镍同位素在海洋沉积物中的地球化学行为
Geochemical Behaviors of Nickel Isotope in Marine Sediments
,
镍(Ni)同位素体系是研究海洋镍元素来源、迁移转化与循环过程的关键工具.海洋沉积物在镍的地球化学循环中扮演着重要的角色,既是镍的“源”,又是镍的“汇”,其镍同位素组成能够记录海水镍循环过程中的关键信息.系统地总结了海水以及海洋主要储库,包括河流输入、热液体系、不同类型海洋沉积物(如铁锰氧化沉积物、缺氧沉积物以及碳酸盐岩沉积物等)的镍同位素组成,分析了镍同位素组成及相互关系,深入探讨了沉积物与海水之间镍同位素的分馏机制及其对古海洋环境重建的指示意义.研究结果表明,镍同位素在示踪古海洋生产力变化、硫化环境演变以及全球镍循环质量平衡等方面具有独特的优势.
The nickel isotope system serves as a crucial tool for investigating the sources, migration, transformation, and cycling processes of nickel in the ocean. Marine sediments play a vital role in the geochemical cycling of nickel, functioning both as a “source” and a “sink” for the element. The nickel isotopic composition can record key information about the nickel cycling process in seawater. In this paper it systematically summarizes the nickel isotopic compositions of seawater and major marine reservoirs, including riverine inputs, hydrothermal systems, and diverse marine sediments (iron-manganese oxide deposits, anoxic sediments, and carbonate sediments). It analyzes nickel isotopic compositions and their interrelationships, and delves into the fractionation mechanisms of nickel isotopes between sediments and seawater and their implications for reconstructing palaeoceanographic environments. The findings demonstrate that nickel isotope possesses unique advantages in tracing changes in palaeoceanographic productivity, sulfur-rich environmental evolution, and the mass balance of the global nickel cycle.
镍 / 同位素 / 同位素分馏 / 海洋地球化学循环 / 海洋学.
nickel / isotopes / isotope fractionation / marine geochemical cycles / oceanography
| [1] |
Alvarez, C. C., Quitté, G., Schott, J., et al., 2021. Nickel Isotope Fractionation as a Function of Carbonate Growth Rate during Ni Coprecipitation with Calcite. Geochimica et Cosmochimica Acta, 299: 184-198. https://doi.org/10.1016/j.gca.2021.02.019 |
| [2] |
Archer, C., Vance, D., Milne, A., et al., 2020. The Oceanic Biogeochemistry of Nickel and Its Isotopes: New Data from the South Atlantic and the Southern Ocean Biogeochemical Divide. Earth and Planetary Science Letters, 535:116118. https://doi.org/10.1016/j.epsl.2020.116118 |
| [3] |
Atkins, A. L., Shaw, S., Peacock, C. L., 2016. Release of Ni from Birnessite during Transformation of Birnessite to Todorokite: Implications for Ni Cycling in Marine Sediments.Geochimica et Cosmochimica Acta, 189: 158-183. https://doi.org/10.1016/j.gca.2016.06.007 |
| [4] |
Baransky, E. J., Hardisty, D. S., Rolison, J. M., et al., 2025. Assessing the Fidelity of Shallow⁃Water Carbonates as Records of the Ni Isotope Composition of Surface Seawater. Geochimica et Cosmochimica Acta, 402: 16-31. https://doi.org/10.1016/j.gca.2025.06.021 |
| [5] |
Bian, X.P., Yang, S. C., Raad, R. J., et al., 2024a. Distribution and Cycling of Nickel and Nickel Isotopes in the Pacific Ocean. Geophysical Research Letters, 51(16):e2024GL111115. https://doi.org/10.1029/2024GL111115 |
| [6] |
Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024b. A Benthic Source of Isotopically Heavy Ni from Continental Margins and Implications for Global Ocean Ni Isotope Mass Balance. Earth and Planetary Science Letters, 645:118951. https://doi.org/10.1016/j.epsl.2024.118951 |
| [7] |
Böning, P., Fröllje, H., Beck, M., et al., 2012. Underestimation of the Authigenic Fraction of Cu and Ni in Organic⁃Rich Sediments. Marine Geology, 323-325: 24-28. https://doi.org/10.1016/j.margeo.2012.07.004 |
| [8] |
Böning, P., Shaw, T., Pahnke, K., et al., 2015. Nickel as Indicator of Fresh Organic Matter in Upwelling Sediments. Geochimica et Cosmochimica Acta, 162: 99-108. https://doi.org/10.1016/j.gca.2015.04.027 |
| [9] |
Bruggmann, S., McManus, J., Archer, C., et al., 2024. Nickel’s Behaviour in Marine Sediments under Aerobic to Anaerobic Diagenetic Conditions.Chemical Geology, 662:122234. https://doi.org/10.1016/j.chemgeo.2024.122234 |
| [10] |
Cameron, V., Vance, D., 2014. Heavy Nickel Isotope Compositions in Rivers and the Oceans.Geochimica et Cosmochimica Acta, 128: 195-211. https://doi.org/10.1016/j.gca.2013.12.007 |
| [11] |
Cameron, V., Vance, D., Archer, C., et al., 2009. A Biomarker Based on the Stable Isotopes of Nickel. Proceedings of the National Academy of Sciences, 106(27): 10944-10948. https://doi.org/10.1073/pnas.0900726106 |
| [12] |
Charbonnier, Q., Rickli, J., Archer, C., et al., 2024. The Influence of Secondary Weathering Processes on Dissolved Nickel Isotope Compositions under Cold Climatic Conditions-Observations from the Mackenzie Basin. Geochimica et Cosmochimica Acta, 364: 10-21. https://doi.org/10.1016/j.gca.2023.10.026 |
| [13] |
Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate⁃Driven Anaerobic Oxidation of Methane Inferred from Trace⁃Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002 |
| [14] |
Ciscato, E. R., Bontognali, T. R. R., Vance, D., 2018. Nickel and Its Isotopes in Organic⁃Rich Sediments: Implications for Oceanic Budgets and a Potential Record of Ancient Seawater. Earth and Planetary Science Letters, 494: 239-250. https://doi.org/10.1016/j.epsl.2018.04.061 |
| [15] |
Diehl, A., Bach, W., 2020. MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009385. https://doi.org/10.1029/2020GC009385 |
| [16] |
Elliott, T., Steele, R. C. J., 2017. The Isotope Geochemistry of Ni. Reviews in Mineralogy and Geochemistry, 82(1): 511-542. https://doi.org/10.2138/rmg.2017.82.12 |
| [17] |
Fleischmann, S., Du, J. H., Chatterjee, A., et al., 2023. The Nickel Output to Abyssal Pelagic Manganese Oxides: A Balanced Elemental and Isotope Budget for the Oceans. Earth and Planetary Science Letters, 619:118301. https://doi.org/10.1016/j.epsl.2023.118301 |
| [18] |
Fleischmann, S., Scholz, F., Du, J. H., et al., 2025. Processes Controlling Nickel and Its Isotopes in Anoxic Sediments of a Seasonally Hypoxic Bay. Geochimica et Cosmochimica Acta, 391: 1-15. https://doi.org/10.1016/j.gca.2025.01.016 |
| [19] |
Fujii, T., Moynier, F., Dauphas, N., et al., 2011. Theoretical and Experimental Investigation of Nickel Isotopic Fractionation in Species Relevant to Modern and Ancient Oceans. Geochimica et Cosmochimica Acta, 75(2): 469-482. https://doi.org/10.1016/j.gca.2010.11.003 |
| [20] |
Gall, L., Williams, H. M., Siebert, C., et al., 2013. Nickel Isotopic Compositions of Ferromanganese Crusts and the Constancy of Deep Ocean Inputs and Continental Weathering Effects over the Cenozoic. Earth and Planetary Science Letters, 375: 148-155. https://doi.org/10.1016/j.epsl.2013.05.019 |
| [21] |
Gueguen, B., Rouxel, O., Ponzevera, E., et al., 2013. Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 37(3): 297-317. https://doi.org/10.1111/j.1751⁃908X.2013.00209.x |
| [22] |
Gueguen, B., Rouxel, O., Rouget, M. L., et al., 2016. Comparative Geochemistry of Four Ferromanganese Crusts from the Pacific Ocean and Significance for the Use of Ni Isotopes as Paleoceanographic Tracers. Geochimica et Cosmochimica Acta, 189: 214-235. https://doi.org/10.1016/j.gca.2016.06.005 |
| [23] |
Gueguen, B., Sorensen, J. V., Lalonde, S. V., et al., 2018. Variable Ni Isotope Fractionation between Fe⁃Oxyhydroxides and Implications for the Use of Ni Isotopes as Geochemical Tracers. Chemical Geology, 481: 38-52. https://doi.org/10.1016/j.chemgeo.2018.01.023 |
| [24] |
Gueguen, B., Rouxel, O., Fouquet, Y., 2021. Nickel Isotopes and Rare Earth Elements Systematics in Marine Hydrogenetic and Hydrothermal Ferromanganese Deposits. Chemical Geology, 560:119999. https://doi.org/10.1016/j.chemgeo.2020.119999 |
| [25] |
He, Z. W., Archer, C., Yang, S. Y., et al., 2023. Sedimentary Cycling of Zinc and Nickel and Their Isotopes on an Upwelling Margin: Implications for Oceanic Budgets and Paleoenvironment Proxies. Geochimica et Cosmochimica Acta, 343: 84-97. https://doi.org/10.1016/j.gca.2022.12.026 |
| [26] |
Hohl, S. V., Bian, X. P., Viehmann, S., et al., 2025. A Novel Biomarker for Deep⁃Time Methanogenesis- Perspectives from Nickel Isotope Fractionation in Modern Microbialites. Earth and Planetary Science Letters, 666:119492. https://doi.org/10.1016/j.epsl.2025.119492 |
| [27] |
John, S. G., Kelly, R. L., Bian, X. P., et al., 2022. The Biogeochemical Balance of Oceanic Nickel Cycling. Nature Geoscience, 15(11): 906-912. https://doi.org/10.1038/s41561⁃022⁃01045⁃7 |
| [28] |
Little, S. H., Archer, C., McManus, J., et al., 2020. Towards Balancing the Oceanic Ni Budget. Earth and Planetary Science Letters, 547:116461. https://doi.org/10.1016/j.epsl.2020.116461 |
| [29] |
Lemaitre, N., Du, J. H., de Souza, G. F., et al., 2022. The Essential Bioactive Role of Nickel in the Oceans: Evidence from Nickel Isotopes. Earth and Planetary Science Letters, 584:117513. https://doi.org/10.1016/j.epsl.2022.117513 |
| [30] |
Parigi, R., Pakostova, E., Reid, J. W., et al., 2022. Nickel Isotope Fractionation as an Indicator of Ni Sulfide Precipitation Associated with Microbially Mediated Sulfate Reduction. Environmental Science & Technology, 56(12): 7954-7962. https://pubs.acs.org/doi/10.1021/acs.est.2c00523 |
| [31] |
Porter, S. J., Selby, D., Cameron, V., 2014. Characterising the Nickel Isotopic Composition of Organic⁃Rich Marine Sediments. Chemical Geology, 387: 12-21. https://doi.org/10.1016/j.chemgeo.2014.07.017 |
| [32] |
Ragsdale, S. W., 2009. Nickel⁃Based Enzyme Systems. Journal of Biological Chemistry, 284(28): 18571-18575. https://doi.org/10.1074/jbc.R900020200 |
| [33] |
Revels, B. N., Rickli, J., Moura, C. A. V., et al., 2021. Nickel and Its Isotopes in the Amazon Basin: The Impact of the Weathering Regime and Delivery to the Oceans. Geochimica et Cosmochimica Acta, 293: 344-364. https://doi.org/10.1016/j.gca.2020.11.005 |
| [34] |
Sorensen, J. V., Gueguen, B., Stewart, B. D., et al., 2020. Large Nickel Isotope Fractionation Caused by Surface Complexation Reactions with Hexagonal Birnessite. Chemical Geology, 537:119481. https://doi.org/10.1016/j.chemgeo.2020.119481 |
| [35] |
Spivak⁃Birndorf, L. J., Wang, S. J., Bish, D. L., et al., 2018. Nickel Isotope Fractionation during Continental Weathering. Chemical Geology, 476: 316-326. https://doi.org/10.1016/j.chemgeo.2017.11.028 |
| [36] |
Selden, C. R., Schilling, K., Basu, A., et al., 2025. Amino Acid Complexation Fractionates Nickel Isotopes: Implications for Tracing Nickel Cycling in the Environment. Environmental Science & Technology Letters, 12(3): 283-288. https://pubs.acs.org/doi/10.1021/acs.estlett.4c01060 |
| [37] |
Takano, S., Liao, W. H., Ho, T. Y., et al., 2022. Isotopic Evolution of Dissolved Ni, Cu, and Zn along the Kuroshio through the East China Sea. Marine Chemistry, 243: 104135. https://doi.org/10.1016/j.marchem.2022.104135 |
| [38] |
Takano, S., Tanimizu, M., Hirata, T., et al., 2017. A Simple and Rapid Method for Isotopic Analysis of Nickel, Copper, and Zinc in Seawater Using Chelating Extraction and Anion Exchange. Analytica Chimica Acta, 967: 1-11. https://doi.org/10.1016/j.aca.2017.03.010 |
| [39] |
Vance, D., Little, S. H., Archer, C., et al., 2016. The Oceanic Budgets of Nickel and Zinc Isotopes: The Importance of Sulfidic Environments as Illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 374(2081):20150294. https://doi.org/10.1098/rsta.2015.0294 |
| [40] |
Wasylenki, L. E., Howe, H. D., Spivak⁃Birndorf, L. J., et al., 2015. Ni Isotope Fractionation during Sorption to Ferrihydrite: Implications for Ni in Banded Iron Formations. Chemical Geology, 400: 56-64. https://doi.org/10.1016/j.chemgeo.2015.02.007 |
| [41] |
Wasylenki, L. E., Wells, R. M., Spivak⁃Birndorf, L. J., et al., 2024. Toward Mending the Marine Mass Balance Model for Nickel: Experimentally Determined Isotope Fractionation during Ni Sorption to Birnessite. Geochimica et Cosmochimica Acta, 379: 76-88. https://doi.org/10.1016/j.gca.2024.06.022 |
| [42] |
Wang, R. M., Archer, C., Bowie, A. R., et al., 2019a. Zinc and Nickel Isotopes in Seawater from the Indian Sector of the Southern Ocean: The Impact of Natural Iron Fertilization versus Southern Ocean Hydrography and Biogeochemistry. Chemical Geology, 511: 452-464. https://doi.org/10.1016/j.chemgeo.2018.09.010 |
| [43] |
Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019b. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300. https://doi.org/10.1038/s41561⁃019⁃0320⁃z |
| [44] |
Wang, S. J., Wasylenki, L. E., 2017. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations. Geochimica et Cosmochimica Acta, 206: 137-150. https://doi.org/10.1016/j.gca.2017.02.023 |
| [45] |
Yang, S. C., Hawco, N. J., Pinedo⁃González, P., et al., 2020. A New Purification Method for Ni and Cu Stable Isotopes in Seawater Provides Evidence for Widespread Ni Isotope Fractionation by Phytoplankton in the North Pacific. Chemical Geology, 547:119662. https://doi.org/10.1016/j.chemgeo.2020.119662 |
| [46] |
Yang, S. C., Kelly, R. L., Bian, X. P., et al., 2021. Lack of Redox Cycling for Nickel in the Water Column of the Eastern Tropical North Pacific Oxygen Deficient Zone: Insight from Dissolved and Particulate Nickel Isotopes. Geochimica et Cosmochimica Acta, 309: 235-250. https://doi.org/10.1016/j.gca.2021.07.004 |
国家自然科学基金青年项目(42003013)
国家自然科学基金面上项目(41973010)
/
| 〈 |
|
〉 |