江西宜黄棠阴花岗伟晶岩电气石地球化学、硼同位素特征及地质意义

袁晶 ,  曹毅 ,  唐春花 ,  晏俊灵 ,  周渝 ,  钱正江 ,  刘小龙 ,  汪明有 ,  孙超

地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4442 -4458.

PDF (7075KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4442 -4458. DOI: 10.3799/dqkx.2025.157

江西宜黄棠阴花岗伟晶岩电气石地球化学、硼同位素特征及地质意义

作者信息 +

Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province

Author information +
文章历史 +
PDF (7244K)

摘要

江西宜黄地区花岗伟晶岩极为发育,电气石广泛赋存于花岗伟晶岩及其围岩(黑云母二长花岗岩)中.在江西宜黄棠阴发现了三种类型的电气石,分别为黑云母二长花岗岩中随机浸染状的电气石(Tur-G型)、花岗伟晶岩中的未分带电气石(Tur-PU型)和分带电气石(Tur-PZ型).但是,电气石的类型、成因及其对花岗伟晶岩成因的指示意义并不清楚.利用电子探针(EMPA)和LA-(MC)-ICP-MS分别对电气石开展了主量、微量元素和硼同位素分析.从Tur-G型→Tur-PU型→Tur-PZ电气石核部(Core)→边部(Rim),呈现出Al、Fe含量先升再降,Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga、REE含量先降再升的规律.Tur-G、Tur-PU、Tur-PZ-Core、Tur-PZ-Rim电气石δ11B分别为-10.77‰~-8.87‰、-10.59‰~-8.73‰、-11.07‰~-10.09‰、-11.05‰~-8.95‰.研究表明,所有电气石属碱性电气石中的铁电气石‒镁电气石系列,均为岩浆成因.Tur-G、Tur-PU、Tur-PZ型电气石分别结晶于花岗岩熔体晚期阶段、花岗伟晶岩熔体早期阶段和晚期岩浆‒热液阶段,电气石Fe3+/Fe2+比值和V含量变化揭示了各阶段岩浆熔体中氧逸度表现为先降低再升高,电气石中Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga含量反映了熔体中元素含量的变化.棠阴花岗伟晶岩和黑云母二长花岗岩电气石具有集中且相似的硼同位素组成(-11.07‰~-8.73‰),指示两者具有一致的岩浆源区,初始岩浆来源于大陆地壳(贫钙富铝的变质泥岩、变质砂岩)的部分熔融.

Abstract

Granitic pegmatite is extensively developed in the Yihuang area of Jiangxi Province, and tourmaline is commonly found within granitic pegmatite and its surrounding rocks (biotite monzogranite). Three distinct types of tourmalines have been identified in Tangyin area: randomly disseminated tourmaline (Tur-G) in biotite monzogranite, unzoned tourmaline (Tur-PU) and zoned tourmaline (Tur-PZ) in granitic pegmatite. However, the classification and origin of tourmaline, as well as its implications for the genesis of granitic pegmatite, remain unclear. This study analyzed the major, trace elements, and boron isotopic compositions using EPMA and LA-(MC)-ICP-MS. From Tur-G type→Tur-PU type→Tur-PZ tourmalines core to rim, the concentrations of Al and Fe initially increase and subsequently decrease, whereas the concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, Ga, and rare earth elements exhibit an opposite trend, decreasing first and then increasing. The δ11B values for Tur-G, Tur-PU, Tur-PZ type tourmalines core and rim are -10.77‰--8.87‰,-10.59‰--8.73‰,-11.07‰--10.09‰, and -11.05‰- -8.95‰, respectively. It is believed that all tourmalines belong to the iron-magnesium tourmaline series within the alkaline tourmaline group and are of magmatic origin. Specifically, Tur-G, Tur-PU, and Tur-PZ tourmalines crystallized during the late granite melt, the early granitic pegmatite melt, and the late magma-hydrothermal stages, respectively. The changes in the Fe3+/Fe2+ ratio and V content of the tourmaline revealed that the oxygen fugacity of the magma melt exhibit a trend of initially decreasing and subsequently increasing. The concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, and Ga in the tourmaline reflect variations in elemental composition within the melt. The tourmaline found in both the Tangyin granitic pegmatite and biotite monzogranite exhibits a concentrated and comparable boron isotope composition, ranging from -11.07‰ to -8.73‰. This similarity suggests that both rock types originated from the same magma source, with the initial magma being derived from the partial melting of the continental crust, specifically calcium-poor and aluminum-rich metamorphic mudstone and sandstone.

Graphical abstract

关键词

电气石 / 花岗伟晶岩 / 地球化学 / / 同位素 / 岩浆演化 / 岩浆源区 / 棠阴 / 江西.

Key words

tourmaline / granitic pegmatite / geochemistry / boron / isotope / magmatic evolution / magma source / Tangyin / Jiangxi Province.

引用本文

引用格式 ▾
袁晶,曹毅,唐春花,晏俊灵,周渝,钱正江,刘小龙,汪明有,孙超. 江西宜黄棠阴花岗伟晶岩电气石地球化学、硼同位素特征及地质意义[J]. 地球科学, 2025, 50(11): 4442-4458 DOI:10.3799/dqkx.2025.157

登录浏览全文

4963

注册一个新账户 忘记密码

电气石广泛形成于各种地质条件下(Dutrow and Henry,2011Drivenes et al.,2015),在演化的花岗岩和伟晶岩中尤为普遍(van Hinsberg et al.,2011; Čopjaková et al.,2021).电气石具有广泛的温度(150~900 ℃)、压力(6 MPa~6 GPa)范围以及化学稳定性(Henry and Dutrow, 2012),可作为示踪熔体/流体成分变化的示踪器(Jiang et al.,2004Dutrow and Henry,2011Slack and Trumbull,2011van Hinsberg et al.,2011Hong et al.,2021),如李真真等(2020)认为内蒙古西乌旗白音查干花岗斑岩体中环带电气石从核部到边部的生长记录了从晚期岩浆到早期热液阶段的演变过程.电气石是主要的含硼矿物,其硼同位素表现出显著的变化,广泛应用于示踪硼源和岩浆热液过程(Marschall and Jiang, 2011; Guo et al., 2021; 陈希节等, 2022;张凯等, 2024),如张凯等(2024)研究认为喜马拉雅东段库局伟晶岩和白云母花岗岩中电气石硼同位素组成表明花岗质熔体主要来源于变沉积岩的部分熔融,且结晶更晚的伟晶岩电气石δ11B值更重.电气石成分和硼同位素组成还可以指示稀有金属成矿作用(Liu et al., 2023;夏永旗等, 2024;Li et al., 2025),如Li et al.(2025)对幕阜山地区白云母花岗岩、贫锂伟晶岩和富锂伟晶岩中的电气石开展了研究,认为锂的富集不仅受分离结晶作用的控制,还受岩浆挥发份出溶对锂迁移和富集的作用.
加里东期花岗岩在华南地区分布范围较广,以武夷、南岭和云开地区分布最为集中,成岩年龄为540~360 Ma,集中在470~400 Ma(郭春丽和刘泽坤,2021).江西加里东期花岗岩主要集中分布于武夷山、武功山、南岭地区(图1a).花岗伟晶岩在加里东期花岗岩内及外接触带较发育,特别是在武夷山地区常成群成带分布.武夷山地区花岗伟晶岩多与加里东期花岗岩具有成因联系,例如河源和西港花岗伟晶岩是会同花岗岩结晶分异作用的产物(高原等,2025);也有少量花岗伟晶岩与附近的花岗岩并无关联,例如福建南平稀有金属成矿花岗伟晶岩为深熔成因(赵振华和马林,2025).
江西宜黄地区广泛发育花岗伟晶岩,分布于加里东期棠阴花岗岩体内及接触带附近,呈脉状、囊状产出(袁晶等,2024).宜黄地区棠阴花岗伟晶岩赋存于黑云母二长花岗岩中,花岗伟晶岩和黑云母二长花岗岩的锆石U⁃Pb年龄分别为(438.1±5.6) Ma和(452.5±3.8) Ma,锆石εHft)值分别分布于-15.1~-3.0和-15.4~-1.0(作者未发表数据).棠阴花岗伟晶岩与黑云母二长花岗岩地质特征、岩石地球化学、同位素等多方面证据表明,二者具有一致的岩浆源区,棠阴花岗伟晶岩是由黑云母二长花岗岩高度分异演化形成.棠阴花岗伟晶岩及其围岩(黑云母二长花岗岩)中均发育黑色电气石,但是电气石的类型、地球化学特征、硼同位素组成以及二者的成因联系尚不清楚.本文以江西宜黄棠阴花岗伟晶岩及其围岩(黑云母二长花岗岩)中的电气石为研究对象,开展电气石的岩相学、化学成分及硼同位素组成分析,旨在分析和讨论电气石的成因、揭示岩浆演化过程、示踪花岗伟晶岩的成因及源区.

1 地质背景

江西宜黄地区大地构造位置属东南造山带之雩山隆起北缘,与武夷隆起毗邻(图1b).区内广泛出露南华‒寒武系变质岩,组成区域褶皱基底;东西两侧断陷盆地中可见白垩系碎屑沉积岩.加里东期岩浆活动强烈,形成大规模的花岗岩基(棠阴花岗岩体);燕山期岩浆活动较弱,形成花岗岩株.受北北东向鹰潭‒安远深大断裂和近南北向宜黄‒宁都断裂控制,宜黄地区北东向断裂极为发育(图1c).

宜黄地区花岗伟晶岩极为发育,数量多、规模大,广泛分布于棠阴岩体内以及外接触带南华‒寒武系变质岩中,主要呈脉状、囊状产出,走向以北东、北东东为主,次为北北东、北西、近东西向,规模不等,一般长数米至数百米,宽数厘米至数十米.

棠阴矿区出露地层主要为南华‒震旦系洪山组(图2),由黑云斜长变粒岩、二云片岩、矽线二云片岩组成,夹磁铁石英岩;出露岩浆岩为棠阴花岗岩体,岩性主要为黑云母二长花岗岩.花岗伟晶岩赋存于棠阴花岗岩体内接触带约1 km范围内,呈脉群聚集分布(图2).经普查工作,已控制规模较大的花岗伟晶岩5条,呈大脉状、囊状,走向北东东,长265~650 m,厚0.91~38.91 m,倾向控制最大延深132 m.花岗伟晶岩总体倾向北北西,倾角较陡,一般为63°~85°.

2 样品特征

本次研究样品全部从棠阴矿区的钻孔岩心中采集,岩石类型为花岗伟晶岩和黑云母二长花岗岩.花岗伟晶岩主要采自Ⅳ号花岗伟晶岩(ZK701钻孔25.67~52.83 m)和Ⅲ号花岗伟晶岩(ZK702钻孔39.34~80.75 m);黑云母二长花岗岩主要采自Ⅳ、Ⅲ号花岗伟晶岩的顶底板(图3).

2.1 黑云母二长花岗岩中的电气石

黑云母二长花岗岩是棠阴花岗岩体的主体岩性,侵入南华‒震旦系洪山组地层中.黑云母二长花岗岩呈灰黑色,主要造岩矿物为钾长石(28%~32%)、斜长石(25%~30%)、石英(25%~28%)、黑云母(8%~12%),少量白云母(<1%),粒径一般为1~4 mm.副矿物主要有锆石、磷灰石、电气石、石榴子石和磁铁矿等.黑云母二长花岗中的电气石(Tur⁃G)呈自形、半自形柱状随机分布,镜下呈深浅不等的灰褐色,与长石、石英、黑云母等矿物共生,粒径一般小于1 mm(图4c~4e).

2.2 花岗伟晶岩中的电气石

花岗伟晶岩赋存于黑云母二长花岗岩中,接触界线既有截然,也有渐变的(图4a,4b).花岗伟晶岩呈浅灰白色,主要造岩矿物为钾长石(45%~55%)、斜长石(10%~15%)、石英(20%~28%)、白云母(5%~10%),少量电气石(1%~3%)和石榴子石(<1%).花岗伟晶岩电气石(Tur⁃P)自形程度较高,呈长柱状,矿物粒径变化范围较大.Tur⁃P型电气石分布不均匀,常在小范围内集中分布,但电气石单晶没有定向性.根据偏光显微镜和背散射图像特征差异,Tur⁃P型电气石可分为未分带电气石(Tur⁃PU)(图4f~4h)和分带电气石(Tur⁃PZ)(图4j~4l)两类.Tur⁃PZ型电气石在偏光显微镜下核部呈浅灰褐色,边部呈深灰褐色(图4g~4h、图10a~10b);在BES图像下核部呈深灰色,边部呈浅灰色(图10c~10d).Tur⁃PZ型电气石核部和边部分别表示为Tur⁃PZ⁃Core和Tur⁃PZ⁃Rim.Tur⁃PU型电气石在BES图像下呈均一的灰色.Tur⁃PZ型电气石的粒径一般大于Tur⁃PU型电气石,前者长一般大于1 cm,直径为2~ 5 mm,后者长一般小于5 mm,直径小于0.5 mm.

3 分析方法

电子探针成分分析在北京燕都中实测试技术服务有限公司,利用配备有4道波谱仪的JEOL JXA⁃8230电子探针完成.样品在上机测试之前先镀上尽量均匀的厚度约20 nm的碳膜.详细的电子探针分析流程见Yang et al.(2022).测试工作条件为:加速电压15 kV,加速电流20 nA,束斑直径5 μm.使用天然矿物或合成氧化物作为标样.所有测试数据均进行了ZAF校正处理.

LA⁃ICP⁃MS原位微区微量元素含量在北京燕都中实测试技术有限公司完成.激光剥蚀系统为NWR193 Ar⁃F准分子激光器,ICP⁃MS型号为Analytikjena PlasmaQuant MS.激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合.本次分析的激光束斑和频率分别为30 µm和9 Hz.微量元素含量处理中采用玻璃标准物质SRM610和SRM612进行多外标无内标校正(Liu et al., 2008).每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号.对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算)采用软件ICPMSDataCal(Liu et al., 2008)完成.

电气石LA⁃MC⁃ICP⁃MS原位微区B同位素分析在科荟测试(天津)科技有限公司完成.分析所用仪器为Neptune Plus多接收等离子体质谱仪和RESOlution SE 193 nm固体激光器,剥蚀采用点剥蚀以获得平稳的信号,剥蚀直径为30 μm,剥蚀频率8 Hz,激光能量密度为6 J/cm210B和11B用法拉第杯(L3和H3)静态同时接收,积分时间为0.131 s,采集200组数据,共需时约27 s.采用He(约 400 mL/min)作为载气,吹出剥蚀产生的气溶胶,与Ar混合后载入MC⁃ICP⁃MS进行质谱测试,相关仪器参数见表1.测试前,以电气石硼同位素标样对仪器进行调试,分析过程以IAEA B4为标样,样品点前后测试2个标样点,采用标准‒样品‒标准法(SSB法)对仪器质量歧视和同位素分馏进行校正.以电气石标样IMR RB1作为监控标样,本实验中IMR RB1分析点给出的δ11B结果为(-13.28±0.27)‰(2σ),与Hou et al.(2010)报道的(-12.96±0.97)‰(2σ)误差范围内一致.

4 分析结果

4.1 电气石主微量元素

4.1.1 主量元素

棠阴花岗伟晶岩和黑云母二长花岗岩中电气石的主量元素分析结果列于附表1.SiO2(35.39%~38.96%)、Al2O3(30.92%~34.96%)、B2O3(10.35%~11.06%)含量高且变化较小,FeO(6.47%~14.00%)、MgO(1.80%~6.07%)含量中等且变化较大,Na2O(1.64%~2.21%)、TiO2(0.08%~0.99%)、CaO(0.05%~0.74%)、MnO(0%~0.24%)、K2O(0.02%~0.13%)含量低.

电气石化学通式为XY3Z6T6(BO33V3W,其中X=Na+、Ca2+,K+和空位;Y=Fe2+,Mg2+、Mn2+、Al3+、Li+、Fe3+和Cr3+;Z=Al3+、Fe3+、Mg2+和Cr3+;T=Si4+、Al3+和B3+;B=B3+;V=OH-和O2-;W=OH-、F和O2-Henry et al.,2011).根据电气石结构四面体和八面体配位(T+Z+Y)进行15个阳离子标准化后得到电气石结构式(附表1).不同的电气石中,Si、K离子基本一致,其他如Al、Fe、Mg、Na、Ca、Ti、F以及 X □均显示一定的差异.棠阴花岗伟晶岩电气石Mg/(Mg+Fe)比值变化范围为0.20~0.59(平均值为0.43),Na/(Na+Ca)比值变化范围为0.84~0.98(平均值为0.93);黑云母二长花岗岩电气石Mg/(Mg+Fe)比值变化范围为0.48~0.61(平均值为0.55),Na/(Na+Ca)比值变化范围为0.83~0.95(平均值为0.87)(图5).总体看来,电气石Mg、Fe含量变化较大,花岗伟晶岩电气石Fe含量相对略高,黑云母二长花岗岩电气石Mg含量相对略高,花岗伟晶岩电气石Na/(Na+Ca)比值略高于黑云母二长花岗岩.花岗伟晶岩电气石Al含量为6.08~ 6.73 apfu(平均值为6.31 apfu),黑云母二长花岗岩电气石Al含量为5.91~6.53 apfu(平均值为6.16 apfu).

依据电气石X位置阳离子的占位特征(Henry et al.,2011),花岗伟晶岩和黑云母二长花岗岩电气石均属于碱性电气石(图5a).而在Mg/(Mg+Fe)⁃Na/(Na+Ca)和Mg/(Mg+Fe)⁃ X □/(Na+ X □)图解中存在明显差异,Tur⁃G型电气石和Tur⁃PZ型电气石边部(Rim)主要投点于镁电气石区域(图5b, 5c),与贫钙富铝的变质泥岩、变质砂岩有关(图6);Tur⁃PZ型电气石核部(Core)主要投点于铁电气石区域(图5b,5c),与贫Li花岗岩及相关的花岗伟晶岩、细晶岩有关(图6);而Tur⁃PU型电气石投点于黑电气石和镁电气石区域(图5b,5c).

4.1.2 微量元素

棠阴花岗伟晶岩和黑云母二长花岗岩中电气石的微量元素分析结果列于附表2.花岗伟晶岩和黑云母二长花岗岩电气石大部分微量元素的含量小于10×10-6,如Be、Ge、Rb、Cs、Zr、Hf、Nb、Ta、Sn等;Li、Sc、V、Cr、Co、Ni、Ga、Sr元素含量多介于10×10-6~100×10-6,其中部分电气石的V、Cr含量达100×10-6以上;Zn含量均大于100×10-6.黑云母二长花岗岩电气石的V、Cr、Co、Ni、Sr含量明显高于花岗伟晶岩,Li、Be、Rb、Cs、Nb、Ta、Ga含量变化小;而Zn在花岗伟晶岩电气石中更为富集(图7).V、Co、Ni、Sr、Cs等元素含量在花岗伟晶岩电气石中的变化较大,Tur⁃PU型和Tur⁃PZ型电气石边部含量相似,且明显高于Tur⁃PZ型电气石核部(图7).

花岗伟晶岩和黑云母二长花岗岩电气石的稀土元素总量较低,仅La、Ce、Nd(少量测点)含量高于1×10-6,其他稀土元素均低于1×10-6,大部分重稀土元素含量低于0.1×10-6甚至低于检测限.黑云母二长花岗岩电气石稀土总量为5.73×10-6~19.03×10-6(平均值为10.21×10-6),相对高于花岗伟晶岩电气石;其次为Tur⁃PZ型电气石边部2.01×10-6~11.24×10-6(平均值为7.32×10-6)和Tur⁃PU型电气石0.45×10-6~8.54×10-6(平均值为4.64×10-6),最低为Tur⁃PZ型电气石核部0.44×10-6~6.05×10-6(平均值为1.46×10-6).在球粒陨石标准化稀土元素配分图上,均表现为轻稀土元素相对富集,重稀土亏损,δEu以正异常为主(少量Tur⁃PU型和Tur⁃PZ⁃Core电气石呈负异常)(图8).

4.2 电气石B同位素

LA⁃MC⁃ICP⁃MS硼同位素数据见附表3和图9.Tur⁃G型电气石δ11B值在-10.77‰~-8.87‰,平均值为-9.87‰.Tur⁃PU型电气石δ11B值在-10.59‰~-8.73‰,平均值为-9.48‰;Tur⁃PZ⁃Core电气石δ11B值在-11.07‰~-10.09‰,平均值为-10.41‰;Tur⁃PZ⁃Rim电气石δ11B值在-11.05‰~-8.95‰,平均值为-10.23‰.

5 讨论

5.1 电气石的形成

Tur⁃G型电气石主要呈自形‒半自形长柱状,与主要造岩矿物(石英、斜长石、钾长石、黑云母等)共生,呈浸染状分布(图4d、4e).Tur⁃G型电气石在单偏光镜下呈褐色,BES图像呈浅灰色,颜色均一,未见分带现象.从地球化学特征来看,不同测点电气石成分较均一,相对富集Mg、Ca和F,贫Fe和Al(图7).London and Manning(1995)通过对英格兰西南部Cornwa地区花岗岩和花岗伟晶岩中不同类型电气石的研究,认为岩浆成因的电气石是均一的,并具有高Fe/Mg、高F和Y位高A1含量的特征.Tur⁃G型电气石成分的均一性和高F特征与其一致,但低Fe/Mg、低A1特征又与之不同.因缺少热液蚀变的证据,本研究认为Tur⁃G型电气石直接从花岗岩熔体中结晶形成.其中低铁铝、高钙镁的化学特征可能由黑云母大量结晶所致.其他地区也有类似电气石,如郭佳等(2020)研究认为广西大厂黑云母花岗岩中的浸染状电气石是岩浆晚期阶段结晶形成.综上,Tur⁃G型电气石可能形成于岩浆演化的晚期阶段,岩浆演化过程中硼的不相容以及贫硼矿物(如长石、石英)的结晶作用导致富B岩浆的产生(Pesquera et al.,2013).

Tur⁃PU型电气石呈自形长柱状,与石英、长石共生,常聚集分布,无定向性(图4f~4h).在BES图像下,颜色均一,不具成分分带.同一电气石具有相对均一的主、微量元素组成,不同的电气石之间显示出一定的差异,可能与岩浆熔体并不均一有关.此外,Tur⁃PU型电气石δ11B(-10.59‰~-8.73‰)与Tur⁃G电气石(-10.77‰~-8.87‰)基本一致.表明Tur⁃PU型电气石为岩浆成因,直接从花岗伟晶岩阶段早期的富B熔体中结晶形成,并未发生显著的B同位素分馏.

Tur⁃PZ型电气石具有分带,BES图像清楚地显示,核部浅灰色,边部深灰色,核部和边部界线呈平滑不规则状(图10c~10d).化学成分上也显示出较大的差异,核部相对富集Fe、Al,贫Mg、Na、Ca、Ti、F(图10e~10f).江西灵山花岗岩体外接触带花岗伟晶岩中曾发现类似的分带电气石,Y位Al含量从核心到边缘呈下降趋势,Liu et al.(2023)认为此类电气石为岩浆成因的电气石,形成于岩浆‒热液阶段.Tur⁃PZ型电气石Y位Al含量从核部(平均值为0.40 apfu)降低至边缘(平均值为0.27apfu),该特征与高度演化花岗岩熔体的流体出溶变化相一致(Liu et al.,2023).Tur⁃PZ型电气石形成于花岗伟晶岩熔体晚期阶段,流体的出溶导致电气石核部和边部化学成分的变化.Tur⁃PZ型电气石核部和边部δ11B分别为-11.07‰~-10.09‰和-11.05‰~-8.95‰,稍低于Tur⁃PU电气石.Tur⁃PZ型与Tur⁃PU型电气石之间δ11B平均差值不足-1‰,表明Tur⁃PZ型电气石的结晶晚于Tur⁃PU电气石,可能是由岩浆熔体中B同位素分馏所致(Zhao et al.,2019).B同位素分馏实验研究证实,在任何条件下11B在流体相更富集(Meyer et al.,2008).在岩浆演化晚期,11B在岩浆脱挥发分作用下易进入流体相,产生富硼流体(London,1999).但是,Tur⁃PZ型电气石从核部到边部,δ11B未见明显变化(图9),表明流体出溶过程中11B的分馏并不明显.

另外,在Harlaux et al.(2020)提出的微量元素与Li/Sr的电气石成因判别图解中,所有电气石也都投影于岩浆电气石范围内(图11).综上,Tur⁃G、Tur⁃PU和Tur⁃PZ型均为岩浆成因电气石,分别形成于花岗岩熔体晚期阶段、花岗伟晶岩熔体早期阶段和晚期岩浆‒热液阶段.

5.2 电气石组分示踪花岗伟晶岩岩浆演化

电气石对于揭示其结晶的熔体或流体的化学成分具有重要指示作用(Jiang et al.,1999,20042008van Hinsberg et al.,2011).电气石主微量元素箱线图统计结果显示(图7),从Tur⁃G型电气石→Tur⁃PU型电气石→Tur⁃PZ型电气石核部,主量元素Mg、Na、Ca、Ti和微量元素Sc、V、Cr、Co、Ni、Sr、Ga降低,其含量变化与其寄主岩石主微量元素测试结果相一致(作者未发表数据),可能受晶体化学作用和结晶熔体成分控制(Zhao et al.,2019;张凯等,2024).Tur⁃PZ型电气石核部Fe含量升高,与结晶熔体成分相反(全岩Fe含量降低),可能与花岗伟晶岩熔体主要结晶白云母有关(花岗伟晶岩中黑云母极少).从Tur⁃PZ型电气石的核部至边部,Fe、Al降低,Mg、Na、Ca、Ti升高(图7),同样表明了晶体化学作用的影响,这也从花岗伟晶岩电气石显著的Fe2+Mg-1、(NaMg)( X □Al)-1元素替代机制进一步反映(图12).从Tur⁃PZ型电气石核部至边部,Co、Ni、Sc、V、Sr、Ga含量升高(图7),可能与伟晶岩浆演化晚期熔体中流体出溶有关,流体的出溶导致这些相容元素在残余熔体中富集.Zn含量降低的原因不清,可能受主量元素Fe、Al控制(Zn与Fe、Al正相关).电气石中某些元素的相关性变化,表明电气石的形成主要受使其结晶的熔体/流体成分控制,而并未受到外部因素的影响(Yang et al.,2015Kalliomäki et al.,2017Zhao et al.,2019).此外,岩浆演化各阶段的电气石中Li、Be、Nb、Ta等稀有金属元素含量均无明显变化(图7),可能是由于熔体中上述元素本身含量过低所致.

本研究中绝大部分电气石均具有相似的稀土配分模式,表现为轻稀土富集、重稀土亏损(图8),Eu正异常为主的特征.与其寄主岩石相比,电气石的稀土含量更低,稀土配分模式表现为重稀土更亏损.这可能与寄主岩石中普遍含石榴子石有关,石榴子石的大量结晶带走了熔体中大量的重稀土元素导致残留熔体中重稀土含量降低.花岗伟晶岩电气石Eu正异常为主的特征与寄主岩石一致,Tur⁃G型电气石Eu正异常与寄主岩石不同,表明电气石Eu与岩浆熔体中Eu的含量并没有直接联系.实验研究表明,电气石更倾向于结合Eu2+而非Eu3+van Hinsberg et al., 2011),电气石多表现为Eu正异常可能与此有关,例如江西灵山花岗岩和花岗伟晶岩中的电气石也具有Eu正异常特征(Liu et al.,2023).

电气石的Fe3+/Fe2+比值可反映熔体/流体的氧逸度高低(Fuchs et al.,1998Watenphul et al.,2016).黑云母二长花岗岩电气石以Fe3+Al-1元素替代机制为主,花岗伟晶岩电气石以Fe2+Mg-1元素替代机制为主(图12),花岗伟晶岩电气石Fe3+/Fe2+比值相较黑云母二长花岗岩更低,反映了花岗伟晶岩熔体氧逸度更低,花岗伟晶岩电气石是在偏还原的条件下结晶形成.电气石的V含量也可以反演岩浆‒热液体系氧逸度的变化,V含量与氧逸度成正比(郑贝琪等,2023).花岗伟晶岩电气石V含量低于黑云母二长花岗岩,同样表明花岗伟晶岩熔体的氧逸度低于黑云母二长花岗岩熔体.从花岗伟晶岩电气石核部至边部,V含量升高,表明在花岗伟晶岩阶段晚期伴随着流体出溶氧逸度有所升高.所有电气石中(NaMg)( X □Al)-1元素替代机制以及较高的Na含量(>0.55 apfu),表明在花岗岩‒花岗伟晶岩岩浆演化阶段均具有较高的盐度(von Goerne et al.,2011Dutrow and Henry,2018).

综上,棠阴黑云母二长花岗岩和花岗伟晶岩中电气石主微量元素变化可以指示岩浆演化过程中熔体化学成分以及物理化学条件的变化.从Tur⁃G型电气石→Tur⁃PU型电气石→Tur⁃PZ型电气石核部→边部,电气石Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga含量先降低再升高,反映了从花岗岩熔体晚期阶段→花岗伟晶岩熔体早期阶段→晚期岩浆‒热液阶段,岩浆熔体中氧逸度表现为先降低再升高,熔体中相关元素含量也呈现先降再升的规律.

5.3 硼同位素对花岗伟晶岩成因及源区性质的指示意义

棠阴花岗伟晶岩和黑云母二长花岗岩电气石的B同位素组成相似(图9,附表3),表明二者具有一致的岩浆源区.在岩浆温度下,熔体中电气石结晶的B同位素分馏通常较小,Δ11B熔体-电气石一般小于-2%(Hervig et al.,2002).岩浆成因的电气石δ11B大致反映了熔体中的δ11B(Maner and London,2017;代作文等,2019).总体来看,黑云母二长花岗岩电气石δ11B为-10.77‰~-8.87‰,花岗伟晶岩电气石Tur⁃PU、Tur⁃PZ⁃Core、Tur⁃PZ⁃Rim的δ11B分别为-10.59‰~-8.73‰、-11.07‰~-10.09‰、-11.05‰~-8.95‰.岩浆演化过程中熔体B同位素分馏作用较弱,δ11B总体呈降低的趋势,可以解释为随着岩浆熔体中电气石的结晶,瑞利分馏会导致残留熔体11B逐渐降低(Zhao et al.,2019).

前人研究表明,来自壳源沉积物的花岗岩中的电气石具有相对集中的δ11B值,并与大陆地壳的平均δ11B值接近(陈希节等,2022).棠阴花岗伟晶岩和黑云母二长花岗岩中电气石的δ11B值主要分布于-11‰~-8‰(图9),与大陆地壳(-10‰±3‰)(Marschall and Jiang,2011)和S型花岗岩(-11‰±4‰)(Trumbull and Slack,2018)范围相吻合,表明其初始岩浆来源于大陆地壳(变质沉积岩)的部分熔融.在电气石成分Al⁃Fe⁃Mg和Ca⁃Fe⁃Mg三角图解中(图6),电气石的源岩主要投点于2、4、10区域,表明与“与贫钙富铝的变质泥岩、变质砂岩有关”和“与贫Li花岗岩及相关的花岗伟晶岩、细晶岩有关”.关于棠阴花岗岩的岩浆源区,何世伟等(2022)研究认为是华南元古宙地壳长石石英质岩石部分熔融形成的高温和中等压力(950 MPa)、低氧逸度下的产物.以上电气石的硼同位素和地球化学特征表明,棠阴花岗伟晶岩和黑云母二长花岗岩具有一致的岩浆源岩,初始岩浆可能源自大陆地壳(贫钙富铝的变质泥岩、变质砂岩)的部分熔融.

6 结论

(1)棠阴地区电气石可分为3类,分别为黑云母二长花岗岩中的浸染状电气石(Tur⁃G型)、花岗伟晶岩中的未分带电气石(Tur⁃PU型)和分带电气石(Tur⁃PZ型).

(2)Tur⁃G、Tur⁃PU和Tur⁃PZ型电气石属碱性电气石中的铁电气石‒镁电气石系列,均为岩浆成因,分别形成于花岗岩熔体晚期阶段、花岗伟晶岩熔体早期阶段和晚期岩浆‒热液阶段.各阶段岩浆熔体中氧逸度表现为先降低再升高,熔体中Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga含量也呈现出先降再升的规律.

(3)棠阴花岗伟晶岩和黑云母二长花岗岩电气石具有集中且相似的硼同位素组成,指示两者具有一致的岩浆源区,初始岩浆来源于大陆地壳(贫钙富铝的变质泥岩、变质砂岩)的部分熔融.

参考文献

[1]

Chen, X. J., Yun, X. R., Lei, M., et al., 2022. Chemical and Boron Isotopic Composition of Tourmaline from the Gonghe Triassic Intermediate⁃Acid Intrusive Rocks, Qinghai and Its Implications for Evolution of the Magmatic⁃Hydrothermal System. Acta Petrologica Sinica, 38(11): 3359-3374 (in Chinese with English abstract).

[2]

Čopjaková, R., Prokop, J., Novák, M., et al., 2021. Hydrothermal Alteration of Tourmaline from Pegmatitic Rocks Enclosed in Serpentinites: Multistage Processes with Distinct Fluid Sources. Lithos, 380-381: 105823. https://doi.org/10.1016/j.lithos.2020.105823

[3]

Dai, Z. W., Li, G. M., Ding, J., et al., 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859 (in Chinese with English abstract).

[4]

Drivenes, K., Larsen, R. B., Müller, A., et al., 2015. Late⁃Magmatic Immiscibility during Batholith Formation: Assessment of B Isotopes and Trace Elements in Tourmaline from the Land’s End Granite, SW England. Contributions to Mineralogy and Petrology, 169(6): 56. https://doi.org/10.1007/s00410⁃015⁃1151⁃6

[5]

Dutrow, B. L., Henry, D. J., 2011. Tourmaline: A Geologic DVD. Elements, 7(5): 301-306. https://doi.org/10.2113/gselements.7.5.301

[6]

Dutrow, B. L., Henry, D. J., 2018. Tourmaline Compositions and Textures: Reflections of the Fluid Phase. Journal of Geosciences, 63(2): 99-110. https://doi.org/10.3190/jgeosci.256

[7]

Fuchs, Y., Lagache, M., Linares, J., 1998. Fe⁃Tourmaline Synthesis Under Different T and fO2 Conditions. American Mineralogist, 83(5-6): 525-534. https://doi.org/10.2138/am⁃1998⁃5⁃612

[8]

Gao, Y., Xu, Z., Tang, S., et al., 2025. Genesis of Caledonian Pegmatite⁃Type Lithium Deposits in Southern Jiangxi Province: Evidences from Cassiterite U⁃Pb Geochronology and Whole⁃Rock Petrogeochemistry. Acta Mineralogica Sinica, 45(4): 713-733 (in Chinese with English abstract).

[9]

Guo, C. L., Liu, Z. K., 2021. Caledonian Granites in South China: The Geological and Geochemical Characteristics on Their Petrogenesis and Mineralization. Journal of Earth Sciences and Environment, 43(6): 927-961 (in Chinese with English abstract).

[10]

Guo, J., Yan, H. B., Ling, M. X., et al., 2020. Chemical Composition of Tourmaline in the Biotite Granite, the Dachang District: Insights into Magmatic⁃Hydrothermal Evolution. Acta Petrologica Sinica, 36(1): 171-183 (in Chinese with English abstract).

[11]

Guo, R. H., Hu, X. M., Garzanti, E., et al., 2021. Boron Isotope Composition of Detrital Tourmaline: A New Tool in Provenance Analysis. Lithos, 400-401: 106360. https://doi.org/10.1016/j.lithos.2021.106360

[12]

Harlaux, M., Kouzmanov, K., Gialli, S., et al., 2020. Tourmaline as a Tracer of Late⁃Magmatic to Hydrothermal Fluid Evolution: The World⁃Class San Rafael Tin (⁃Copper) Deposit, Peru. Economic Geology, 115(8): 1665-1697. https://doi.org/10.5382/econgeo.4762

[13]

He, S. W., Wang, K. X., Liu, X. D., et al., 2022. Genesis of the Yihuang Strong Peraluminous S⁃Type Granite in Jiangxi Province and Its Constraints on Early Paleozoic Intracontinental Orogeny in South China. Geological Bulletin of China, 41(5): 788-809 (in Chinese with English abstract).

[14]

Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15.

[15]

Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline⁃Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636

[16]

Henry, D. J., Dutrow, B. L., 2012. Tourmaline at Diagenetic to Low⁃Grade Metamorphic Conditions: Its Petrologic Applicability. Lithos, 154: 16-32. https://doi.org/10.1016/j.lithos.2012.08.013

[17]

Hervig, R. L., Moore, G. M., Williams, L. B., et al., 2002. Isotopic and Elemental Partitioning of Boron between Hydrous Fluid and Silicate Melt. American Mineralogist, 87(5-6): 769-774. https://doi.org/10.2138/am⁃2002⁃5⁃620

[18]

Hong, T., Zhai, M. G., Xu, X. W., et al., 2021. Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith, Altyn Tagh, Northwestern China: Geochemical Variability Constraints on Metallogenesis. Lithos, 400-401: 106358. https://doi.org/10.1016/j.lithos.2021.106358

[19]

Hou, K. J., Li, Y. H., Xiao, Y. K., et al., 2010. In Situ Boron Isotope Measurements of Natural Geological Materials by LA⁃MC⁃ICP⁃MS. Chinese Science Bulletin, 55(29): 3305-3311. https://doi.org/10.1007/s11434⁃010⁃4064⁃9

[20]

Jiang, S. Y., Han, F., Shen, J. Z., et al., 1999. Chemical and Rb⁃Sr, Sm⁃Nd Isotopic Systematics of Tourmaline from the Dachang Sn⁃Polymetallic Ore Deposit, Guangxi Province, P.R. China. Chemical Geology, 157(1-2): 49-67. https://doi.org/10.1016/S0009⁃2541(98)00200⁃9

[21]

Jiang, S. Y., Radvanec, M., Nakamura, E., et al., 2008. Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite⁃Related Hydrothermal System, Slovakia: Constraints on Magmatic and Metamorphic Fluid Evolution. Lithos, 106(1-2): 1-11. https://doi.org/10.1016/j.lithos.2008.04.004

[22]

Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare⁃Earth Element Geochemistry in Tourmaline and Cassiterite from the Yunlong Tin Deposit, Yunnan, China: Implication for Migmatitic⁃Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021

[23]

Kalliomäki, H., Wagner, T., Fusswinkel, T., et al., 2017. Major and Trace Element Geochemistry of Tourmalines from Archean Orogenic Gold Deposits: Proxies for the Origin of Gold Mineralizing Fluids? Ore Geology Reviews, 91: 906-927. https://doi.org/10.1016/j.oregeorev.2017.08.014

[24]

Li, L. G., Wang, L. X., Romer, R. L., et al., 2025. Using Tourmaline to Trace Li Mineralization in the Mufushan Granitic Batholith, South China. Chemical Geology, 671: 122485. https://doi.org/10.1016/j.chemgeo.2024.122485

[25]

Li, Z. Z., Qin, K. Z., Pei, B., et al., 2020. Mineralogical Features of Tourmaline in Baiyinchagan Sn⁃Ag⁃Pb⁃Zn Deposit, Southern Great Xing’an Range, and Its Implications for Magmatic⁃Hydrothermal Evolution. Acta Petrologica Sinica, 36(12): 3797-3812 (in Chinese with English abstract).

[26]

Liu, T., Jiang, S. Y., Su, H. M., et al., 2023. Tourmaline as a Tracer of Magmatic⁃Hydrothermal Evolution and Potential Nb⁃Ta⁃(W⁃Sn) Mineralization from the Lingshan Granite Batholith, Jiangxi Province, Southeast China. Lithos, 438-439: 107016. https://doi.org/10.1016/j.lithos.2022.107016

[27]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[28]

London, D., 1999. Stability of Tourmaline in Pei Aluminous Granite Systems: The Boron Cycle from Anatexis to Hydrothermal Aureoles. European Journal of Mineralogy, 11(2): 253-262. https://doi.org/10.1127/ejm/11/2/0253

[29]

London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495

[30]

Maner, J. L., London, D., 2017. The Boron Isotopic Evolution of the Little Three Pegmatites, Ramona, CA. Chemical Geology, 460: 70-83. https://doi.org/10.1016/j.chemgeo.2017.04.016

[31]

Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left behind. Elements, 7(5): 313-319. https://doi.org/10.2113/gselements.7.5.313

[32]

Meyer, C., Wunder, B., Meixner, A., et al., 2008. Boron⁃Isotope Fractionation between Tourmaline and Fluid: An Experimental Re⁃Investigation. Contributions to Mineralogy and Petrology, 156(2): 259-267. https://doi.org/10.1007/s00410⁃008⁃0285⁃1

[33]

Pesquera, A., Torres⁃Ruiz, J., García⁃Casco, A., et al., 2013. Evaluating the Controls on Tourmaline Formation in Granitic Systems: A Case Study on Peraluminous Granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology, 54(3): 609-634. https://doi.org/10.1093/petrology/egs080

[34]

Slack, J. F., Trumbull, R. B., 2011. Tourmaline as a Recorder of Ore⁃Forming Processes. Elements, 7(5): 321-326. https://doi.org/10.2113/gselements.7.5.321

[35]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[36]

Trumbull, R. B., Slack, J. F., 2018. Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits. Boron Isotopes: The Fifth Element, 249-272. https://doi.org/10.1007/978⁃3⁃319⁃64666⁃4_10

[37]

van Hinsberg, V. J., Henry, D. J., Marschall, H. R., 2011. Tourmaline: An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1): 1-16. https://doi.org/10.3749/canmin.49.1.1

[38]

von Goerne, G., Franz, G., van Hinsberg, V. J., 2011. Experimental Determination of Na⁃Ca Distribution between Tourmaline and Fluid in the System CaO⁃Na2O⁃MgO⁃Al2O3⁃SiO2⁃B2O3⁃H2O. The Canadian Mineralogist, 49(1): 137-152. https://doi.org/10.3749/canmin.49.1.137

[39]

Watenphul, A., Schlüter, J., Bosi, F., et al., 2016. Influence of the Octahedral Cationic⁃Site Occupancies on the Framework Vibrations of Li⁃Free Tourmalines, with Implications for Estimating Temperature and Oxygen Fugacity in Host Rocks. American Mineralogist, 101(11): 2554-2563. https://doi.org/10.2138/am⁃2016⁃5820

[40]

Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite⁃Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2023.213

[41]

Yang, S. Y., Jiang, S. Y., Mao, Q., et al. 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(2): 186-200. https://doi.org/10.46770/AS.2021.912

[42]

Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015. Tourmaline as a Recorder of Magmatic⁃Hydrothermal Evolution: An In Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6): 42. https://doi.org/10.1007/s00410⁃015⁃1195⁃7

[43]

Yuan, J., Tang, C. H., Zhou, Y., et al., 2024. Content Characteristics of Impurity Elements Analysis and Evaluation Method Discussion of High⁃Purity Quartz Raw Material of the Granite Pegmatite Type in Tangyin, Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(1): 34-44 (in Chinese with English abstract).

[44]

Zhang, K., Liu, X., Zhao, K. D., et al., 2024. Elemental and Boron Isotopic Variations of Tourmalines from the Miocene Leucogranite⁃Pegmatite in Kuju, Eastern Himalaya: Implications for the Evolution of Magmatic Melts. Acta Petrologica Sinica, 40(8): 2334-2352 (in Chinese with English abstract).

[45]

Zhao, H. D., Zhao, K. D., Palmer, M. R., et al., 2019. In⁃Situ Elemental and Boron Isotopic Variations of Tourmaline from the Sanfang Granite, South China: Insights into Magmatic⁃Hydrothermal Evolution. Chemical Geology, 504: 190-204. https://doi.org/10.1016/j.chemgeo.2018.11.013

[46]

Zhao, Z. H., Ma, L., 2025. The Relationship between Granitic Pegmatites and Granites. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.018

[47]

Zheng, B. Q., Chen, B., Sun, Y., 2023. Tracing the Evolution of the Pegmatite System and Its Interaction with the Country Rocks by Chemical and Boron Isotope Compositions of Tourmaline in the Qinghe Pegmatite from the Chinese Altay Orogen. Acta Petrologica Sinica, 39(1): 187-204 (in Chinese with English abstract).

基金资助

江西省重点研发计划项目(20212BBG71003)

江西省财政出资地勘项目(20200048)

AI Summary AI Mindmap
PDF (7075KB)

28

访问

0

被引

详细

导航
相关文章

AI思维导图

/