江西宜黄棠阴花岗伟晶岩电气石地球化学、硼同位素特征及地质意义
袁晶 , 曹毅 , 唐春花 , 晏俊灵 , 周渝 , 钱正江 , 刘小龙 , 汪明有 , 孙超
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4442 -4458.
江西宜黄棠阴花岗伟晶岩电气石地球化学、硼同位素特征及地质意义
Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province
,
江西宜黄地区花岗伟晶岩极为发育,电气石广泛赋存于花岗伟晶岩及其围岩(黑云母二长花岗岩)中.在江西宜黄棠阴发现了三种类型的电气石,分别为黑云母二长花岗岩中随机浸染状的电气石(Tur-G型)、花岗伟晶岩中的未分带电气石(Tur-PU型)和分带电气石(Tur-PZ型).但是,电气石的类型、成因及其对花岗伟晶岩成因的指示意义并不清楚.利用电子探针(EMPA)和LA-(MC)-ICP-MS分别对电气石开展了主量、微量元素和硼同位素分析.从Tur-G型→Tur-PU型→Tur-PZ电气石核部(Core)→边部(Rim),呈现出Al、Fe含量先升再降,Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga、REE含量先降再升的规律.Tur-G、Tur-PU、Tur-PZ-Core、Tur-PZ-Rim电气石δ11B分别为-10.77‰~-8.87‰、-10.59‰~-8.73‰、-11.07‰~-10.09‰、-11.05‰~-8.95‰.研究表明,所有电气石属碱性电气石中的铁电气石‒镁电气石系列,均为岩浆成因.Tur-G、Tur-PU、Tur-PZ型电气石分别结晶于花岗岩熔体晚期阶段、花岗伟晶岩熔体早期阶段和晚期岩浆‒热液阶段,电气石Fe3+/Fe2+比值和V含量变化揭示了各阶段岩浆熔体中氧逸度表现为先降低再升高,电气石中Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga含量反映了熔体中元素含量的变化.棠阴花岗伟晶岩和黑云母二长花岗岩电气石具有集中且相似的硼同位素组成(-11.07‰~-8.73‰),指示两者具有一致的岩浆源区,初始岩浆来源于大陆地壳(贫钙富铝的变质泥岩、变质砂岩)的部分熔融.
Granitic pegmatite is extensively developed in the Yihuang area of Jiangxi Province, and tourmaline is commonly found within granitic pegmatite and its surrounding rocks (biotite monzogranite). Three distinct types of tourmalines have been identified in Tangyin area: randomly disseminated tourmaline (Tur-G) in biotite monzogranite, unzoned tourmaline (Tur-PU) and zoned tourmaline (Tur-PZ) in granitic pegmatite. However, the classification and origin of tourmaline, as well as its implications for the genesis of granitic pegmatite, remain unclear. This study analyzed the major, trace elements, and boron isotopic compositions using EPMA and LA-(MC)-ICP-MS. From Tur-G type→Tur-PU type→Tur-PZ tourmalines core to rim, the concentrations of Al and Fe initially increase and subsequently decrease, whereas the concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, Ga, and rare earth elements exhibit an opposite trend, decreasing first and then increasing. The δ11B values for Tur-G, Tur-PU, Tur-PZ type tourmalines core and rim are -10.77‰--8.87‰,-10.59‰--8.73‰,-11.07‰--10.09‰, and -11.05‰- -8.95‰, respectively. It is believed that all tourmalines belong to the iron-magnesium tourmaline series within the alkaline tourmaline group and are of magmatic origin. Specifically, Tur-G, Tur-PU, and Tur-PZ tourmalines crystallized during the late granite melt, the early granitic pegmatite melt, and the late magma-hydrothermal stages, respectively. The changes in the Fe3+/Fe2+ ratio and V content of the tourmaline revealed that the oxygen fugacity of the magma melt exhibit a trend of initially decreasing and subsequently increasing. The concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, and Ga in the tourmaline reflect variations in elemental composition within the melt. The tourmaline found in both the Tangyin granitic pegmatite and biotite monzogranite exhibits a concentrated and comparable boron isotope composition, ranging from -11.07‰ to -8.73‰. This similarity suggests that both rock types originated from the same magma source, with the initial magma being derived from the partial melting of the continental crust, specifically calcium-poor and aluminum-rich metamorphic mudstone and sandstone.
电气石 / 花岗伟晶岩 / 地球化学 / 硼 / 同位素 / 岩浆演化 / 岩浆源区 / 棠阴 / 江西.
tourmaline / granitic pegmatite / geochemistry / boron / isotope / magmatic evolution / magma source / Tangyin / Jiangxi Province.
| [1] |
Chen, X. J., Yun, X. R., Lei, M., et al., 2022. Chemical and Boron Isotopic Composition of Tourmaline from the Gonghe Triassic Intermediate⁃Acid Intrusive Rocks, Qinghai and Its Implications for Evolution of the Magmatic⁃Hydrothermal System. Acta Petrologica Sinica, 38(11): 3359-3374 (in Chinese with English abstract). |
| [2] |
Čopjaková, R., Prokop, J., Novák, M., et al., 2021. Hydrothermal Alteration of Tourmaline from Pegmatitic Rocks Enclosed in Serpentinites: Multistage Processes with Distinct Fluid Sources. Lithos, 380-381: 105823. https://doi.org/10.1016/j.lithos.2020.105823 |
| [3] |
Dai, Z. W., Li, G. M., Ding, J., et al., 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859 (in Chinese with English abstract). |
| [4] |
Drivenes, K., Larsen, R. B., Müller, A., et al., 2015. Late⁃Magmatic Immiscibility during Batholith Formation: Assessment of B Isotopes and Trace Elements in Tourmaline from the Land’s End Granite, SW England. Contributions to Mineralogy and Petrology, 169(6): 56. https://doi.org/10.1007/s00410⁃015⁃1151⁃6 |
| [5] |
Dutrow, B. L., Henry, D. J., 2011. Tourmaline: A Geologic DVD. Elements, 7(5): 301-306. https://doi.org/10.2113/gselements.7.5.301 |
| [6] |
Dutrow, B. L., Henry, D. J., 2018. Tourmaline Compositions and Textures: Reflections of the Fluid Phase. Journal of Geosciences, 63(2): 99-110. https://doi.org/10.3190/jgeosci.256 |
| [7] |
Fuchs, Y., Lagache, M., Linares, J., 1998. Fe⁃Tourmaline Synthesis Under Different T and fO2 Conditions. American Mineralogist, 83(5-6): 525-534. https://doi.org/10.2138/am⁃1998⁃5⁃612 |
| [8] |
Gao, Y., Xu, Z., Tang, S., et al., 2025. Genesis of Caledonian Pegmatite⁃Type Lithium Deposits in Southern Jiangxi Province: Evidences from Cassiterite U⁃Pb Geochronology and Whole⁃Rock Petrogeochemistry. Acta Mineralogica Sinica, 45(4): 713-733 (in Chinese with English abstract). |
| [9] |
Guo, C. L., Liu, Z. K., 2021. Caledonian Granites in South China: The Geological and Geochemical Characteristics on Their Petrogenesis and Mineralization. Journal of Earth Sciences and Environment, 43(6): 927-961 (in Chinese with English abstract). |
| [10] |
Guo, J., Yan, H. B., Ling, M. X., et al., 2020. Chemical Composition of Tourmaline in the Biotite Granite, the Dachang District: Insights into Magmatic⁃Hydrothermal Evolution. Acta Petrologica Sinica, 36(1): 171-183 (in Chinese with English abstract). |
| [11] |
Guo, R. H., Hu, X. M., Garzanti, E., et al., 2021. Boron Isotope Composition of Detrital Tourmaline: A New Tool in Provenance Analysis. Lithos, 400-401: 106360. https://doi.org/10.1016/j.lithos.2021.106360 |
| [12] |
Harlaux, M., Kouzmanov, K., Gialli, S., et al., 2020. Tourmaline as a Tracer of Late⁃Magmatic to Hydrothermal Fluid Evolution: The World⁃Class San Rafael Tin (⁃Copper) Deposit, Peru. Economic Geology, 115(8): 1665-1697. https://doi.org/10.5382/econgeo.4762 |
| [13] |
He, S. W., Wang, K. X., Liu, X. D., et al., 2022. Genesis of the Yihuang Strong Peraluminous S⁃Type Granite in Jiangxi Province and Its Constraints on Early Paleozoic Intracontinental Orogeny in South China. Geological Bulletin of China, 41(5): 788-809 (in Chinese with English abstract). |
| [14] |
Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15. |
| [15] |
Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline⁃Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636 |
| [16] |
Henry, D. J., Dutrow, B. L., 2012. Tourmaline at Diagenetic to Low⁃Grade Metamorphic Conditions: Its Petrologic Applicability. Lithos, 154: 16-32. https://doi.org/10.1016/j.lithos.2012.08.013 |
| [17] |
Hervig, R. L., Moore, G. M., Williams, L. B., et al., 2002. Isotopic and Elemental Partitioning of Boron between Hydrous Fluid and Silicate Melt. American Mineralogist, 87(5-6): 769-774. https://doi.org/10.2138/am⁃2002⁃5⁃620 |
| [18] |
Hong, T., Zhai, M. G., Xu, X. W., et al., 2021. Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith, Altyn Tagh, Northwestern China: Geochemical Variability Constraints on Metallogenesis. Lithos, 400-401: 106358. https://doi.org/10.1016/j.lithos.2021.106358 |
| [19] |
Hou, K. J., Li, Y. H., Xiao, Y. K., et al., 2010. In Situ Boron Isotope Measurements of Natural Geological Materials by LA⁃MC⁃ICP⁃MS. Chinese Science Bulletin, 55(29): 3305-3311. https://doi.org/10.1007/s11434⁃010⁃4064⁃9 |
| [20] |
Jiang, S. Y., Han, F., Shen, J. Z., et al., 1999. Chemical and Rb⁃Sr, Sm⁃Nd Isotopic Systematics of Tourmaline from the Dachang Sn⁃Polymetallic Ore Deposit, Guangxi Province, P.R. China. Chemical Geology, 157(1-2): 49-67. https://doi.org/10.1016/S0009⁃2541(98)00200⁃9 |
| [21] |
Jiang, S. Y., Radvanec, M., Nakamura, E., et al., 2008. Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite⁃Related Hydrothermal System, Slovakia: Constraints on Magmatic and Metamorphic Fluid Evolution. Lithos, 106(1-2): 1-11. https://doi.org/10.1016/j.lithos.2008.04.004 |
| [22] |
Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare⁃Earth Element Geochemistry in Tourmaline and Cassiterite from the Yunlong Tin Deposit, Yunnan, China: Implication for Migmatitic⁃Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021 |
| [23] |
Kalliomäki, H., Wagner, T., Fusswinkel, T., et al., 2017. Major and Trace Element Geochemistry of Tourmalines from Archean Orogenic Gold Deposits: Proxies for the Origin of Gold Mineralizing Fluids? Ore Geology Reviews, 91: 906-927. https://doi.org/10.1016/j.oregeorev.2017.08.014 |
| [24] |
Li, L. G., Wang, L. X., Romer, R. L., et al., 2025. Using Tourmaline to Trace Li Mineralization in the Mufushan Granitic Batholith, South China. Chemical Geology, 671: 122485. https://doi.org/10.1016/j.chemgeo.2024.122485 |
| [25] |
Li, Z. Z., Qin, K. Z., Pei, B., et al., 2020. Mineralogical Features of Tourmaline in Baiyinchagan Sn⁃Ag⁃Pb⁃Zn Deposit, Southern Great Xing’an Range, and Its Implications for Magmatic⁃Hydrothermal Evolution. Acta Petrologica Sinica, 36(12): 3797-3812 (in Chinese with English abstract). |
| [26] |
Liu, T., Jiang, S. Y., Su, H. M., et al., 2023. Tourmaline as a Tracer of Magmatic⁃Hydrothermal Evolution and Potential Nb⁃Ta⁃(W⁃Sn) Mineralization from the Lingshan Granite Batholith, Jiangxi Province, Southeast China. Lithos, 438-439: 107016. https://doi.org/10.1016/j.lithos.2022.107016 |
| [27] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [28] |
London, D., 1999. Stability of Tourmaline in Pei Aluminous Granite Systems: The Boron Cycle from Anatexis to Hydrothermal Aureoles. European Journal of Mineralogy, 11(2): 253-262. https://doi.org/10.1127/ejm/11/2/0253 |
| [29] |
London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495 |
| [30] |
Maner, J. L., London, D., 2017. The Boron Isotopic Evolution of the Little Three Pegmatites, Ramona, CA. Chemical Geology, 460: 70-83. https://doi.org/10.1016/j.chemgeo.2017.04.016 |
| [31] |
Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left behind. Elements, 7(5): 313-319. https://doi.org/10.2113/gselements.7.5.313 |
| [32] |
Meyer, C., Wunder, B., Meixner, A., et al., 2008. Boron⁃Isotope Fractionation between Tourmaline and Fluid: An Experimental Re⁃Investigation. Contributions to Mineralogy and Petrology, 156(2): 259-267. https://doi.org/10.1007/s00410⁃008⁃0285⁃1 |
| [33] |
Pesquera, A., Torres⁃Ruiz, J., García⁃Casco, A., et al., 2013. Evaluating the Controls on Tourmaline Formation in Granitic Systems: A Case Study on Peraluminous Granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology, 54(3): 609-634. https://doi.org/10.1093/petrology/egs080 |
| [34] |
Slack, J. F., Trumbull, R. B., 2011. Tourmaline as a Recorder of Ore⁃Forming Processes. Elements, 7(5): 321-326. https://doi.org/10.2113/gselements.7.5.321 |
| [35] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [36] |
Trumbull, R. B., Slack, J. F., 2018. Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits. Boron Isotopes: The Fifth Element, 249-272. https://doi.org/10.1007/978⁃3⁃319⁃64666⁃4_10 |
| [37] |
van Hinsberg, V. J., Henry, D. J., Marschall, H. R., 2011. Tourmaline: An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1): 1-16. https://doi.org/10.3749/canmin.49.1.1 |
| [38] |
von Goerne, G., Franz, G., van Hinsberg, V. J., 2011. Experimental Determination of Na⁃Ca Distribution between Tourmaline and Fluid in the System CaO⁃Na2O⁃MgO⁃Al2O3⁃SiO2⁃B2O3⁃H2O. The Canadian Mineralogist, 49(1): 137-152. https://doi.org/10.3749/canmin.49.1.137 |
| [39] |
Watenphul, A., Schlüter, J., Bosi, F., et al., 2016. Influence of the Octahedral Cationic⁃Site Occupancies on the Framework Vibrations of Li⁃Free Tourmalines, with Implications for Estimating Temperature and Oxygen Fugacity in Host Rocks. American Mineralogist, 101(11): 2554-2563. https://doi.org/10.2138/am⁃2016⁃5820 |
| [40] |
Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite⁃Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2023.213 |
| [41] |
Yang, S. Y., Jiang, S. Y., Mao, Q., et al. 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(2): 186-200. https://doi.org/10.46770/AS.2021.912 |
| [42] |
Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015. Tourmaline as a Recorder of Magmatic⁃Hydrothermal Evolution: An In Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6): 42. https://doi.org/10.1007/s00410⁃015⁃1195⁃7 |
| [43] |
Yuan, J., Tang, C. H., Zhou, Y., et al., 2024. Content Characteristics of Impurity Elements Analysis and Evaluation Method Discussion of High⁃Purity Quartz Raw Material of the Granite Pegmatite Type in Tangyin, Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(1): 34-44 (in Chinese with English abstract). |
| [44] |
Zhang, K., Liu, X., Zhao, K. D., et al., 2024. Elemental and Boron Isotopic Variations of Tourmalines from the Miocene Leucogranite⁃Pegmatite in Kuju, Eastern Himalaya: Implications for the Evolution of Magmatic Melts. Acta Petrologica Sinica, 40(8): 2334-2352 (in Chinese with English abstract). |
| [45] |
Zhao, H. D., Zhao, K. D., Palmer, M. R., et al., 2019. In⁃Situ Elemental and Boron Isotopic Variations of Tourmaline from the Sanfang Granite, South China: Insights into Magmatic⁃Hydrothermal Evolution. Chemical Geology, 504: 190-204. https://doi.org/10.1016/j.chemgeo.2018.11.013 |
| [46] |
Zhao, Z. H., Ma, L., 2025. The Relationship between Granitic Pegmatites and Granites. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.018 |
| [47] |
Zheng, B. Q., Chen, B., Sun, Y., 2023. Tracing the Evolution of the Pegmatite System and Its Interaction with the Country Rocks by Chemical and Boron Isotope Compositions of Tourmaline in the Qinghe Pegmatite from the Chinese Altay Orogen. Acta Petrologica Sinica, 39(1): 187-204 (in Chinese with English abstract). |
江西省重点研发计划项目(20212BBG71003)
江西省财政出资地勘项目(20200048)
/
| 〈 |
|
〉 |