南岭半坑高分异A型花岗岩成因及其地质意义

何川 , 刘文斌 , 胡文洁 , 陈露 , 李海立 , 孙建东 , 王运 , 田世洪

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2525 -2547.

PDF (12226KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2525 -2547. DOI: 10.3799/dqkx.2025.158

南岭半坑高分异A型花岗岩成因及其地质意义

作者信息 +

Petrogenesis and Geological Significance of Highly Differentiated A⁃Type Granites in Bankeng Pluton, Nanling Region, South China

Author information +
文章历史 +
PDF (12519K)

摘要

我国稀土资源丰富,其中华南离子吸附型稀土矿床独具特色,其时空分布特征显示其形成与华南中生代花岗岩密切有关,但内在成因联系仍缺乏深刻认识.对南岭半坑花岗岩(半坑稀土矿床的成矿母岩)开展了岩相学、锆石和磷灰石年代学、岩石地球化学、锆石Hf同位素和全岩Sr⁃Nd⁃Li同位素等综合研究.半坑花岗岩中岩浆锆石、岩浆磷灰石的U⁃Pb年代学分析结果分别为185.5~194.0 Ma和~189.2 Ma,表明其侵位形成于早侏罗世.矿物组成主要由长英质矿物(Q+Ab+ Or≥95%)组成,镁铁质暗色矿物仅有少量黑云母(<5%);岩石地球化学特征呈现高SiO2(75.93%~77.48%)、富K2O(5.27%~5.55%)、低MgO(0.09%~0.14%)、贫MnO(0.02%~0.03%),较高的锆饱和温度(801~847 ℃)和高Zr+Nb+Ce+Y含量(360×10‒6~534×10‒6)和10 000×Ga/Al比值(3.2~4.2)等,表明其具有高分异A型花岗岩的属性.Sr⁃Nd⁃Hf⁃Li同位素特征((87Sr/86Sr)i=0.704 477~0.712 715,εNdt)=-5.0~-5.2,εHft)=-6.8~+1.4,δ7Li=-0.88‰~6.65‰)表明其岩浆源区可能为中元古代古老地壳物质熔融并侵位于地壳浅部的富集轻稀土的火成岩.半坑花岗岩呈现A2型花岗岩属性(Y/Nb=1.21~2.09),结合区域同期的双峰式侵入岩、火山岩组合和A型花岗岩共同指示其形成于早侏罗世伸展构造背景.结合与半坑花岗岩同期的南岭地区A型花岗岩的成因认识,认为早侏罗世深部软流圈上涌产生的热异常,引起壳‒幔岩浆源区富稀土岩石的部分熔融形成更加富集稀土的A型花岗质熔体,可能是华南离子吸附型轻稀土矿床成矿母岩形成的重要机制之一.富轻稀土的半坑花岗岩与富重稀土的足洞花岗岩的成因对比表明轻稀土型成矿母岩的形成主要受控于岩浆源区与伸展构造背景,而岩浆结晶分异程度和外部流体交代作用对重稀土型成矿母岩的形成更为关键.

Abstract

The rare earth element (REE) resources are rich in China, among which the ion-adsorbed REE deposit in South China is unique. Its spatial and temporal distribution characteristics indicate that its formation is closely related to the Mesozoic granites in South China, but the internal genetic relationship is still not deeply understood. A comprehensive study on the Bankeng granite in the Nanling (the ore-forming parent rock of Bankeng REE deposit) has been carried out, including petrography, zircon and apatite chronology, lithogeochemistry, zircon Hf isotopes and whole-rock Sr⁃Nd⁃Li isotopes. The U⁃Pb dating of magmatic zircon and magmatic apatite in the Bankeng granites yield ages of 185.5-194.0 Ma and 189.2 Ma respectively, indicating that the emplacement occurred in the Early Jurassic. They are mainly composed of felsic minerals (Q+Ab+Or≥95%), with only a small amount of biotite (<5%) in the mafic dark minerals. Their geochemical characteristics show high SiO2 (75.93%-77.48%), rich K2O (5.27%-5.55%), low MgO (0.09%-0.14%), and poor MnO (0.02%-0.03%), as well as a high zircon saturation temperature (801-847 ℃), high Zr+Nb+Ce+Y content (360×10‒6-534×10‒6), and a 10 000×Ga/Al ratio (3.2-4.2), which are similar to the highly differentiated A-type granites. The Sr⁃Nd⁃Hf⁃Li isotopic characteristics ((87Sr/86Sr)i=0.704 477-0.712 715, εNd(t)=-5.0-(-5.2), εHf(t)=-6.8-(+1.4), δ7Li=-0.88‰-6.65‰) indicate that the magma source may be REE-rich igneous rocks from Mesoproterozoic recycled ancient crust that was intruded into the shallow crust. The Bankeng granites exhibits A2-type granite properties (Y/Nb=1.21-2.09), combined with the regional contemporaneous bimodal intrusive rocks, volcanic rock suites and A-type granitoids, indicating they formed in the Early Jurassic extensional tectonic setting. Combined with the genetic understanding of A-type granite in the Nanling at the same time as Bankeng granites, this paper suggests that the thermal anomaly generated by the upwelling of deep asthenosphere in the Early Jurassic caused partial melting of REE-rich rocks in the crust-mantle magmatic source area to form more REE-enriched A-type granitic melt, which may be one of the important mechanisms for the petrogenesis of ore-forming parent rocks of the ion-adsorbed light REE deposits in South China. The genetic correlation between the LREE-riched Bankeng granites and the HREE-riched Zudong granites shows that the petrogenesis of the LREE-type ore-forming parent rocks is mainly related to their magma source region and extensional tectonic setting, while the degree of magma crystallization differentiation and the external fluid metasomatism are more critical for the petrogenesis of the HREE-type ore-forming parent rocks.

Graphical abstract

关键词

高分异A型花岗岩 / 岩石成因 / 离子吸附型稀土矿床成矿母岩 / 南岭半坑花岗岩 / 地球化学 / 地质年代学.

Key words

highly differentiated A⁃type granite / petrogenesis / ore⁃forming parent rock of ion⁃adsorbed rare earth deposit / Bankeng granite in Nanling / geochemistry / geochronology

引用本文

引用格式 ▾
何川,刘文斌,胡文洁,陈露,李海立,孙建东,王运,田世洪. 南岭半坑高分异A型花岗岩成因及其地质意义[J]. 地球科学, 2025, 50(07): 2525-2547 DOI:10.3799/dqkx.2025.158

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

稀土(Rare Earth Element,REE)是重要的战略性关键金属资源(European Commission, 2014),广泛应用于冶金、催化剂、电子和新能源等高新技术和国防军工领域(Liu et al., 2023a).据最新统计资料显示,稀土是我国的优势矿产资源,约占世界产量的70%,已知稀土资源储量占全球总储量的40%(U.S.Geological Survey, 2024).离子吸附型稀土矿床广泛分布于我国南方风化壳中,又称为风化壳型稀土矿床,是我国的特色稀土资源,也是世界稀土资源重要来源,尤其是重稀土资源供应量达全球90%以上(Li et al., 2017Xu et al., 2017Xie et al., 2019;周美夫等,2020).离子吸附型稀土矿床是内生和外生地质过程共同作用的产物(吴澄宇,1988).内生地质过程形成的富含稀土的成矿母岩是形成离子吸附型稀土矿床的必要条件(Chu et al., 2024).研究表明离子吸附型稀土矿床的成矿母岩类型多样,包括花岗岩、流纹岩、玄武岩以及近年发现的变质岩(Bao and Zhao, 2008Sanematsu and Watanabe, 2016Wang et al., 2018; 周雪桂等,2018;陈斌锋等,2019;Fu et al., 2019a,2019b;刘海波等,2020;张青等,2020;Huang et al., 2021;张德富等,2024),其中花岗岩在所有成矿母岩中占比最高、分布最广(付伟等,2022;Chu et al., 2024).在我国南方离子吸附型稀土矿床发育最为密集的南岭及周缘地区已探明的128个稀土矿床中,就有115个发育在花岗质岩石的风化壳中,其时空分布特征显示这些稀土矿床的形成与华南中生代花岗岩有关(图1Chu et al., 2024).然而,华南中生代花岗岩与离子吸附型稀土矿床发育的内在成因联系仍缺乏深刻认识.

南岭东部的龙南地区是离子吸附型稀土矿床的发源地,也是世界稀土资源最重要的产地,重稀土资源更是享誉世界(Xie et al., 2016Li et al., 2017Xu et al., 2017).区域内中生代花岗岩十分发育(赵芝等,2014;He et al., 2017Fan et al., 2023),与之相关的稀土矿床密集分布,且轻、重稀土富集型矿床均有产出,是研究华南中生代花岗岩与离子吸附型稀土矿床发育的内在成因联系的理想地区.尽管前人关于区域内中生代花岗质成矿母岩的成因研究已取得一些进展,但仍存在较大争议,主要有3种观点:一是认为花岗质成矿母岩的形成与其岩浆源区息息相关(He et al., 2017);二是认为花岗质成矿母岩的成因主要受控于岩浆的结晶分异过程(Li et al., 2017);三是认为富含稀土元素的外部流体的交代对花岗质成矿母岩的形成至关重要(Fan et al., 2023).因此,继续对区域内发育离子吸附型稀土矿床的中生代花岗岩开展成因研究可为理解华南中生代花岗岩与离子吸附型稀土矿床发育的内在成因联系提供新的指示.

本文以龙南地区岩石成因研究相对薄弱,仅有年代学报道的南岭半坑花岗岩(半坑稀土矿床的成矿母岩)为研究对象,通过锆石、磷灰石两种富含稀土的副矿物结构组分特征与U⁃Pb年龄、锆石Hf同位素、全岩主微量元素以及Sr⁃Nd⁃Li同位素等分析,揭示其岩石成因,并综合前人研究认识探讨华南中生代构造动力学背景与稀土预富集的成因联系.另外,结合足洞花岗岩的最新成因认识对比分析了轻、重稀土型成矿母岩成因的差异.

1 地质概况及样品特征

1.1 地质概况

华南板块由西北部扬子陆块和东南部的华夏陆块在新元古代沿着江南缝合构造带拼合构成(图1Jiang et al., 2022).在中生代,华南板块遭受东部古太平洋活动域和西部古特提斯活动域两个构造域的共同影响(Xu, 2023),导致中生代岩浆岩广泛分布.华南中生代岩浆岩集中分布于华夏陆块和扬子陆块东部(图1).三叠纪岩浆岩主要分布在南岭地区(Zhou et al., 2006Liu et al., 2020).侏罗纪岩浆岩主要分布在华夏陆块内部,整体沿东 北‒西南方向分布;其中早侏罗世岩浆记录主要分布在南岭一带,主要由200~170 Ma的双峰式火山岩(Cen et al., 2016Zhu et al., 2020,2021),辉 长‒辉绿岩、正长岩和A型花岗岩等侵入岩构成(Li et al., 2003Chen et al., 2005Xie et al., 2005Hsieh et al., 2008He et al., 2010Zhu et al., 2010Jiang et al., 2015,20172022Wang et al., 2015; 甘成势等,2016; Gan et al., 2017a,2017b2022Zhang et al., 2018Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);晚侏罗世岩浆记录以钙碱性I型花岗岩为主,少量的正长岩、A型和S型花岗岩,侵位年龄集中分布在165~155 Ma(Zhou et al., 2006; Liu et al., 2020).白垩纪岩浆岩主要集中在福建和浙江等沿海地区(Zhou et al., 2006; Liu et al., 2020).

研究区位于南岭东部龙南地区(图2),区内出露牛坑、足洞、关西、半坑和寨背等中生代花岗岩.这些花岗岩侵入体与相邻的震旦‒寒武系、上古生界‒中生界地层呈侵入接触或断层接触关系.关西‒寨背花岗岩在空间相连,呈岩基产出,岩基内侵入并包裹多处辉 长‒辉绿岩和闪长岩.牛坑、足洞和半坑花岗岩出露规模较小,呈岩株产出(赵芝等,2014).

1.2 样品特征

龙南地区属于亚热带季风气候区,温暖湿润,降雨充沛,出露的花岗岩普遍经历了强烈的风化作用,风化壳十分发育.本次研究的样品采集于半坑岩体中部一基岩出露较好的风化壳剖面底部(图3a).选取1件花岗岩样品用于锆石、磷灰石挑选,6件风化程度最低的样品进行全岩地球化学分析.样品岩性为黑云母钾长花岗岩,呈肉红色,块状构造,花岗质结构,主要由石英(~40%)、正长石/微斜长石/条纹长石(~50%)、斜长石(~5%)以及黑云母(<5%)组成,部分石英呈大小不一的他形粒状分布在条纹长石内部形成文象结构,副矿物可见锆石、磷灰石和褐帘石(图3c、3d).

2 分析方法

锆石微量元素、U⁃Pb年龄和Hf同位素分析均在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室完成,采用的分析仪器为Finnigan Neptune型MC⁃ICP⁃MS及Newwave UP 213激光剥蚀系统.实验中激光剥蚀斑束直径为25 μm,频率为10 Hz,能量密度为2.5 J/cm2,以He为载气.详细的实验测试过程参见侯可军等(2009).锆石U⁃Pb年龄concordia图用Isoplot/Ex_ver3(Ludwig, 2003)程序完成,测试数据、加权平均年龄的误差均为2σ.

磷灰石微量元素、U⁃Pb年龄的测定在东华理工大学核资源与环境国家重点实验室LA⁃ICP⁃MS仪器上完成,采用的分析仪器为Agilent 7900型ICP⁃MS和GeoLasHD193 nm准分子激光剥蚀系统.实验中激光剥蚀频率和束斑分别为5 Hz和44 μm,激光能量密度为3.5 J/cm2,用He为载气,Ar为补偿气.详细的实验测试过程参见钟福军等(2023).磷灰石U⁃Pb年龄Tera⁃Wasserburg图用Isoplot/Ex_ver3(Ludwig, 2003)程序完成,测试数据、加权平均年龄的误差均为2σ.207Pb校正206Pb/238U年龄过程参见Stacey and Kramers (1975)两阶段演化模型,详细处理过程见Thomson et al.(2012).

全岩主量元素在武汉上谱分析有限公司完成,分析仪器为Rigaku ZSX Primus Ⅱ型XRF,测试相对标准偏差(RSD)<2%.全岩微量元素分析在贵州同微测试科技有限公司完成,采用配有Cetac ASX⁃560自动进样器的Thermo Fisher iCAP RQ型ICP⁃MS测定,以美国地质调查局标准物质BCR⁃2和BHVO⁃2等为参考标样进行质量监控.全岩Sr⁃Nd同位素化学前处理在贵州同微测试科技有限公司完成,而Sr⁃Nd同位素分析测试在东华理工大学核资源与环境国家重点实验室完成.

样品溶液的Li同位素组成测定是在东华理工大学核资源与环境国家重点实验室Nu Sapphire MC⁃ICP⁃MS仪器上完成.该仪器配备有16个法拉第杯、1个离子计数器和1个戴利检测器.其中L6法拉第杯用于接收6Li,H9法拉第杯接收7Li.每次测试(每个比值)包括30个点,每点积分时间为5 s,总测试时间2.5 min.采用稀酸背景下的 on⁃peak zero方式扣除仪器空白.本次实验在标准的湿法模式下进行,进样系统包括100 μL/min 玻璃雾化器、冷凝玻璃雾室(7 ℃)和石英炬管.Li的分析内精度(SE)一般优于0.5‰.仪器的质量歧视效应使用样品‒标准交叉法(SSB)校正,即样品前后各测一次外标(L⁃SVEC),计算样品相对于外标的δ7Li值.每个样品一般测试4次计算均值和外精度(2SD),每4次测试间插一个实验室内标或国际标样溶液作为监控标样.本次实验的监控外标IRMM⁃016 Li同位素组成测试均值δ7Li=0.17‰±0.21‰(2SD,n=18),与参考值(-0.1‰~+0.4‰)在误差范围内一致.全流程监控标样GSP⁃2和JG⁃2测定均值与参考值在误差范围内一致,外精度优于0.30‰.

3 分析结果

3.1 锆石结构、稀土元素和U⁃Pb年龄

样品ZD22⁃4⁃3中挑选的锆石在显微镜单偏光下呈现灰褐‒灰白色,形貌上呈自形‒半自形的棱柱状晶形(图4a),CL图像上多数锆石颗粒具有清晰的生长环带,显示典型的岩浆锆石特征,少数锆石颗粒表现为暗黑色阴极发光特征(图4b).

选35颗锆石进行激光原位微区分析,获得锆石稀土元素和U⁃Pb年龄结果分别见附表1和附表2.分析结果表明本文样品中锆石的Th/U值范围为0.69~0.43(附表2),球粒陨石标准化配分曲线呈现轻稀土亏损、重稀土富集的右翘配分特征,明显的Ce正异常和Eu负异常,为典型的岩浆锆石特征(图4c),与镜下结构形貌和CL图像特征相吻合.根据稀土元素含量及配分曲线特征,可以分为2组,第1组的锆石稀土含量比第2组锆石的更高(附表1,图4c),但在结构形貌和CL图像上没有明显区别.根据稀土元素特征,分别计算了2组锆石的U⁃Pb年龄.第1组有7颗锆石,206Pb/238U表观年龄范围为190.7~201.5 Ma(附表2),根据其中6颗谐和度>90%的锆石计算得到加权平均年龄为(194.0± 4.8) Ma(MSWD=0.29)(图4d).第2组包含28颗锆石,除了一颗谐和度极差(5.7%)的锆石外,其余锆石206Pb/238U表观年龄范围为176.6~197.2 Ma(附表2),根据其中23颗谐和度>90%的锆石计算得到加权平均年龄为(185.5±2.7) Ma(MSWD=0.46)(图4d).

3.2 磷灰石结构、稀土元素和U⁃Pb年龄

样品ZD22⁃4⁃3中的磷灰石在显微镜单偏光下呈现灰绿‒浅粉色,形貌上呈自形‒半自形短柱状的晶形,表面光滑,包含流体包裹体(图5a),CL图像上可见明显的生长环带特征,表明磷灰石为岩浆成因而非热液作用的产物(图5b;Ladenburger et al., 2016).

选取40颗磷灰石进行激光原位微区分析,获得稀土元素含量和U⁃Pb年龄分析结果分别见附表3和附表4.分析结果表明磷灰石富含La(1 758×10-6~7 377×10-6)、Ce(4 316×10-6~19 125×10-6)、Pr(585×10-6~2 665×10-6)、Nd(2 826×10-6~12 702×10-6)、Sm(663×10-6~2 883×10-6)和Y(1 466×10-6~8 089×10-6)等稀土元素(附表3),球粒陨石标准化配分曲线整体呈现轻稀土富集、重稀土亏损的右倾配分特征,显著Eu负异常,为典型的岩浆成因特征(图5c;Sha and Chappell, 1999O’Sullivan et al., 2020),与镜下结构形貌和CL图像特征相吻合.40颗磷灰石的Th含量为5.45×10-6~303×10-6,U含量为2.23×10-6~57.4×10-6,Pb含量为7.79×10-6~15.4×10-6(附表4),采用207Pb校正方法,其中35颗磷灰石得到了较为合理的206Pb/238U表观年龄,计算得到加权平均年龄为(189.2±5.4) Ma(MSWD=1.3,n=35)(图5d),对应的35颗磷灰石在Tera⁃ Wasserburg图上获得的下交点年龄为(190.0±9.4) Ma(MSWD=1.4,n=35)(图5d).不一致性下交点年龄(190.0±9.4) Ma和207Pb校正后加权平均年龄(189.2±5.4) Ma结果在误差范围内一致.

3.3 锆石Hf同位素特征

锆石Hf同位素分析测试点选取位置与测年位置相同或相近(图4c),测试结果见附表 5. 35个测试点获得的初始176Hf/177Hf为 0.282 466~0.282 700.根据锆石微量元素特征,第1组锆石的7个测试点初始176Hf/177Hf为0.282 531~0.282 652,根据结晶年龄194.0 Ma计算得到εHft)范围为-4.3~0,加权平均值为-2.1,对应的地壳模式年龄(TDM2)为1.24~1.51 Ga,加权平均值为1.37 Ga(图6);第2组锆石的28个测试点初始176Hf/177Hf为 0.282 464~0.282 697,根据结晶年龄185.5 Ma计算得到εHft)范围为-6.8~+1.4,35个测试点中仅有一个点为正值,其余均为负值,加权平均值为-2.3,对应的地壳模式年龄(TDM2)范围为1.14~1.66 Ga,加权平均值为1.38 Ga(图6).

3.4 全岩地球化学特征

半坑花岗岩样品的主、微量元素和全岩Sr⁃Nd⁃Li同位素分析结果见附表6.

3.4.1 全岩主微量元素特征

6件样品均显示低LOI值(0.52%~0.80%),表明样品较为新鲜(Lechler and Desilets, 1987).半坑花岗岩主量元素显示高SiO2(75.93%~77.48%)、高K2O(5.27%~5.55%),低Fe2O3T(1.68%~1.91%)、低MgO和Mg#(0.09%~0.14%,Mg#=10.87~14.93)、低P2O5(0.023%~0.032%),全碱K2O+Na2O为7.99%~8.38%,铝饱和指数(A/CNK)为1.00~1.09(<1.1),呈现出高硅、亚碱性、高钾钙碱性、弱过铝质和铁质花岗岩特征(图7).

微量元素特征方面,半坑花岗岩样品在球粒陨石标准化的稀土配分模式图中显示富集LREE、亏损HREE,高(La/Yb)N比值(7.72~19.77),表明轻重稀土元素分异明显,显示Eu负异常(Eu/Eu*=0.24~0.34)(图8a).在原始地幔标准化的蛛网图中,富集Rb、Th、U、Pb和Y元素,亏损Ba、Sr、Nb、Ta、P和Ti等元素(图8b).

3.4.2 全岩SrNd⁃Li同位素特征

6件半坑花岗岩的全岩87Sr/86Sr为0.749 882~0.758 317,根据磷灰石结晶年龄189.2 Ma计算得到初始(87Sr/86Sr)i为0.704 477~0.712 715(图9);全岩143Nd/144Nd值为0.512 252~0.512 286,同样以磷灰石结晶年龄189.2 Ma计算得到εNdt)为-5.0~-5.2(图9),二阶段亏损地幔Nd模式年龄(TDM2)为1.39~1.41 Ga(附表6).

6件半坑花岗岩样品的全岩Li含量为(22.1~39.1)×10-6,δ7Li值为-0.88‰~6.65‰(附表6).本文分析的半坑花岗岩样品为较新鲜的基岩,主要为岩浆成因的原生矿物,低LOI值(0.52~0.80),表明其蚀变或风化程度非常低,由此造成的分馏基本可以忽略不计.已有研究表明,壳‒幔部分熔融、高温条件下的岩浆结晶分异以及封闭岩浆系统中的水岩反应等过程中,Li的同位素分馏十分有限(<1‰;Tomascak, 2004Teng et al., 2006a,2006b, 2008,, 2009; Li et al., 2018).并且半坑花岗岩的δ7Li与SiO2、Fe2O3T、Rb和Ga等元素之间没有明显的相关性(图10a~10d),表明半坑花岗岩在结晶分异过程中没有发生明显的锂同位素分馏,~7.6‰的锂同位素变化反映了岩浆源区岩石的特征.

4 讨论

4.1 半坑花岗岩的成因

4.1.1 成岩年龄

关于半坑花岗岩的成岩年龄已有一定报道,如赵芝等(2014)认为半坑岩体遭受了较强的蚀变作用,早期地质调查研究中采用全岩K⁃Ar同位素测年法可信度较差,进而采用LA⁃MC⁃ICP⁃MS锆石U⁃Pb测年法开展了进一步的成岩年龄研究.然而,前人通过锆石U⁃Pb测年法得到的锆石结晶年龄((209.75±0.86) Ma)与全岩K⁃Ar同位素测年法获得表面年龄(154 Ma)差异较大(赵芝等,2014).因此,本文分别采用LA⁃MC⁃ICP⁃MS锆石U⁃Pb测年法和LA⁃ICP⁃MS磷灰石U⁃Pb测年法,进一步约束半坑花岗岩的成岩年龄.

根据锆石、磷灰石的结构特征及微量元素组分特征,本文样品中锆石、磷灰石均为岩浆成因,它们的结晶年龄可以代表半坑花岗岩的成岩年龄.根据锆石中稀土元素的含量差异,可分为2组.稀土含量更高的第1组锆石获得的加权平均年龄(194.0± 4.8) Ma,早于第2组锆石得到的加权平均年龄(185.5±2.7) Ma(图4d).2组锆石的Hf同位素特征基本一致,整体服从正态分布特征(图6a),表明它们可能源自相同源区物质,可能是后续岩浆演化过程先后结晶的产物.2组锆石的平均结晶年龄 ~189.8 Ma,与同一样品中获得的磷灰石不一致性下交点年龄(190.0±9.4) Ma和207Pb校正后加权平均年龄(189.2±5.4) Ma(图5d)在误差范围内相一致.因此,基于本文锆石、磷灰石的测年结果,将半坑花岗岩的成岩年龄进一步约束为(185.5~ 194) Ma,成岩时间与相邻的关西花岗岩((198.8±1.4) Ma;He et al., 2017)、寨背花岗岩((191.3±1.5) Ma;Jiang et al., 2017)相近,同属于早侏罗世岩浆作用的产物,也有可能半坑花岗岩部分岩石形成于晚三叠世(~210 Ma)(赵芝等,2014).

4.1.2 岩石成因类型

花岗岩按源岩属性和成因特征,通常分为M型、I型、S型和A型四种成因类型(Chappell et al., 1987Chappell and White, 2001; 吴福元等,2007).尽管地幔岩石不能直接通过部分熔融形成花岗岩,但M型花岗岩和少数A型花岗岩可由幔源基性岩浆通过结晶分异演化形成(Turner et al., 1992Mushkin et al., 2003; 吴福元等,2007; Jiang et al., 2022).南岭东部地区,存在与半坑花岗岩同期侵位形成的基性辉长‒辉绿岩(Li et al., 2003; Xie et al., 2005; Hsieh et al., 2008; He et al, 2010Zhu et al., 2010; Jiang et al., 2015; Wang et al., 2015; Gan et al., 2017a; Zhang et al., 2018; Yang et al., 2021),表明该地区存在早侏罗世幔源岩浆作用.但是半坑花岗岩周边并没有发现大规模的基性‒中性侵入岩石与其伴生,并且其高硅(75.93%~77.48%)、富钾(5.27%~5.55%)、低镁(0.09%~0.14%)、贫MnO(0.022%~0.031%)、贫Cr(1.41×10-6~3.69×10-6)和贫Ni(0.41×10-6~0.54×10-6)等组分特征,也与M型花岗岩明显不同.另外,半坑花岗岩的Sr⁃Nd⁃Li同位素组成呈现壳源属性(图9图10),并与同期的幔源岩石截然不同(图9),所以由同期幔源岩浆直接经高度分异形成的可能性也不大.因此,可以率先排除M型花岗岩和幔源岩浆分异成因A型花岗岩的可能.

除了前面提及的M型花岗岩和少数幔源岩浆分异的A型花岗岩外,全球绝大多数花岗岩是地壳来源的,包括最常见的I型、S型花岗岩和大部分A型花岗岩(Chappell et al., 1987; Chappell and White, 2001;吴福元等,2007).对于未分异或低分异的花岗岩可以凭借角闪石、董青石和碱性暗色矿物等典型矿物学标志轻易区分I型、S型和A型,然而经历高度结晶分异演化形成的Q⁃Ab⁃Or低共结花岗岩则难以区分,抑或是无法区分(吴福元等,2007,2017).半坑花岗岩主要由长英质矿物(Q+Ab+Or≥95%)组成,镁铁质暗色矿物较少,只有少量黑云母(<5%),未发现有角闪石、董青石和碱性暗色矿物等成因标志矿物,并且高硅、富钾、低镁、贫锰和高Rb/Sr值及显著负Eu异常等特征,均表明岩浆组分发生了较高程度的结晶分异演化.因此,在进一步鉴别半坑花岗岩的源区属性及成因类型时,除了参考地球化学特征和判别图解外,还应借助于其他标志综合分析.

I型、S型花岗岩的划分主要根据源岩和岩浆源区,前者源岩为(变)火成岩而后者为(变)沉积岩(Chappell and White, 2001),二者均由相对富水的壳内源岩脱水熔融形成,岩浆温度相对较低(锆石饱和温度平均值分别为~771 ℃和~740 ℃;King et al., 2001).A型花岗岩是由无水或贫水的源岩经高温熔融的产物,岩浆温度较高(锆石饱和温度一般大于830 ℃).另外,A型花岗岩通常具有低Al高Ga和富Zr、Nb、REE的特点(Collins et al., 1982),因而10 000*Ga/Al=2.6、Zr=250×10-6和Zr+Nb+Ce+Y=350×10-6常被作为鉴别A型与其他类型花岗岩的分界(Whalen et al., 1987Bonin, 2007).半坑花岗岩具有明显高于I和S型花岗岩的锆饱和温度(801~847 ℃;附表6)和类似A型花岗岩的地球化学组分(Zr+Nb+Ce+Y=360×10-6~534×10-6,>350×10-6;10 000*Ga/Al=3.2~4.2,>2.6;Whalen et al., 1987; Bonin, 2007),表现出A型花岗岩的成因属性.研究表明A型花岗岩随分异程度升高,其Zr含量会明显降低,对应计算获得锆饱和温度也会明显小于830 ℃(King et al., 2001),并且分异的A型花岗岩与10 000*Ga/Al值呈正相关演化趋势,与高分异I或S型花岗岩截然不同(吴福元等,2017).因此,对照典型的A型花岗岩,虽然半坑花岗岩部分样品的Zr含量锆饱和温度偏低,但与分异的A型花岗岩演化趋势较为一致(图11).

花岗岩中常见的副矿物锆石、磷灰石特征及其化学组分也可以较好地反映岩浆源区属性(Chu et al., 2009Wang et al., 2012).研究表明S型花岗岩的锆石中通常含有继承锆石或继承核结构(Poller et al., 2001),I型和A型花岗岩继承性锆石十分罕见(Wang et al., 2012).半坑花岗岩中未见继承核结构和继承锆石年龄的锆石,与S型花岗岩的锆石特征不符.有学者对比I型、S型和A型花岗岩中锆石的微量元素特征,发现I型花岗岩中锆石Pb含量低(<25×10-6)、Th/Pb值高(14~130),而S型花岗岩锆石具有高Pb含量(4×10-6~161×10-6)、低Th/Pb值(0.4~21),A型花岗岩锆石则介于二者之间(Wang et al., 2012).半坑花岗岩中锆石的Pb含量变化范围较大(3×10-6~240×10-6),28颗低U锆石Pb含量为3×10-6~20×10-6,7颗高U锆石Pb含量为137×10-6~240×10-6,而Th/Pb值为11.63~18.22(附表2),总体特征介于I型和S型之间,类似A型花岗岩的特征(图11d).此外,半坑花岗岩中的岩浆成因的磷灰石稀土元素特征也介于I型和S型之间(图5c),但又与二者明显不同,更为富集稀土元素.

此外,前人研究认为与半坑花岗岩空间相邻、成岩年龄相近的关西和寨背花岗岩也属于A型花岗岩(He et al., 2017Jiang et al., 2017).因此,在时空分布和产状特征方面,A型花岗岩的成因类型与之更为吻合.综上所述,笔者倾向于认为半坑花岗岩为分异的A型花岗岩而不是分异的I型和S型花岗岩.

4.1.3 岩浆源区属性与构造背景

关于A型花岗岩的成因模式包括:(1)幔源基性玄武质岩浆结晶分异成因(Turner et al., 1992Mushkin et al., 2003);(2)壳内熔出I型花岗岩或S型花岗岩后残余麻粒岩相岩石再熔成因,即残余源区成因模式(Collins et al., 1982Whalen et al., 1987);(3)幔源的基性岩浆与壳源的花岗质岩浆混合成因(Kerr and Fryer, 1993);(4)拉斑质岩浆极度分异或者由亏损地幔演化而来的基性下地壳部分熔融(Frost and Frost, 1997);(5)浅部地壳内长英质岩石低压熔融成因(Creaser et al., 1991Patiño Douce, 1997).

根据半坑花岗岩的产状及岩石组分特征以及同位素特征,笔者更倾向于成因模式(5).首先,半坑花岗岩的产状及组分特征以及显著的壳源属性同位素特征明显不支持其幔源岩浆直接分异的成因,因此成因模式(1)率先排除;其次,半坑花岗岩高硅(75.93%~77.48%)、富钾(5.27%~5.55%)、低镁(0.09%~0.14%)、贫CaO(0.39%~0.68%)特征,与由部分熔融抽取了I或S型花岗质岩浆后残余的麻粒岩相岩石再次熔融产生的富Ca、Mg元素,贫Si、K元素等熔体特征(Rudnick and Taylor, 1987Creaser et al., 1991)显然不符,因此成因模式(2)也可以排除;第三,半坑花岗岩中未发现有镁铁质包体,且显示壳源属性特征的Nd同位素比较均一(-5.0~-5.2),与区域上同期的壳‒幔混合的A型花岗质岩石含有幔源属性的镁铁质包体和具有相对亏损的幔源属性同位素特征以及壳‒幔端元混合后具有显著不均一的地球化学和同位素特征(Zhu et al., 2010)明显不同,因此成因模式(3)也不太可能;第四,半坑花岗岩的产状及低镁(0.09%~0.14%)和(Na2O+K2O)/Al2O3岩石组分特征也不支持成因模式(4),因为由拉斑质岩浆极度分异或者由亏损地幔演化而来的基性下地壳部分熔融形成A型花岗岩,为特殊罕见的还原性环斑花岗岩,产状方面通常与斜长岩伴生,且包含少量辉长岩、铁质闪长岩、二长岩等岩脉、小型侵入体或捕掳体(Frost and Frost, 1997),组分特征表现为高Al2O3、CaO和低(Na2O+K2O)/Al2O3Rapp and Watson 1995Sisson et al., 2005);第五,理论上已经证实壳内英云闪长岩和花岗闪长岩等长英质岩石不必经历麻粒岩相变质作用也能形成A型花岗岩(Creaser et al., 1991),且实验室岩石学研究也表明英云闪长岩和花岗闪长岩等钙碱性长英质岩石在深部地壳高压条件下(~103 MPa)形成的花岗质熔体类似钙碱性I型和S型花岗岩,具有高Al2O3、低GaO、低(Na2O+K2O)/Al2O3特征(Skjerlie and Johnston, 1992),而在低压条件下部分熔融可以产出铝质A型花岗岩(Patiño Douce, 1997).最后,基于半坑花岗岩的锆石Hf同位素(图6)和全岩Sr⁃Nd⁃Li同位素特征(图9图10),综合上述成因模式分析,笔者倾向于认为半坑A型花岗岩的岩浆源区岩石可能主要为中元古代的古老地壳熔融后侵位至地壳浅部的早期火成岩基底岩石.

A型花岗岩是常被用于识别伸展背景的重要岩石学标志(Condie et al., 2023).前人根据其物质来源和构造背景差异将其分为A1型和A2型两个亚类,前者形成于大陆裂谷或板内非造山环境,后者形成于后碰撞伸展或弧后伸展相关的造山环境(Eby, 1992).半坑A型花岗岩根据其较高的Y/Nb值 (>1.2),表现为A2型,表明其形成于后碰撞伸展或弧后伸展相关的造山伸展环境.此外,前人的研究表明南岭地区广泛发育早侏罗世A型花岗岩浆作用(Li et al., 2003; Chen et al., 2005; He et al., 20102017Zhu et al., 2010; Jiang et al., 2015, 2017, 2022; 甘成势等,2016; Gan et al., 2017b, 2022; Zhou et al., 2018; Yang et al., 2021; Zhao et al., 2021),并且广泛分布的同期辉长‒辉绿岩(Li et al., 2003; Xie et al., 2005; Hsieh et al., 2008; He et al., 2010; Zhu et al., 2010; Jiang et al., 2015; Wang et al., 2015; Gan et al., 2017a; Zhang et al., 2018; Yang et al., 2021)、碱性正长岩(Li et al., 2003; Chen et al., 2005; He et al., 2010; Yang et al., 2021)以及与区内同期发育的双峰式火山岩套和裂谷盆地(Cen et al., 2016; Zhu et al., 2020, 2021)共同表征该时期区域上总体处于伸展构造背景.

4.2 地质意义

4.2.1 对华南离子吸附型轻稀土矿床成矿母岩成因的启示

风化壳中的稀土元素主要来源于风化母岩,因此富含稀土的成矿母岩是形成离子吸附型稀土矿床的必要条件(Sanematsu and Watanabe, 2016Li et al., 2017Chu et al., 2024).最近有学者进一步统计华南典型离子吸附型稀土矿床的花岗质成矿母岩后认为形成轻稀土矿床的稀土含量阈值为172×10-6而重稀土矿床为108×10-6Chu et al., 2024).南岭地区广泛发育的早侏罗世A型花岗岩(Li et al., 2003; Chen et al., 2005; He et al., 2010; Zhu et al., 2010; Jiang et al., 2015, 2017, 2022; 甘成势等,2016; Gan et al., 2017b, 2022; Zhou et al., 2018; Yang et al., 2021; Zhao et al., 2021),其普遍具有较高的稀土元素含量,且总体富集轻稀土,明显高于形成离子吸附型轻稀土矿床的成矿母岩稀土含量最低阈值,因而是南岭地区有利于形成离子吸附型轻稀土矿床的成矿母岩(图13a).因此,深入认识这些早侏罗世A型花岗岩的成因,有助于提升对华南离子吸附型稀土矿床成矿母岩成因的理解和认识.

综合前人对南岭地区早侏罗世A型花岗岩成因认识,笔者认为在区域伸展减薄构造机制下,深部软流圈地幔上涌带来的显著热异常(Cen et al., 2016),引起下地壳岩石圈地幔部分熔融形成南岭地区幔源镁铁质岩浆和碱性正长岩岩浆.随着这些炽热的幔源岩浆进一步分异和随之带来的热量引起壳内不同基底岩石的熔融,形成了南岭地区成因复杂、源区特征多样的A型花岗质岩浆(图14a),包括幔源镁铁质岩浆结晶分异成因的A型花岗岩,如陂头岩体南部低演化花岗岩(Jiang et al, 2022);壳‒幔熔体混合成因的A型花岗岩,如部分寨背花岗岩(Li et al., 2003Yang et al., 2021)和部分温公花岗岩(Zhu et al., 2010);壳源变质基底岩石熔融成因的A型花岗岩,如珠兰埠花岗岩、柯树北花岗岩、广泽花岗岩(Jiang et al., 2015);基性下地壳熔融成因的A型花岗岩,如部分温公花岗岩(甘成势等,2016; Gan et al., 2017b);浅部地壳内长英质岩石低压熔融成因的A型花岗岩,如部分寨背花岗岩 (Jiang et al., 2017)和本文研究的半坑花岗岩(图14b).显然,上述富集轻稀土的早侏罗世A型花岗岩中稀土元素的来源与岩浆源区密切相关,因为稀土元素作为不相容元素,在源区岩石熔融形成熔体时将优先进入熔体,因而有学者提出壳‒幔分异演化的多旋回的部分熔融是导致稀土元素在地壳内进一步富集的重要机制之一(Yu et al., 2023).此外,越来越多的研究表明岩浆的结晶分异演化对轻稀土元素的富集影响十分有限(He et al., 2017Fan et al., 2023Chu et al., 2024).Rb/Sr、Zr/Hf比值常被用于指示岩浆分异演化程度,南岭地区发育的早侏罗世A型花岗岩稀土含量与岩浆分异演化程度并非显著的正相关关系(图13b、13c),进一步说明富轻稀土元素的花岗质岩石的稀土含量主要来自岩浆源区的贡献.最新的区域研究资料也表明南岭地区的结晶基底岩石相较于华南其他地区更加富集稀土元素(Yu et al., 2023),这些富含稀土的基底岩石可为产生更加富集稀土元素的A型花岗岩提供适宜的岩浆源区条件.另外,部分早侏罗世富含稀土的A型花岗岩由南岭地区下地壳岩石圈地幔衍生的镁铁质岩浆分异形成,如陂头南A型花岗岩(∑REEY=308×10-6~1 098×10-6Jiang et al, 2022),表明其岩浆源区也具有较丰富的稀土元素.近年研究表明下地壳岩石圈地幔中实现稀土元素富集可能与地质历史时期俯冲过程中洋壳沉积物脱水形成富含REE的流体交代或大洋板片脱水熔融后形成的难熔富REE底辟体底侵等深部壳‒幔相互作用有关(Hou et al., 2015Li et al., 2022Zhu et al., 2023).

综上所述,南岭地区早侏罗世A型花岗岩浆作用表明伸展背景下的软流圈上涌产生的热异常,引起壳‒幔岩浆源区相对富稀土岩石的部分熔融形成更加富集REE的A型花岗质熔体,可能是华南离子吸附型轻稀土矿床成矿母岩形成的重要机制之一.

4.2.2 富LREE花岗岩与富HREE花岗岩成因对比

富LREE的半坑花岗岩与富HREE的足洞花岗岩在空间上毗邻(图2),气温、降雨、地形地貌等外生风化环境基本一致,却分别形成离子吸附型轻稀土矿床和重稀土矿床.显然,成矿母岩的形成对轻、重稀土型矿床的形成起着决定性作用.因此弄清富LREE花岗岩与富HREE花岗岩成因有助于完善离子吸附型稀土矿床成矿理论.已有研究表明富REE的花岗质成矿母岩的形成主要涉及岩浆源区的部分熔融、岩浆结晶分异演化和热液流体交代改造等内生作用地质过程(吴澄宇,1988,1990,1992; He et al., 2017Li et al., 2017Fan et al., 2023; Chu et al., 2024).

如前文所述,富LREE花岗岩的形成主要受伸展背景下相对富稀土岩浆源区的部分熔融控制,岩浆分异演化对富LREE花岗岩的形成影响十分有限.富HREE花岗岩通常被认为是更高程度的岩浆分异的产物,因为HREE在花岗岩造岩矿物中具有更高的电荷‒离子半径比并且比LREE更不相容,富LREE矿物在岩浆分异的早期发生结晶,使残余熔体更富集HREE,所以导致在广泛的结晶分异后的晚期岩浆或岩浆‒热液系统中HREE相对于LREE富集(吴澄宇等,1990,1992; Sanematsu and Watanabe, 2016; Li et al., 2017; Zhao et al., 2022).然而,最近有学者对足洞花岗岩开展了详细的岩石类型和成岩年代梳理,发现足洞岩体是一个杂岩体,其中含有早侏罗世花岗闪长岩,呈轻稀土富集型花岗岩;重稀土相对富集的二云母花岗岩和白云母花岗岩分别为中侏罗世和晚侏罗世岩浆产物(Fan et al., 2023).据此,对不同岩性分别开展了详细的同位素研究,表明上述花岗岩的源区特征显著不同.因此,他们认为足洞岩体中轻、重稀土型母岩并非岩浆分异的结果,重稀土型花岗岩具有显著的交代特征,是受富含稀土元素外部流体的交代促进了母岩中稀土的富集(Fan et al., 2023).此外,最近有学者提出我国华南大量加里东期S型花岗岩的形成响应了全球东冈瓦纳大陆最终拼合,并带来了丰富的富重稀土矿物,这些S型花岗岩的快速风化剥蚀形成碎屑沉积岩,可为后期岩浆或热液中重稀土的富集提供来源(Liu et al., 2023b).由此可见,富重稀土花岗岩的成因更为复杂,其中岩浆分异程度和热液交代作用对其形成更为关键.

5 结论

本研究通过对半坑稀土矿床成矿母岩开展系统的岩石学、矿物学、年代学、岩石地球化学、锆石Hf同位素和全岩Sr⁃Nd⁃Li同位素分析,探讨其岩石成因和构造环境.主要得到如下结论:

(1)半坑花岗岩的结晶年龄为185.5~194 Ma,岩石地球化学特征呈现显著的A2型花岗岩成因属性,Sr⁃Nd⁃Hf⁃Li同位素特征表明半坑花岗岩源区岩石可能主要为中元古代古老地壳熔融后侵位至地壳浅部的早期火成岩基底岩石,其与区域内广泛分布的同期辉长‒辉绿岩、碱性正长岩、A型花岗岩共同响应了南岭东部地区早侏罗纪伸展构造背景.

(2)南岭地区广泛分布的早侏罗世A型花岗岩浆作用表明在伸展构造背景下软流圈上涌产生的热异常,引起壳‒幔岩浆源区相对富稀土岩石的部分熔融形成更加富集REE的A型花岗质熔体,可能是华南离子吸附型轻稀土矿床成矿母岩形成的重要机制之一.与相邻的足洞花岗岩的成因对比分析认为富LREE花岗岩的形成主要与相对富集REE的岩浆源区和伸展构造背景有关,而岩浆结晶分异程度和外部流体交代作用对富HREE花岗岩的形成更为关键.

参考文献

[1]

Bao, Z. W., Zhao, Z. H., 2008. Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China. Ore Geology Reviews, 33(3-4): 519-535. https://doi.org/10.1016/j.oregeorev.2007.03.005

[2]

Bonin, B., 2007. A⁃Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007

[3]

Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed.,Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978⁃0⁃444⁃42148⁃7.50008⁃3

[4]

Cen, T., Li, W. X., Wang, X. C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256-257: 311-330. https://doi.org/10.1016/j.lithos.2016.03.022

[5]

Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440⁃0952.2001.00882.x

[6]

Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111

[7]

Chen, B. F., Zou, X. Y., Peng, L. L., et al., 2019. Geological Characteristics and Prospecting Direction of the Metamorphic Rock Ion⁃Adsorption REE Ore Deposit in South Jiangxi. East China Geology, 40(2): 143-151 (in Chinese with English abstract).

[8]

Chen, P.R., Zhou, X.M., Zhang, W.L., et al., 2005. Petrogenesis and Significance of Early Yanshanian Syenite⁃Granite Complex in Eastern Nanling Range. Science China Earth Sciences, 48(7): 912-924. https://doi.org/10.1360/03yd0384

[9]

Chu, G. B., Chen, H. Y., Feng, Y. Z., et al., 2024. Are South China Granites Special in Forming Ion⁃ Adsorption REE Deposits? Gondwana Research, 125: 82-90. https://doi.org/10.1016/j.gr.2023.08.010

[10]

Chu, M. F., Wang, K. L., Griffin, W. L., et al., 2009. Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids. Journal of Petrology, 50(10): 1829-1855. https://doi.org/10.1093/petrology/egp054

[11]

Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A⁃Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895

[12]

Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2023. A⁃Type Granites in Space and Time: Relationship to the Supercontinent Cycle and Mantle Events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125

[13]

Creaser, R.A., Price, R.C., Wormald, R.J., 1991. A⁃Type Granites Revisited: Assessment of a Residual⁃Source Model. Geology, 19(2): 163-166. https://doi.org/10.1130/0091⁃7613(1991)019<0163:ATGRAO>2.3.CO;2

[14]

Eby, G.N., 1992. Chemical Subdivision of the A⁃Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091⁃7613(1992)020<0641:CSOTAT>2.3.CO;2.

[15]

European Commission, 2014. Report on Critical Raw Materials for the Eu: Report of the Ad Hoc Working Group on Defining Critical Raw Materials. 1-41. https://rmis.jrc.ec.europa.eu/uploads/crm⁃report⁃on⁃critical⁃raw⁃materials_en.pdf

[16]

Fan, C. X., Xu, C., Shi, A. G., et al., 2023. Origin of Heavy Rare Earth Elements in Highly Fractionated Peraluminous Granites. Geochimica et Cosmochimica Acta, 343: 371-383. https://doi.org/10.1016/j.gca.2022.12.019

[17]

Frost, C.D., Frost, B.R., 1997. Reduced Rapakivi⁃Type Granites: The Tholeiite Connection. Geology, 25(7): 647-650. https://doi.org/10.1130/0091⁃7613(1997)025<0647:RRTGTT>2.3.CO;2

[18]

Fu, W., Li, X. T., Feng, Y. Y., et al., 2019a. Chemical Weathering of S⁃Type Granite and Formation of Rare Earth Element (REE)⁃Rich Regolith in South China: Critical Control of Lithology. Chemical Geology, 520: 33-51. https://doi.org/10.1016/j.chemgeo.2019.05.006

[19]

Fu, W., Luo, P., Hu, Z. Y., et al., 2019b. Enrichment of Ion⁃Exchangeable Rare Earth Elements by Felsic Volcanic Rock Weathering in South China: Genetic Mechanism and Formation Preference. Ore Geology Reviews, 114: 103120. https://doi.org/10.1016/j.oregeorev.2019.103120

[20]

Fu, W., Zhao, Q., Luo, P., et al., 2022. Mineralization Diversity of Ion⁃Adsorption Type REE Deposit in Southern China and the Critical Influence of Parent Rocks. Acta Geologica Sinica, 96(11): 3901-3925 (in Chinese with English abstract).

[21]

Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

[22]

Gan, C. S., Wang, Y. J., Cai, Y. F., et al., 2016. The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range. Earth Science, 41(1): 17-34 (in Chinese with English abstract).

[23]

Gan, C. S., Wang, Y. J., Qian, X., et al., 2017a. Constraints of the Xialan Gabbroic Intrusion in the Eastern Nanling Range on the Early Jurassic Intra⁃Continental Extension in Eastern South China. Journal of Asian Earth Sciences, 145: 576-590. https://doi.org/10.1016/j.jseaes.2017.06.023

[24]

Gan, C. S., Wang, Y.J., Zhang, Y.Z, et al., 2017b. The Earliest Jurassic A⁃Type Granite in the Nanling Range of Southeastern South China: Petrogenesis and Geological Implications. International Geology Review, 59(3): 274-292. https://doi.org/10.1080/00206814.2016.1254574

[25]

Gan, C.S., Wang, Y.J., Zhang, Y.Z., et al., 2022. Early Jurassic High εNd(t)⁃εHf(t) Granites in the Southeastern South China Block: Early Jurassic Crustal Growth or Crustal Reworking? Journal of Asian Earth Sciences, 223: 104995. https://doi.org/10.1016/j.jseaes.2021.104995

[26]

He, C., Xu, C., Zhao, Z., et al., 2017. Petrogenesis and Mineralization of REE⁃Rich Granites in Qingxi and Guanxi, Nanling Region, South China. Ore Geology Reviews, 81: 309-325. https://doi.org/10.1016/j.oregeorev.2016.10.021

[27]

He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite⁃Syenite⁃Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016

[28]

Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract).

[29]

Hou, Z. Q., Liu, Y., Tian, S. H., et al., 2015. Formation of Carbonatite⁃Related Giant Rare⁃Earth⁃Element Deposits by the Recycling of Marine Sediments. Scientific Reports, 5: 10231. https://doi.org/10.1038/srep10231

[30]

Hsieh, P. S., Chen, C. H., Yang, H. J., et al., 2008. Petrogenesis of the Nanling Mountains Granites from South China: Constraints from Systematic Apatite Geochemistry and Whole⁃Rock Geochemical and Sr⁃Nd Isotope Compositions.Journal of Asian Earth Sciences, 33(5-6): 428-451. https://doi.org/10.1016/j.jseaes.2008.02.002

[31]

Huang, Y. F., He, H. P., Liang, X. L., et al., 2021. Characteristics and Genesis of Ion Adsorption Type REE Deposits in the Weathering Crusts of Metamorphic Rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 135: 104173. https://doi.org/10.1016/j.oregeorev.2021.104173

[32]

Jiang, Y. H., Liu, Y. C., Han, B. N., et al., 2022. Contrasting Origins of A⁃Type Granites in the Late Triassic⁃Early Jurassic Pitou Complex, Southern Jiangxi Province: Implications for Mesozoic Tectonic Evolution in South China. Lithos, 426-427: 106794. https://doi.org/10.1016/j.lithos.2022.106794

[33]

Jiang, Y. H., Wang, G.C., Liu, Z., et al., 2015. Repeated Slab Advance⁃Retreat of the Palaeo⁃Pacific Plate underneath SE China. International Geology Review, 57(4): 472-491. https://doi.org/10.1080/00206814.2015.1017775

[34]

Jiang, Y. H., Wang, G. C., Qing, L., et al., 2017. Early Jurassic A⁃Type Granites in Southeast China: Shallow Dehydration Melting of Early Paleozoic Granitoids by Basaltic Magma Intraplating. The Journal of Geology, 125(3): 351-366. https://doi.org/10.1086/691242

[35]

Kerr, A., Fryer, B. J., 1993. Nd Isotope Evidence for Crust⁃Mantle Interaction in the Generation of A⁃Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. https://doi.org/10.1016/0009⁃2541(93)90141⁃5

[36]

King, P. L., Chappell, B.W., Allen, C.M., et al., 2001. Are A‐Type Granites the High‐Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440⁃0952.2001.00881.x

[37]

Ladenburger, S., Marks, M. A. W., Upton, B., et al., 2016. Compositional Variation of Apatite from Rift⁃ Related Alkaline Igneous Rocks of the Gardar Province, South Greenland. American Mineralogist, 101(3): 612-626. https://doi.org/10.2138/am⁃2016⁃5443

[38]

Lai, Y. J., von Strandmann, P. A. E., Dohmen, R., et al., 2015. The Influence of Melt Infiltration on the Li and Mg Isotopic Composition of the Horoman Peridotite Massif. Geochimica et Cosmochimica Acta, 164: 318-332. https://doi.org/10.1016/j.gca.2015.05.006

[39]

Lechler, P. J., Desilets, M. O., 1987. A Review of the Use of Loss on Ignition as a Measurement of Total Volatiles in Whole⁃Rock Analysis. Chemical Geology, 63(3-4): 341-344. https://doi.org/10.1016/0009⁃2541(87)90171⁃9

[40]

Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare⁃Metal Granites. Geochimica et Cosmochimica Acta, 240: 64-79. https://doi.org/10.1016/j.gca.2018.08.021

[41]

Li, M. Y. H., Zhou, M. F., Williams⁃Jones, A. E., 2019. The Genesis of Regolith⁃Hosted Heavy Rare Earth Element Deposits: Insights from the World⁃Class Zudong Deposit in Jiangxi Province, South China. Economic Geology, 114(3): 541-568. https://doi.org/10.5382/econgeo.4642

[42]

Li, N. B., Niu, H. C., Shan, Q., et al., 2022. Subducted Sediment Contributions to REE Deposits Recorded by Alkaline Mafic Dikes in the Lizhuang REE Deposit, Panxi Area, Southwest China. Ore Geology Reviews, 140: 104567. https://doi.org/10.1016/j.oregeorev.2021.104567

[43]

Li, X. H., Chen, Z. G., Liu, D. Y., et al., 2003. Jurassic Gabbro⁃Granite⁃Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geology Review, 45(10): 898-921. https://doi.org/10.2747/0020⁃6814.45.10.898

[44]

Li, Y. H. M., Zhao, W. W., Zhou, M. F., 2017. Nature of Parent Rocks, Mineralization Styles and Ore Genesis of Regolith⁃Hosted REE Deposits in South China: An Integrated Genetic Model. Journal of Asian Earth Sciences, 148: 65-95. https://doi.org/10.1016/j.jseaes.2017.08.004

[45]

Liu, H. B., Chen, B. F., Peng, L. L., et al., 2020. Characteristics and Genesis of the Ion Adsorption REE Deposit in Jiangbei Metamorphic Weathering Crust, Southern Jiangxi Province. East China Geology, 41(4): 315-324 (in Chinese with English abstract).

[46]

Liu, J. X., Wang, S., Wang, X. L., et al., 2020. Refining the Spatio⁃Temporal Distributions of Mesozoic Granitoids and Volcanic Rocks in SE China. Journal of Asian Earth Sciences, 201: 104503. https://doi.org/10.1016/j.jseaes.2020.104503

[47]

Liu, P., Gleeson, S. A., Cook, N. J., et al., 2023a. Final Assembly of Gondwana Enhances Crustal Metal (HREE and U) Endowment. Geochemical Perspectives Letters, 26: 7-13. https://doi.org/10.7185/geochemlet.2317

[48]

Liu, S. L., Fan, H. R., Liu, X., et al., 2023b. Global Rare Earth Elements Projects: New Developments and Supply Chains. Ore Geology Reviews, 157: 105428. https://doi.org/10.1016/j.oregeorev.2023.105428

[49]

Ludwig, K.R., 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 25-32.

[50]

Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3-4): 336-353. https://doi.org/10.1016/j.epsl.2006.01.005

[51]

Mushkin, A., Navon, O., Halicz, L., et al. 2003. The Petrogenesis of A⁃Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815

[52]

Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9

[53]

Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2

[54]

O’Sullivan, G., Chew, D., Kenny, G., et al., 2020. The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies. Earth⁃Science Reviews, 201: 103044. https://doi.org/10.1016/j.earscirev.2019.103044

[55]

Patiño Douce, A.E., 1997. Generation of Metaluminous A⁃Type Granites by Low⁃Pressure Melting of Calc⁃ Alkaline Granitoids.Geology, 25(8): 743-746. https://doi.org/10.1130/0091⁃7613(1997)025<0743:GOMATG>2.3.CO;2

[56]

Poller, U., Huth, J., Hoppe, P., et al., 2001. REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscan Granitoids: A Combined Cathodoluminescence and Ion Microprobe Study. American Journal of Science, 301(10): 858-876. https://doi.org/10.2475/ajs.301.10.858

[57]

Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc⁃Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745

[58]

Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust⁃Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891

[59]

Rudnick, R. L., Taylor, S. R., 1987. The Composition and Petrogenesis of the Lower Crust: A Xenolith Study. Journal of Geophysical Research: Solid Earth, 92(B13): 13981-14005. https://doi.org/10.1029/JB092iB13p13981

[60]

Sanematsu, K., Watanabe, Y., 2016. Characteristics and Genesis of Ion Adsorption⁃Type Rare Earth Element Deposits. In: Verplanck, P. L., Hitzman, M. W., eds., Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton, 55-79. https://doi.org/10.5382/rev.18.03

[61]

Sauzéat, L., Rudnick, R.L., Chauvel, C., et al., 2015. New Perspectives on the Li Isotopic Composition of the Upper Continental Crust and Its Weathering Signature. Earth and Planetary Science Letters, 428: 181-192. https://doi.org/10.1016/j.epsl.2015.07.032

[62]

Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser⁃Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. https://doi.org/10.1016/S0016⁃7037(99)00210⁃0

[63]

Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. https://doi.org/10.1007/s00410⁃004⁃0632⁃9

[64]

Skjerlie, K.P., Johnston, A.D., 1992. Vapor⁃Absent Melting at 10 kbar of a Biotite⁃ and Amphibole⁃bearing Tonalitic Gneiss: Implications for the Generation of A⁃Type Granites. Geology, 20(3): 263-266. https://doi.org/10.1130/0091⁃7613(1992)020<0263:VAMAKO>2.3.CO;2

[65]

Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two⁃Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012⁃821X(75)90088⁃6

[66]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications,42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[67]

Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083

[68]

Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Diffusion⁃Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3-4): 701-710. https://doi.org/10.1016/j.epsl.2006.01.036

[69]

Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009

[70]

Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A⁃Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3-4): 370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009

[71]

Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low⁃Damage Apatite U⁃Pb Dating Using Laser Ablation⁃Multicollector⁃ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): 1-23. https://doi.org/10.1029/2011GC003928

[72]

Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. https://doi.org/10.2138/gsrmg.55.1.153

[73]

Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A⁃Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024⁃4937(92)90029⁃X

[74]

U.S. Geological Survey, 2024. Mineral Commodity Summaries 2024. U.S. Geological Survey, Reston.https://10.3133/mcs2024

[75]

Wang, D. H., Zhao, Z., Yu, Y., et al., 2018. Exploration and Research Progress on Ion⁃Adsorption Type REE Deposit in South China. China Geology, 1(3): 415-424. https://doi.org/10.31035/cg2018022

[76]

Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008

[77]

Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I⁃, S⁃ and A⁃Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027

[78]

Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821X(83)90211⁃X

[79]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[80]

Wu, C. Y., 1988. The Study of Ion⁃Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).

[81]

Wu, C. Y., Bai, G., Huang, D. H., et al., 1992. Characteristics and Significance of HREE⁃Rich Granitoids of the Nanling Mountain Area. Acta Geoscientica Sinica, 25: 43-58 (in Chinese with English abstract).

[82]

Wu, C. Y., Huang, D. H., Bai, G., et al., 1990. Differentiation of Rare Earth Elements and Origin of Granitic Rocks, Nanling Mountain Area. Acta Petrologica et Mineralogica, 9(2): 106-116, 189 (in Chinese with English abstract).

[83]

Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract).

[84]

Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese).

[85]

Xie, G. Q., Mao, J. W., Hu, R. Z., et al., 2005. Jurassic Intraplate Basaltic Magmatism in Southeast China: Evidence from Geological and Geochemical Characteristics of the Chebu Gabbroite in Southern Jiangxi Province. Acta Geologica Sinica (English Edition), 79(5): 662-672. https://doi.org/10.1111/j.1755⁃6724.2005.tb00922.x

[86]

Xie, Y.L., Hou, Z.Q., Goldfarb, R.J., et al., 2016. Rare Earth Element Deposits in China. Reviews in Economic Geology, 18: 115-136. https://pubs.usgs.gov/publication/70189245

[87]

Xie, Y. L., Verplanck, P. L., Hou, Z. Q., et al., 2019. Rare Earth Element Deposits in China: A Review and New Understandings. In: Chang, Z.S., Goldfarb, R.J., eds., Mineral Deposits of China. Society of Economic Geologists, 509-552. https://doi.org/10.5382/sp.22.12

[88]

Xu, C., Kynický, J., Smith, M. P., et al., 2017. Origin of Heavy Rare Earth Mineralization in South China.Nature Communications, 8: 14598. https://doi.org/10.1038/ncomms14598

[89]

Xu, X. B., 2023. Late Triassic to Middle Jurassic Tectonic Evolution of the South China Block: Geodynamic Transition from the Paleo⁃Tethys to the Paleo⁃Pacific Regimes. Earth⁃Science Reviews, 241: 104404. https://doi.org/10.1016/j.earscirev.2023.104404

[90]

Yang, J. H., Zhang, J. H., Chen, J. Y., et al., 2021. Mesozoic Continental Crustal Rejuvenation of South China: Insights from Zircon Hf⁃O Isotopes of Early Jurassic Gabbros, Syenites and A⁃Type Granites. Lithos, 402-403: 105678. https://doi.org/10.1016/j.lithos.2020.105678

[91]

Yu, J. H., Cai, Y. F., Sun, T., et al., 2023. Distribution and Enrichment of Rare Metal Elements in the Basement Rocks of South China: Controls on Rare⁃Metal Mineralization. Ore Geology Reviews, 163: 105797. https://doi.org/10.1016/j.oregeorev.2023.105797

[92]

Zhang, D., Zhao, K. D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028

[93]

Zhang, D. F., Cao, M. X., Gong, X., et al., 2024. Geological Characteristics of Metallogenic Host Rock and Their Genetic Significance of Shitouping Heavy Rare Earth Deposit in Southern Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(4): 338-348 (in Chinese with English abstract).

[94]

Zhang, Q., Chen, B. F., Zhang, X. W., 2020. Geological, Geochemical Characteristics and Significance of Fengshan HREE Deposit in Ganxian District, Jiangxi Province. East China Geology, 41(4): 359-367 (in Chinese with English abstract).

[95]

Zhao, J. L., Qiu, J. S., Liu, L., 2021. Early⁃Middle Jurassic Magmatic Rocks along the Coastal Region of Southeastern China: Petrogenesis and Implications for Paleo⁃Pacific Plate Subduction. Journal of Asian Earth Sciences, 210: 104687. https://doi.org/10.1016/j.jseaes.2021.104687

[96]

Zhao, Z., Wang, D. H., Bagas, L., et al., 2022. Geochemical and REE Mineralogical Characteristics of the Zhaibei Granite in Jiangxi Province, Southern China, and a Model for the Genesis of Ion⁃Adsorption REE Deposits. Ore Geology Reviews, 140: 104579. https://doi.org/10.1016/j.oregeorev.2021.104579

[97]

Zhao, Z., Wang, D. H., Chen, Z. Y., et al., 2014. Zircon U⁃Pb Age, Endogenic Mineralization and Petrogenesis of Rare Earth Ore⁃Bearing Granite in Longnan, Jiangxi Province. Acta Geoscientica Sinica, 35(6): 719-725 (in Chinese with English abstract).

[98]

Zhong, F. J., Xia, F., Wang, L., et al., 2023. Geochronology and Geochemistry of Dolerite in the Lujing Uranium Ore Field of Central Zhuguangshan Complex, and Its Relationship with Uranium Mineralization. Acta Geologica Sinica, 97(8): 2593-2608 (in Chinese with English abstract).

[99]

Zhou, M. F., Li, X. X., Wang, Z. C., et al., 2020. The Genesis of Regolith⁃Hosted Rare Earth Element and Scandium deposits: Current Understanding and Outlook to Future Prospecting. Chinese Science Bulletin, 65(33): 3809-3824 (in Chinese).

[100]

Zhou, X. G., Wang, S. L., Yuan, C. X., et al., 2018. Geochemistry Characteristics of Ion⁃Absorbed Rare Earth Deposits in Low⁃Grade Metamorphic Rock in the Ningdu Area, Southern Jiangxi Province and Its Prospecting Significance. East China Geology, 39(3): 194-201 (in Chinese with English abstract).

[101]

Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004

[102]

Zhou, Z. M., Ma, C. Q., Wang, L. X., et al., 2018. A Source⁃Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300-301: 278-290. https://doi.org/10.1016/j.lithos.2017.11.017

[103]

Zhu, W. G., Zhong, H., Chen, X., et al., 2020. The Earliest Jurassic A⁃Type Rhyolites and High⁃Mg Andesites⁃Dacites in Southern Jiangxi Province, Southeast China: Evidence for Delamination of a Flat⁃Slab? Lithos, 358-359: 105403. https://doi.org/10.1016/j.lithos.2020.105403

[104]

Zhu, W. G., Zhong, H., Huang, H. Q., et al., 2021. The Origin of the Earliest Jurassic Basaltic Rocks in Southern Jiangxi Province, Southeastern China: Implications for Interaction between the Asthenosphere and Metasomatised Lithosphere. Lithos, 404-405: 106444. https://doi.org/10.1016/j.lithos.2021.106444

[105]

Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic⁃Ultramafic Intrusion and A⁃Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3-4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005

[106]

Zhu, X. X., Liu, Y., Hou, Z. Q., 2023. Massive Rare Earth Element Storage in Sub⁃Continental Lithospheric Mantle Initiated by Diapirism, not by Melting. Geology, 52(2): 105-109. https://doi.org/10.1130/G51102.1

基金资助

自然资源部离子型稀土资源与环境重点实验室开放基金(2022IRERE102)

中国地质调查项目(DD20240066)

自然资源部深地科学与探测技术实验室开放课题(SiProbe Lab 202217)

江西省“双千计划”创新领军人才长期项目(2020101003)

江西省自然科学基金重点项目(20224ACB203011)

东华理工大学高层次人才引进配套经费(1410000874)

AI Summary AI Mindmap
PDF (12226KB)

120

访问

0

被引

详细

导航
相关文章

AI思维导图

/