南岭半坑高分异A型花岗岩成因及其地质意义
何川 , 刘文斌 , 胡文洁 , 陈露 , 李海立 , 孙建东 , 王运 , 田世洪
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2525 -2547.
南岭半坑高分异A型花岗岩成因及其地质意义
Petrogenesis and Geological Significance of Highly Differentiated A⁃Type Granites in Bankeng Pluton, Nanling Region, South China
,
我国稀土资源丰富,其中华南离子吸附型稀土矿床独具特色,其时空分布特征显示其形成与华南中生代花岗岩密切有关,但内在成因联系仍缺乏深刻认识.对南岭半坑花岗岩(半坑稀土矿床的成矿母岩)开展了岩相学、锆石和磷灰石年代学、岩石地球化学、锆石Hf同位素和全岩Sr⁃Nd⁃Li同位素等综合研究.半坑花岗岩中岩浆锆石、岩浆磷灰石的U⁃Pb年代学分析结果分别为185.5~194.0 Ma和~189.2 Ma,表明其侵位形成于早侏罗世.矿物组成主要由长英质矿物(Q+Ab+ Or≥95%)组成,镁铁质暗色矿物仅有少量黑云母(<5%);岩石地球化学特征呈现高SiO2(75.93%~77.48%)、富K2O(5.27%~5.55%)、低MgO(0.09%~0.14%)、贫MnO(0.02%~0.03%),较高的锆饱和温度(801~847 ℃)和高Zr+Nb+Ce+Y含量(360×10‒6~534×10‒6)和10 000×Ga/Al比值(3.2~4.2)等,表明其具有高分异A型花岗岩的属性.Sr⁃Nd⁃Hf⁃Li同位素特征((87Sr/86Sr)i=0.704 477~0.712 715,εNd(t)=-5.0~-5.2,εHf(t)=-6.8~+1.4,δ7Li=-0.88‰~6.65‰)表明其岩浆源区可能为中元古代古老地壳物质熔融并侵位于地壳浅部的富集轻稀土的火成岩.半坑花岗岩呈现A2型花岗岩属性(Y/Nb=1.21~2.09),结合区域同期的双峰式侵入岩、火山岩组合和A型花岗岩共同指示其形成于早侏罗世伸展构造背景.结合与半坑花岗岩同期的南岭地区A型花岗岩的成因认识,认为早侏罗世深部软流圈上涌产生的热异常,引起壳‒幔岩浆源区富稀土岩石的部分熔融形成更加富集稀土的A型花岗质熔体,可能是华南离子吸附型轻稀土矿床成矿母岩形成的重要机制之一.富轻稀土的半坑花岗岩与富重稀土的足洞花岗岩的成因对比表明轻稀土型成矿母岩的形成主要受控于岩浆源区与伸展构造背景,而岩浆结晶分异程度和外部流体交代作用对重稀土型成矿母岩的形成更为关键.
The rare earth element (REE) resources are rich in China, among which the ion-adsorbed REE deposit in South China is unique. Its spatial and temporal distribution characteristics indicate that its formation is closely related to the Mesozoic granites in South China, but the internal genetic relationship is still not deeply understood. A comprehensive study on the Bankeng granite in the Nanling (the ore-forming parent rock of Bankeng REE deposit) has been carried out, including petrography, zircon and apatite chronology, lithogeochemistry, zircon Hf isotopes and whole-rock Sr⁃Nd⁃Li isotopes. The U⁃Pb dating of magmatic zircon and magmatic apatite in the Bankeng granites yield ages of 185.5-194.0 Ma and 189.2 Ma respectively, indicating that the emplacement occurred in the Early Jurassic. They are mainly composed of felsic minerals (Q+Ab+Or≥95%), with only a small amount of biotite (<5%) in the mafic dark minerals. Their geochemical characteristics show high SiO2 (75.93%-77.48%), rich K2O (5.27%-5.55%), low MgO (0.09%-0.14%), and poor MnO (0.02%-0.03%), as well as a high zircon saturation temperature (801-847 ℃), high Zr+Nb+Ce+Y content (360×10‒6-534×10‒6), and a 10 000×Ga/Al ratio (3.2-4.2), which are similar to the highly differentiated A-type granites. The Sr⁃Nd⁃Hf⁃Li isotopic characteristics ((87Sr/86Sr)i=0.704 477-0.712 715, εNd(t)=-5.0-(-5.2), εHf(t)=-6.8-(+1.4), δ7Li=-0.88‰-6.65‰) indicate that the magma source may be REE-rich igneous rocks from Mesoproterozoic recycled ancient crust that was intruded into the shallow crust. The Bankeng granites exhibits A2-type granite properties (Y/Nb=1.21-2.09), combined with the regional contemporaneous bimodal intrusive rocks, volcanic rock suites and A-type granitoids, indicating they formed in the Early Jurassic extensional tectonic setting. Combined with the genetic understanding of A-type granite in the Nanling at the same time as Bankeng granites, this paper suggests that the thermal anomaly generated by the upwelling of deep asthenosphere in the Early Jurassic caused partial melting of REE-rich rocks in the crust-mantle magmatic source area to form more REE-enriched A-type granitic melt, which may be one of the important mechanisms for the petrogenesis of ore-forming parent rocks of the ion-adsorbed light REE deposits in South China. The genetic correlation between the LREE-riched Bankeng granites and the HREE-riched Zudong granites shows that the petrogenesis of the LREE-type ore-forming parent rocks is mainly related to their magma source region and extensional tectonic setting, while the degree of magma crystallization differentiation and the external fluid metasomatism are more critical for the petrogenesis of the HREE-type ore-forming parent rocks.
高分异A型花岗岩 / 岩石成因 / 离子吸附型稀土矿床成矿母岩 / 南岭半坑花岗岩 / 地球化学 / 地质年代学.
highly differentiated A⁃type granite / petrogenesis / ore⁃forming parent rock of ion⁃adsorbed rare earth deposit / Bankeng granite in Nanling / geochemistry / geochronology
| [1] |
Bao, Z. W., Zhao, Z. H., 2008. Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China. Ore Geology Reviews, 33(3-4): 519-535. https://doi.org/10.1016/j.oregeorev.2007.03.005 |
| [2] |
Bonin, B., 2007. A⁃Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 |
| [3] |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed.,Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978⁃0⁃444⁃42148⁃7.50008⁃3 |
| [4] |
Cen, T., Li, W. X., Wang, X. C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256-257: 311-330. https://doi.org/10.1016/j.lithos.2016.03.022 |
| [5] |
Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440⁃0952.2001.00882.x |
| [6] |
Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111 |
| [7] |
Chen, B. F., Zou, X. Y., Peng, L. L., et al., 2019. Geological Characteristics and Prospecting Direction of the Metamorphic Rock Ion⁃Adsorption REE Ore Deposit in South Jiangxi. East China Geology, 40(2): 143-151 (in Chinese with English abstract). |
| [8] |
Chen, P.R., Zhou, X.M., Zhang, W.L., et al., 2005. Petrogenesis and Significance of Early Yanshanian Syenite⁃Granite Complex in Eastern Nanling Range. Science China Earth Sciences, 48(7): 912-924. https://doi.org/10.1360/03yd0384 |
| [9] |
Chu, G. B., Chen, H. Y., Feng, Y. Z., et al., 2024. Are South China Granites Special in Forming Ion⁃ Adsorption REE Deposits? Gondwana Research, 125: 82-90. https://doi.org/10.1016/j.gr.2023.08.010 |
| [10] |
Chu, M. F., Wang, K. L., Griffin, W. L., et al., 2009. Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids. Journal of Petrology, 50(10): 1829-1855. https://doi.org/10.1093/petrology/egp054 |
| [11] |
Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A⁃Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 |
| [12] |
Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2023. A⁃Type Granites in Space and Time: Relationship to the Supercontinent Cycle and Mantle Events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125 |
| [13] |
Creaser, R.A., Price, R.C., Wormald, R.J., 1991. A⁃Type Granites Revisited: Assessment of a Residual⁃Source Model. Geology, 19(2): 163-166. https://doi.org/10.1130/0091⁃7613(1991)019<0163:ATGRAO>2.3.CO;2 |
| [14] |
Eby, G.N., 1992. Chemical Subdivision of the A⁃Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091⁃7613(1992)020<0641:CSOTAT>2.3.CO;2. |
| [15] |
European Commission, 2014. Report on Critical Raw Materials for the Eu: Report of the Ad Hoc Working Group on Defining Critical Raw Materials. 1-41. https://rmis.jrc.ec.europa.eu/uploads/crm⁃report⁃on⁃critical⁃raw⁃materials_en.pdf |
| [16] |
Fan, C. X., Xu, C., Shi, A. G., et al., 2023. Origin of Heavy Rare Earth Elements in Highly Fractionated Peraluminous Granites. Geochimica et Cosmochimica Acta, 343: 371-383. https://doi.org/10.1016/j.gca.2022.12.019 |
| [17] |
Frost, C.D., Frost, B.R., 1997. Reduced Rapakivi⁃Type Granites: The Tholeiite Connection. Geology, 25(7): 647-650. https://doi.org/10.1130/0091⁃7613(1997)025<0647:RRTGTT>2.3.CO;2 |
| [18] |
Fu, W., Li, X. T., Feng, Y. Y., et al., 2019a. Chemical Weathering of S⁃Type Granite and Formation of Rare Earth Element (REE)⁃Rich Regolith in South China: Critical Control of Lithology. Chemical Geology, 520: 33-51. https://doi.org/10.1016/j.chemgeo.2019.05.006 |
| [19] |
Fu, W., Luo, P., Hu, Z. Y., et al., 2019b. Enrichment of Ion⁃Exchangeable Rare Earth Elements by Felsic Volcanic Rock Weathering in South China: Genetic Mechanism and Formation Preference. Ore Geology Reviews, 114: 103120. https://doi.org/10.1016/j.oregeorev.2019.103120 |
| [20] |
Fu, W., Zhao, Q., Luo, P., et al., 2022. Mineralization Diversity of Ion⁃Adsorption Type REE Deposit in Southern China and the Critical Influence of Parent Rocks. Acta Geologica Sinica, 96(11): 3901-3925 (in Chinese with English abstract). |
| [21] |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 |
| [22] |
Gan, C. S., Wang, Y. J., Cai, Y. F., et al., 2016. The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range. Earth Science, 41(1): 17-34 (in Chinese with English abstract). |
| [23] |
Gan, C. S., Wang, Y. J., Qian, X., et al., 2017a. Constraints of the Xialan Gabbroic Intrusion in the Eastern Nanling Range on the Early Jurassic Intra⁃Continental Extension in Eastern South China. Journal of Asian Earth Sciences, 145: 576-590. https://doi.org/10.1016/j.jseaes.2017.06.023 |
| [24] |
Gan, C. S., Wang, Y.J., Zhang, Y.Z, et al., 2017b. The Earliest Jurassic A⁃Type Granite in the Nanling Range of Southeastern South China: Petrogenesis and Geological Implications. International Geology Review, 59(3): 274-292. https://doi.org/10.1080/00206814.2016.1254574 |
| [25] |
Gan, C.S., Wang, Y.J., Zhang, Y.Z., et al., 2022. Early Jurassic High εNd(t)⁃εHf(t) Granites in the Southeastern South China Block: Early Jurassic Crustal Growth or Crustal Reworking? Journal of Asian Earth Sciences, 223: 104995. https://doi.org/10.1016/j.jseaes.2021.104995 |
| [26] |
He, C., Xu, C., Zhao, Z., et al., 2017. Petrogenesis and Mineralization of REE⁃Rich Granites in Qingxi and Guanxi, Nanling Region, South China. Ore Geology Reviews, 81: 309-325. https://doi.org/10.1016/j.oregeorev.2016.10.021 |
| [27] |
He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite⁃Syenite⁃Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016 |
| [28] |
Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). |
| [29] |
Hou, Z. Q., Liu, Y., Tian, S. H., et al., 2015. Formation of Carbonatite⁃Related Giant Rare⁃Earth⁃Element Deposits by the Recycling of Marine Sediments. Scientific Reports, 5: 10231. https://doi.org/10.1038/srep10231 |
| [30] |
Hsieh, P. S., Chen, C. H., Yang, H. J., et al., 2008. Petrogenesis of the Nanling Mountains Granites from South China: Constraints from Systematic Apatite Geochemistry and Whole⁃Rock Geochemical and Sr⁃Nd Isotope Compositions.Journal of Asian Earth Sciences, 33(5-6): 428-451. https://doi.org/10.1016/j.jseaes.2008.02.002 |
| [31] |
Huang, Y. F., He, H. P., Liang, X. L., et al., 2021. Characteristics and Genesis of Ion Adsorption Type REE Deposits in the Weathering Crusts of Metamorphic Rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 135: 104173. https://doi.org/10.1016/j.oregeorev.2021.104173 |
| [32] |
Jiang, Y. H., Liu, Y. C., Han, B. N., et al., 2022. Contrasting Origins of A⁃Type Granites in the Late Triassic⁃Early Jurassic Pitou Complex, Southern Jiangxi Province: Implications for Mesozoic Tectonic Evolution in South China. Lithos, 426-427: 106794. https://doi.org/10.1016/j.lithos.2022.106794 |
| [33] |
Jiang, Y. H., Wang, G.C., Liu, Z., et al., 2015. Repeated Slab Advance⁃Retreat of the Palaeo⁃Pacific Plate underneath SE China. International Geology Review, 57(4): 472-491. https://doi.org/10.1080/00206814.2015.1017775 |
| [34] |
Jiang, Y. H., Wang, G. C., Qing, L., et al., 2017. Early Jurassic A⁃Type Granites in Southeast China: Shallow Dehydration Melting of Early Paleozoic Granitoids by Basaltic Magma Intraplating. The Journal of Geology, 125(3): 351-366. https://doi.org/10.1086/691242 |
| [35] |
Kerr, A., Fryer, B. J., 1993. Nd Isotope Evidence for Crust⁃Mantle Interaction in the Generation of A⁃Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. https://doi.org/10.1016/0009⁃2541(93)90141⁃5 |
| [36] |
King, P. L., Chappell, B.W., Allen, C.M., et al., 2001. Are A‐Type Granites the High‐Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440⁃0952.2001.00881.x |
| [37] |
Ladenburger, S., Marks, M. A. W., Upton, B., et al., 2016. Compositional Variation of Apatite from Rift⁃ Related Alkaline Igneous Rocks of the Gardar Province, South Greenland. American Mineralogist, 101(3): 612-626. https://doi.org/10.2138/am⁃2016⁃5443 |
| [38] |
Lai, Y. J., von Strandmann, P. A. E., Dohmen, R., et al., 2015. The Influence of Melt Infiltration on the Li and Mg Isotopic Composition of the Horoman Peridotite Massif. Geochimica et Cosmochimica Acta, 164: 318-332. https://doi.org/10.1016/j.gca.2015.05.006 |
| [39] |
Lechler, P. J., Desilets, M. O., 1987. A Review of the Use of Loss on Ignition as a Measurement of Total Volatiles in Whole⁃Rock Analysis. Chemical Geology, 63(3-4): 341-344. https://doi.org/10.1016/0009⁃2541(87)90171⁃9 |
| [40] |
Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare⁃Metal Granites. Geochimica et Cosmochimica Acta, 240: 64-79. https://doi.org/10.1016/j.gca.2018.08.021 |
| [41] |
Li, M. Y. H., Zhou, M. F., Williams⁃Jones, A. E., 2019. The Genesis of Regolith⁃Hosted Heavy Rare Earth Element Deposits: Insights from the World⁃Class Zudong Deposit in Jiangxi Province, South China. Economic Geology, 114(3): 541-568. https://doi.org/10.5382/econgeo.4642 |
| [42] |
Li, N. B., Niu, H. C., Shan, Q., et al., 2022. Subducted Sediment Contributions to REE Deposits Recorded by Alkaline Mafic Dikes in the Lizhuang REE Deposit, Panxi Area, Southwest China. Ore Geology Reviews, 140: 104567. https://doi.org/10.1016/j.oregeorev.2021.104567 |
| [43] |
Li, X. H., Chen, Z. G., Liu, D. Y., et al., 2003. Jurassic Gabbro⁃Granite⁃Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geology Review, 45(10): 898-921. https://doi.org/10.2747/0020⁃6814.45.10.898 |
| [44] |
Li, Y. H. M., Zhao, W. W., Zhou, M. F., 2017. Nature of Parent Rocks, Mineralization Styles and Ore Genesis of Regolith⁃Hosted REE Deposits in South China: An Integrated Genetic Model. Journal of Asian Earth Sciences, 148: 65-95. https://doi.org/10.1016/j.jseaes.2017.08.004 |
| [45] |
Liu, H. B., Chen, B. F., Peng, L. L., et al., 2020. Characteristics and Genesis of the Ion Adsorption REE Deposit in Jiangbei Metamorphic Weathering Crust, Southern Jiangxi Province. East China Geology, 41(4): 315-324 (in Chinese with English abstract). |
| [46] |
Liu, J. X., Wang, S., Wang, X. L., et al., 2020. Refining the Spatio⁃Temporal Distributions of Mesozoic Granitoids and Volcanic Rocks in SE China. Journal of Asian Earth Sciences, 201: 104503. https://doi.org/10.1016/j.jseaes.2020.104503 |
| [47] |
Liu, P., Gleeson, S. A., Cook, N. J., et al., 2023a. Final Assembly of Gondwana Enhances Crustal Metal (HREE and U) Endowment. Geochemical Perspectives Letters, 26: 7-13. https://doi.org/10.7185/geochemlet.2317 |
| [48] |
Liu, S. L., Fan, H. R., Liu, X., et al., 2023b. Global Rare Earth Elements Projects: New Developments and Supply Chains. Ore Geology Reviews, 157: 105428. https://doi.org/10.1016/j.oregeorev.2023.105428 |
| [49] |
Ludwig, K.R., 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 25-32. |
| [50] |
Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3-4): 336-353. https://doi.org/10.1016/j.epsl.2006.01.005 |
| [51] |
Mushkin, A., Navon, O., Halicz, L., et al. 2003. The Petrogenesis of A⁃Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815 |
| [52] |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9 |
| [53] |
Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2 |
| [54] |
O’Sullivan, G., Chew, D., Kenny, G., et al., 2020. The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies. Earth⁃Science Reviews, 201: 103044. https://doi.org/10.1016/j.earscirev.2019.103044 |
| [55] |
Patiño Douce, A.E., 1997. Generation of Metaluminous A⁃Type Granites by Low⁃Pressure Melting of Calc⁃ Alkaline Granitoids.Geology, 25(8): 743-746. https://doi.org/10.1130/0091⁃7613(1997)025<0743:GOMATG>2.3.CO;2 |
| [56] |
Poller, U., Huth, J., Hoppe, P., et al., 2001. REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscan Granitoids: A Combined Cathodoluminescence and Ion Microprobe Study. American Journal of Science, 301(10): 858-876. https://doi.org/10.2475/ajs.301.10.858 |
| [57] |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc⁃Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 |
| [58] |
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust⁃Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 |
| [59] |
Rudnick, R. L., Taylor, S. R., 1987. The Composition and Petrogenesis of the Lower Crust: A Xenolith Study. Journal of Geophysical Research: Solid Earth, 92(B13): 13981-14005. https://doi.org/10.1029/JB092iB13p13981 |
| [60] |
Sanematsu, K., Watanabe, Y., 2016. Characteristics and Genesis of Ion Adsorption⁃Type Rare Earth Element Deposits. In: Verplanck, P. L., Hitzman, M. W., eds., Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton, 55-79. https://doi.org/10.5382/rev.18.03 |
| [61] |
Sauzéat, L., Rudnick, R.L., Chauvel, C., et al., 2015. New Perspectives on the Li Isotopic Composition of the Upper Continental Crust and Its Weathering Signature. Earth and Planetary Science Letters, 428: 181-192. https://doi.org/10.1016/j.epsl.2015.07.032 |
| [62] |
Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser⁃Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. https://doi.org/10.1016/S0016⁃7037(99)00210⁃0 |
| [63] |
Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. https://doi.org/10.1007/s00410⁃004⁃0632⁃9 |
| [64] |
Skjerlie, K.P., Johnston, A.D., 1992. Vapor⁃Absent Melting at 10 kbar of a Biotite⁃ and Amphibole⁃bearing Tonalitic Gneiss: Implications for the Generation of A⁃Type Granites. Geology, 20(3): 263-266. https://doi.org/10.1130/0091⁃7613(1992)020<0263:VAMAKO>2.3.CO;2 |
| [65] |
Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two⁃Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012⁃821X(75)90088⁃6 |
| [66] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications,42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [67] |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083 |
| [68] |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Diffusion⁃Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3-4): 701-710. https://doi.org/10.1016/j.epsl.2006.01.036 |
| [69] |
Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009 |
| [70] |
Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A⁃Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3-4): 370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009 |
| [71] |
Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low⁃Damage Apatite U⁃Pb Dating Using Laser Ablation⁃Multicollector⁃ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): 1-23. https://doi.org/10.1029/2011GC003928 |
| [72] |
Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. https://doi.org/10.2138/gsrmg.55.1.153 |
| [73] |
Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A⁃Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024⁃4937(92)90029⁃X |
| [74] |
U.S. Geological Survey, 2024. Mineral Commodity Summaries 2024. U.S. Geological Survey, Reston.https://10.3133/mcs2024 |
| [75] |
Wang, D. H., Zhao, Z., Yu, Y., et al., 2018. Exploration and Research Progress on Ion⁃Adsorption Type REE Deposit in South China. China Geology, 1(3): 415-424. https://doi.org/10.31035/cg2018022 |
| [76] |
Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008 |
| [77] |
Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I⁃, S⁃ and A⁃Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027 |
| [78] |
Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821X(83)90211⁃X |
| [79] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 |
| [80] |
Wu, C. Y., 1988. The Study of Ion⁃Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). |
| [81] |
Wu, C. Y., Bai, G., Huang, D. H., et al., 1992. Characteristics and Significance of HREE⁃Rich Granitoids of the Nanling Mountain Area. Acta Geoscientica Sinica, 25: 43-58 (in Chinese with English abstract). |
| [82] |
Wu, C. Y., Huang, D. H., Bai, G., et al., 1990. Differentiation of Rare Earth Elements and Origin of Granitic Rocks, Nanling Mountain Area. Acta Petrologica et Mineralogica, 9(2): 106-116, 189 (in Chinese with English abstract). |
| [83] |
Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). |
| [84] |
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese). |
| [85] |
Xie, G. Q., Mao, J. W., Hu, R. Z., et al., 2005. Jurassic Intraplate Basaltic Magmatism in Southeast China: Evidence from Geological and Geochemical Characteristics of the Chebu Gabbroite in Southern Jiangxi Province. Acta Geologica Sinica (English Edition), 79(5): 662-672. https://doi.org/10.1111/j.1755⁃6724.2005.tb00922.x |
| [86] |
Xie, Y.L., Hou, Z.Q., Goldfarb, R.J., et al., 2016. Rare Earth Element Deposits in China. Reviews in Economic Geology, 18: 115-136. https://pubs.usgs.gov/publication/70189245 |
| [87] |
Xie, Y. L., Verplanck, P. L., Hou, Z. Q., et al., 2019. Rare Earth Element Deposits in China: A Review and New Understandings. In: Chang, Z.S., Goldfarb, R.J., eds., Mineral Deposits of China. Society of Economic Geologists, 509-552. https://doi.org/10.5382/sp.22.12 |
| [88] |
Xu, C., Kynický, J., Smith, M. P., et al., 2017. Origin of Heavy Rare Earth Mineralization in South China.Nature Communications, 8: 14598. https://doi.org/10.1038/ncomms14598 |
| [89] |
Xu, X. B., 2023. Late Triassic to Middle Jurassic Tectonic Evolution of the South China Block: Geodynamic Transition from the Paleo⁃Tethys to the Paleo⁃Pacific Regimes. Earth⁃Science Reviews, 241: 104404. https://doi.org/10.1016/j.earscirev.2023.104404 |
| [90] |
Yang, J. H., Zhang, J. H., Chen, J. Y., et al., 2021. Mesozoic Continental Crustal Rejuvenation of South China: Insights from Zircon Hf⁃O Isotopes of Early Jurassic Gabbros, Syenites and A⁃Type Granites. Lithos, 402-403: 105678. https://doi.org/10.1016/j.lithos.2020.105678 |
| [91] |
Yu, J. H., Cai, Y. F., Sun, T., et al., 2023. Distribution and Enrichment of Rare Metal Elements in the Basement Rocks of South China: Controls on Rare⁃Metal Mineralization. Ore Geology Reviews, 163: 105797. https://doi.org/10.1016/j.oregeorev.2023.105797 |
| [92] |
Zhang, D., Zhao, K. D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028 |
| [93] |
Zhang, D. F., Cao, M. X., Gong, X., et al., 2024. Geological Characteristics of Metallogenic Host Rock and Their Genetic Significance of Shitouping Heavy Rare Earth Deposit in Southern Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(4): 338-348 (in Chinese with English abstract). |
| [94] |
Zhang, Q., Chen, B. F., Zhang, X. W., 2020. Geological, Geochemical Characteristics and Significance of Fengshan HREE Deposit in Ganxian District, Jiangxi Province. East China Geology, 41(4): 359-367 (in Chinese with English abstract). |
| [95] |
Zhao, J. L., Qiu, J. S., Liu, L., 2021. Early⁃Middle Jurassic Magmatic Rocks along the Coastal Region of Southeastern China: Petrogenesis and Implications for Paleo⁃Pacific Plate Subduction. Journal of Asian Earth Sciences, 210: 104687. https://doi.org/10.1016/j.jseaes.2021.104687 |
| [96] |
Zhao, Z., Wang, D. H., Bagas, L., et al., 2022. Geochemical and REE Mineralogical Characteristics of the Zhaibei Granite in Jiangxi Province, Southern China, and a Model for the Genesis of Ion⁃Adsorption REE Deposits. Ore Geology Reviews, 140: 104579. https://doi.org/10.1016/j.oregeorev.2021.104579 |
| [97] |
Zhao, Z., Wang, D. H., Chen, Z. Y., et al., 2014. Zircon U⁃Pb Age, Endogenic Mineralization and Petrogenesis of Rare Earth Ore⁃Bearing Granite in Longnan, Jiangxi Province. Acta Geoscientica Sinica, 35(6): 719-725 (in Chinese with English abstract). |
| [98] |
Zhong, F. J., Xia, F., Wang, L., et al., 2023. Geochronology and Geochemistry of Dolerite in the Lujing Uranium Ore Field of Central Zhuguangshan Complex, and Its Relationship with Uranium Mineralization. Acta Geologica Sinica, 97(8): 2593-2608 (in Chinese with English abstract). |
| [99] |
Zhou, M. F., Li, X. X., Wang, Z. C., et al., 2020. The Genesis of Regolith⁃Hosted Rare Earth Element and Scandium deposits: Current Understanding and Outlook to Future Prospecting. Chinese Science Bulletin, 65(33): 3809-3824 (in Chinese). |
| [100] |
Zhou, X. G., Wang, S. L., Yuan, C. X., et al., 2018. Geochemistry Characteristics of Ion⁃Absorbed Rare Earth Deposits in Low⁃Grade Metamorphic Rock in the Ningdu Area, Southern Jiangxi Province and Its Prospecting Significance. East China Geology, 39(3): 194-201 (in Chinese with English abstract). |
| [101] |
Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 |
| [102] |
Zhou, Z. M., Ma, C. Q., Wang, L. X., et al., 2018. A Source⁃Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300-301: 278-290. https://doi.org/10.1016/j.lithos.2017.11.017 |
| [103] |
Zhu, W. G., Zhong, H., Chen, X., et al., 2020. The Earliest Jurassic A⁃Type Rhyolites and High⁃Mg Andesites⁃Dacites in Southern Jiangxi Province, Southeast China: Evidence for Delamination of a Flat⁃Slab? Lithos, 358-359: 105403. https://doi.org/10.1016/j.lithos.2020.105403 |
| [104] |
Zhu, W. G., Zhong, H., Huang, H. Q., et al., 2021. The Origin of the Earliest Jurassic Basaltic Rocks in Southern Jiangxi Province, Southeastern China: Implications for Interaction between the Asthenosphere and Metasomatised Lithosphere. Lithos, 404-405: 106444. https://doi.org/10.1016/j.lithos.2021.106444 |
| [105] |
Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic⁃Ultramafic Intrusion and A⁃Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3-4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005 |
| [106] |
Zhu, X. X., Liu, Y., Hou, Z. Q., 2023. Massive Rare Earth Element Storage in Sub⁃Continental Lithospheric Mantle Initiated by Diapirism, not by Melting. Geology, 52(2): 105-109. https://doi.org/10.1130/G51102.1 |
自然资源部离子型稀土资源与环境重点实验室开放基金(2022IRERE102)
中国地质调查项目(DD20240066)
自然资源部深地科学与探测技术实验室开放课题(SiProbe Lab 202217)
江西省“双千计划”创新领军人才长期项目(2020101003)
江西省自然科学基金重点项目(20224ACB203011)
东华理工大学高层次人才引进配套经费(1410000874)
/
| 〈 |
|
〉 |