Compositions of the Miocene Magmaticsuite in the Giant Qulong Porphyry Copper Deposit, Southern Tibet. Acta Petrologica et Mineralogica, 40(6): 1023-1048 (in Chinese with English abstract). |
| [16] |
Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic⁃Hydrothermal Evolution in Porphyry Systems: High⁃Precision U⁃Pb and Re⁃Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu⁃Mo Deposit. Economic Geology, 112(6): 1419-1440. https://doi.org/10.5382/econgeo.2017.4515 |
| [17] |
Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling⁃Induced Melt⁃Peridotite Interactions in the Trans⁃North China Orogen: U⁃Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 |
| [18] |
Loader, M.A., Nathwani, C.L., Wilkinson, J.J., et al., 2022. Controls on the Magnitude of Ce Anomalies in Zircon. Geochimica et Cosmochimica Acta, 328: 242-257. https://doi.org/10.1016/j.gca.2022.03.024 |
| [19] |
Loucks, R. R., 2014. Distinctive Composition of Copper⁃Ore⁃Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676 |
| [20] |
Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034 |
| [21] |
Loucks, R. R., Henríquez, G. J., Fiorentini, M. L., 2024. Zircon and Whole⁃Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore⁃Forming from Barren Arc Magmas. Economic Geology, 119(3): 511-523. https://doi.org/10.5382/econgeo.5071 |
| [22] |
Lu, Y. J., Loucks, R.R., Fiorentini, M.L., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Society of Economic Geologists Special Publication, 19: 329-347. https://doi.org/10.5382/SP.19.13 |
| [23] |
Shi, S. D., Chen, S. Y., Luo, S., et al., 2024. Petrogenesis and Metallogenic Significance of the Demingding Mo⁃Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U⁃Pb and Re⁃Os Geochronology and Geochemistry. Minerals, 14(12): 1232. https://doi.org/10.3390/min14121232 |
| [24] |
Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (⁃Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126⁃019⁃00867⁃7 |
| [25] |
Sun, K. K., Deng, J., Wang, Q. F., et al., 2023. Formation of Sn⁃Rich Granitic Magma: A Case Study of the Highly Evolved Kafang Granite in the Gejiu Tin Polymetallic Ore District, South China. Mineralium Deposita, 58(2): 359-378. https://doi.org/10.1007/s00126⁃022⁃01130⁃2 |
| [26] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [27] |
Sun, X., Li, R. Y., Si, X. B., et al., 2024. Timing and Mechanism of Ore Precipitation in Porphyry Cu Systems: Insight from LA⁃ICP⁃MS Analysis of Fluid Inclusions and In Situ Oxygen Isotope Analysis of Hydrothermal Quartz at Zhunuo Porphyry Cu Deposit, China. Economic Geology, 119(3): 593-616. https://doi.org/10.5382/econgeo.5064 |
| [28] |
Tang, J.X., Lin, B., Yang, H.H., et al., 2024. Geological Characteristics and Prospecting Direction of Porphyry⁃Skarn⁃Epithermal Deposits in Xizang. Mineral Deposits, 43(6): 1223-126 (in Chinese with English abstract). |
| [29] |
Wang, B.D., Xu, J.F., Chen, J.L., et al., 2010. Petrogenesis and Geochronology of the Ore⁃Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum Coopper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 26(6): 1820-1832 (in Chinese with English abstract). |
| [30] |
Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth⁃Science Reviews, 181: 122-143. https://doi.org/10.1016/j.earscirev.2018.02.019 |
| [31] |
Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012a. Low Oxygen Fugacity Dependency for the Deformation of Partially Molten Lherzolite. Tectonophysics, 580: 114-123. https://doi.org/10.1016/j.tecto.2012.09.001 |
| [32] |
Wang, Z. H., Liu, Y. L., Liu, H. F., et al., 2012b. Geochronology and Geochemistry of the Bangpu Mo⁃Cu Porphyry Ore Deposit, Tibet. Ore Geology Reviews, 46: 95-105. https://doi.org/10.1016/j.oregeorev.2012.02.004 |
| [33] |
Yang, Z.M., Hou, Z.Q., White, N.C., et al., 2016. Geology of the Post⁃Collisional Porphyry Copper⁃Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2009.03.003 |
| [34] |
Zhao, M., Hou, Z.Q., Yang, Z.S., et al., 2025. Mineralization Age and Magmatic Origin of the Pujue Cu⁃Polymetallic Deposit in the Western Gangdese Belt: Implication for Regional Exploration. Acta Petrologica Sinica, 41(2): 600-620 (in Chinese with English abstract). |
| [35] |
Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper⁃Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024 |
| [36] |
Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029 |
| [37] |
Zheng, Y.Y., Wu, S., Ci, Q., et al., 2021. Cu⁃Mo⁃Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(06): 1909-1940 (in Chinese with English abstract). |
| [38] |
Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Tibet and India⁃Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14 |
| [39] |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 |
| [40] |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre⁃Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 |
国家深地科技重大专项(2025ZD1009502)
国家深地科技重大专项(2024ZD1003200)
西藏自治区科技计划项目(XZ202401YD0006)
国家重点研发计划项目(2022YFC2905002)
成都理工大学珠峰科学研究计划(2024ZF11407)
新一轮找矿突破战略行动科技支撑项目(ZKKJ20240)
新一轮找矿突破战略行动科技支撑项目(ZKKJ202427)
/
| 〈 |
|
〉 |