全球变暖背景下海洋浮游生物群落长期变化
Long⁃Term Changes in Plankton Communities in Context of Global Warming
,
,
浮游生物是海洋生态系统的基础,其群落结构和物候变化影响生态功能和生物地理格局.全球变暖驱动海表升温,导致浮游生物分布区极向移动,其中分布区前缘移动较明显,核心和后缘变化较小.升温还促使部分物种出现春季现象提前、秋季现象延后的物候变化.不同浮游生物的分布区和物候变化幅度存在差异,影响群落边缘区的结构,但群落核心优势种类尚无显著变化.若未来海洋环流格局保持稳定,热带至亚极区的浮游生物群落核心发生剧变风险较低,极地群落优势物种在近百年内也难有变化.我国海区长期系统观测不足,关键海域数据缺乏.综合极地与近海证据,本文预测在升温不超过2 ℃的情形下,我国近海浮游生物群落核心区位置可能发生调整,但其结构实质性改变的风险较低.
Plankton form the foundation of marine ecosystems, and changes in their community structure and phenology affect ecosystem function and biogeographical patterns. Global warming drives sea surface temperature increases, resulting in poleward shifts of plankton distribution, with the leading edge advancing more noticeably while the core and trailing edge remain relatively stable. Warming also causes phenological shifts in some species, such as earlier spring events and delayed autumn events. The extent of distribution and phenological changes varies among plankton groups, mainly affecting community structure at the margins, while no significant changes have been observed in the dominant species of community cores. If future ocean circulation patterns remain stable, the risk of major shifts in plankton community cores from the tropics to subarctic regions is low, and dominant species in polar communities are also unlikely to change substantially in the next century. Long-term systematic observation in Chinese seas is still insufficient, and key regions lack critical data. Synthesizing evidence from polar and coastal regions, this study predicts that if warming does not exceed 2 ℃, the positions of community cores in China’s coastal plankton communities may shift, but the risk of substantial structural change remains low.
浮游生物 / 海洋变暖 / 生物地理分布 / 群落 / 物候 / 气候变化 / 海洋学.
plankton / ocean warming / biogeographic distribution / communities / phenology / climate change / oceanography
| [1] |
Aarflot, J. M., Skjoldal, H. R., Dalpadado, P., et al., 2018. Contribution of Calanus Species to the Mesozooplankton Biomass in the Barents Sea. ICES Journal of Marine Science, 75(7): 2342-2354. https://doi.org/10.1093/icesjms/fsx221 |
| [2] |
Aberle, N., Bauer, B., Lewandowska, A., et al., 2012. Warming Induces Shifts in Microzooplankton Phenology and Reduces Time⁃Lags between Phytoplankton and Protozoan Production. Marine Biology, 159(11): 2441-2453. https://doi.org/10.1007/s00227⁃012⁃1947⁃0 |
| [3] |
Alcaraz, M., Felipe, J., Grote, U., et al., 2014. Life in a Warming Ocean: Thermal Thresholds and Metabolic Balance of Arctic Zooplankton. Journal of Plankton Research, 36(1): 3-10. https://doi.org/10.1093/plankt/fbt111 |
| [4] |
Atkinson, A., Hill, S. L., Pakhomov, E. A., et al., 2019. Krill (Euphausia Superba) Distribution Contracts Southward during Rapid Regional Warming. Nature Climate Change, 9(2): 142-147. https://doi.org/10.1038/s41558⁃018⁃0370⁃z |
| [5] |
Atkinson, A., Hill, S. L., Reiss, C. S., et al., 2022. Stepping Stones towards Antarctica: Switch to Southern Spawning Grounds Explains an Abrupt Range Shift in Krill. Global Change Biology, 28(4): 1359-1375. https://doi.org/10.1111/gcb.16009 |
| [6] |
Atkinson, A., Siegel, V., Pakhomov, E., et al., 2004. Long⁃Term Decline in Krill Stock and Increase in Salps within the Southern Ocean. Nature, 432(7013): 100-103. https://doi.org/10.1038/nature02996 |
| [7] |
Balch, W. M., Gordon, H. R., Bowler, B. C., et al., 2005. Calcium Carbonate Measurements in the Surface Global Ocean Based on Moderate⁃Resolution Imaging Spectroradiometer Data. Journal of Geophysical Research: Oceans, 110(C7): 2004JC002560. https://doi.org/10.1029/2004JC002560 |
| [8] |
Basedow, S. L., Sundfjord, A., von Appen, W. J., et al., 2018. Seasonal Variation in Transport of Zooplankton into the Arctic Basin through the Atlantic Gateway, Fram Strait. Frontiers in Marine Science, 5: 194. https://doi.org/10.3389/fmars.2018.00194 |
| [9] |
Batchelder, H. P., Mackas, D. L., O’Brien, T. D., 2012. Spatial⁃Temporal Scales of Synchrony in Marine Zooplankton Biomass and Abundance Patterns: A World⁃Wide Comparison. Progress in Oceanography, 97/98/99/100: 15-30. https://doi.org/10.1016/j.pocean.2011.11.010 |
| [10] |
Batten, S. D., Abu⁃Alhaija, R., Chiba, S., et al., 2019. A Global Plankton Diversity Monitoring Program. Frontiers in Marine Science, 6: 321. https://doi.org/10.3389/fmars.2019.00321 |
| [11] |
Batten, S. D., Walne, A. W., 2011. Variability in Northwards Extension of Warm Water Copepods in the NE Pacific. Journal of Plankton Research, 33(11): 1643-1653. https://doi.org/10.1093/plankt/fbr065 |
| [12] |
Beaugrand, G., 2004. The North Sea Regime Shift: Evidence, Causes, Mechanisms and Consequences. Progress in Oceanography, 60(2/3/4): 245-262. https://doi.org/10.1016/j.pocean.2004.02.018 |
| [13] |
Beaugrand, G., Reid, P. C., Ibañez, F., et al., 2002. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science, 296(5573): 1692-1694. https://doi.org/10.1126/science.1071329 |
| [14] |
Bindoff, N.L., Cheung, W.W.L., Kairo, J.G., et al., 2019. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC, ed., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, 447-588. https://doi.org/10.1017/9781009157964.007 |
| [15] |
Borkman, D. G., Fofonoff, P., Smayda, T. J., et al., 2018. Changing Acartia spp. Phenology and Abundance during a Warming Period in Narragansett Bay, Rhode Island, USA: 1972-1990. Journal of Plankton Research, 40(5): 580-594. https://doi.org/10.1093/plankt/fby029 |
| [16] |
Both, C., Van Asch, M., Bijlsma, R. G., et al., 2009. Climate Change and Unequal Phenological Changes across Four Trophic Levels: Constraints or Adaptations? Journal of Animal Ecology, 78(1): 73-83. https://doi.org/10.1111/j.1365⁃2656.2008.01458.x |
| [17] |
Brown, M., Kawaguchi, S., Candy, S., et al., 2010. Temperature Effects on the Growth and Maturation of Antarctic Krill (Euphausia superba). Deep Sea Research Part II: Topical Studies in Oceanography, 57(7/8): 672-682. https://doi.org/10.1016/j.dsr2.2009.10.016 |
| [18] |
Chaikin, S., Dubiner, S., Belmaker, J., 2022. Cold⁃Water Species Deepen to Escape Warm Water Temperatures. Global Ecology and Biogeography, 31(1): 75-88. https://doi.org/10.1111/geb.13414 |
| [19] |
Chavez, F. P., Ryan, J., Lluch⁃Cota, S. E., et al., 2003. From Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean. Science, 299(5604): 217-221. https://doi.org/10.1126/science.1075880 |
| [20] |
Chivers, W. J., Edwards, M., Hays, G. C., 2020. Phenological Shuffling of Major Marine Phytoplankton Groups over the Last Six Decades. Diversity and Distributions, 26(5): 536-548. https://doi.org/10.1111/ddi.13028 |
| [21] |
Chivers, W. J., Walne, A. W., Hays, G. C., 2017. Mismatch between Marine Plankton Range Movements and the Velocity of Climate Change. Nature Communications, 8: 14434. https://doi.org/10.1038/ncomms14434 |
| [22] |
Chust, G., Castellani, C., Licandro, P., et al., 2014. Are Calanus spp. Shifting Poleward in the North Atlantic? A Habitat Modelling Approach. ICES Journal of Marine Science, 71(2): 241-253. https://doi.org/10.1093/icesjms/fst147 |
| [23] |
Conversi, A., Dakos, V., Gårdmark, A., et al., 2015. A Holistic View of Marine Regime Shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659): 20130279. https://doi.org/10.1098/rstb.2013.0279 |
| [24] |
Dalpadado, P., Ingvaldsen, R. B., Stige, L. C., et al., 2012. Climate Effects on Barents Sea Ecosystem Dynamics. ICES Journal of Marine Science, 69(7): 1303-1316. https://doi.org/10.1093/icesjms/fss063 |
| [25] |
Davis, A. J., Jenkinson, L. S., Lawton, J. H., et al., 1998. Making Mistakes When Predicting Shifts in Species Range in Response to Global Warming. Nature, 391(6669): 783-786. https://doi.org/10.1038/35842 |
| [26] |
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., et al., 2008. Impacts of Climate Warming on Terrestrial Ectotherms across Latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18): 6668-6672. https://doi.org/10.1073/pnas.0709472105 |
| [27] |
Dulvy, N. K., Rogers, S. I., Jennings, S., et al., 2008. Climate Change and Deepening of the North Sea Fish Assemblage: A Biotic Indicator of Warming Seas. Journal of Applied Ecology, 45(4): 1029-1039. https://doi.org/10.1111/j.1365⁃2664.2008.01488.x |
| [28] |
Duarte, C. M., Cebrián, J., Marbà, N., 1992. Uncertainty of Detecting Sea Change. Nature, 356(6366): 190. https://doi.org/10.1038/356190a0 |
| [29] |
Dupont, N., Bagøien, E., Melle, W., 2017. Inter⁃Annual Variability in Spring Abundance of Adult Calanus finmarchicus from the Overwintering Population in the Southeastern Norwegian Sea. Progress in Oceanography, 152: 75-85. https://doi.org/10.1016/j.pocean.2017.02.004 |
| [30] |
Edwards, M., Richardson, A. J., 2004. Impact of Climate Change on Marine Pelagic Phenology and Trophic Mismatch. Nature, 430(7002): 881-884. https://doi.org/10.1038/nature02808 |
| [31] |
Ekman, S., 1953. Zoogeography of the Sea, vol. 9. Sidgwick & Jackson, London, 417. |
| [32] |
Ershova, E. A., Kosobokova, K. N., Banas, N. S., et al., 2021. Sea Ice Decline Drives Biogeographical Shifts of Key Calanus Species in the Central Arctic Ocean. Global Change Biology, 27(10): 2128-2143. https://doi.org/10.1111/gcb.15562 |
| [33] |
Falkenhaug, T., Broms, C., Bagøien, E., et al., 2022. Temporal Variability of Co⁃Occurring Calanus finmarchicus and C. helgolandicus in Skagerrak. Frontiers in Marine Science, 9: 779335. https://doi.org/10.3389/fmars.2022.779335 |
| [34] |
Field, C., Behrenfeld, M., Randerson, J., et al., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374): 237-240. https://doi.org/10.1126/science.281.5374.237 |
| [35] |
Fox⁃Kemper, B., Hewitt, H.T., Xiao, C., et al., 2021. Ocean, Cryosphere and Sea Level Change. In: Masson⁃Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1211-1362. https://doi.org/10.1017/9781009157896.011 |
| [36] |
García⁃Soto, C., Caesar, L., Cazenave, A., et al., 2021. Chapter 05 Trends in the Physical and Chemical State of the Ocean. In: United Nations, ed., World Ocean Assessment II. United Nations, New York, 83-103. https://doi.org/10.18356/9789216040062 |
| [37] |
Grandremy, N., Bourriau, P., Daché, E., et al., 2024. Metazoan Zooplankton in the Bay of Biscay: A 16⁃Year Record of Individual Sizes and Abundances Obtained Using the ZooScan and ZooCAM Imaging Systems. Earth System Science Data, 16(3): 1265-1282. https://doi.org/10.5194/essd⁃16⁃1265⁃2024 |
| [38] |
Gushing, D.H., Dickson, R.R., 1977. The Biological Response in the Sea to Climatic Changes. In: Russell, F.S., Yonge, M., eds., Advances in Marine Biology, vol. 14. Academic Press, Cambridge, 1-122. https://doi.org/10.1016/S0065⁃2881(08)60446⁃0 |
| [39] |
Hampton, S. E., Gray, D. K., Izmest’eva, L. R., et al., 2014. The Rise and Fall of Plankton: Long⁃Term Changes in the Vertical Distribution of Algae and Grazers in Lake Baikal, Siberia. PLoS One, 9(2): e88920. https://doi.org/10.1371/journal.pone.0088920 |
| [40] |
Hare, S. R., Mantua, N. J., 2000. Empirical Evidence for North Pacific Regime Shifts in 1977 and 1989. Progress in Oceanography, 47(2-4): 103-145. https://doi.org/10.1016/S0079⁃6611(00)00033⁃1 |
| [41] |
Hastings, R. A., Rutterford, L. A., Freer, J. J., et al., 2020. Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology, 30(8): 1572-1577. https://doi.org/10.1016/j.cub.2020.02.043 |
| [42] |
Hays, G. C., Richardson, A. J., Robinson, C., 2005. Climate Change and Marine Plankton. Trends in Ecology & Evolution, 20(6): 337-344. https://doi.org/10.1016/j.tree.2005.03.004 |
| [43] |
Helaouët, P., Beaugrand, G., 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and Adjacent Seas. Marine Ecology Progress Series, 345: 147-165. https://doi.org/10.3354/meps06775 |
| [44] |
Henson, S. A., Cole, H. S., Hopkins, J., et al., 2018. Detection of Climate Change⁃Driven Trends in Phytoplankton Phenology. Global Change Biology, 24(1): e101-e111. https://doi.org/10.1111/gcb.13886 |
| [45] |
Henson, S. A., Sarmiento, J. L., Dunne, J. P., et al., 2010. Detection of Anthropogenic Climate Change in Satellite Records of Ocean Chlorophyll and Productivity. Biogeosciences, 7(2): 621-640. https://doi.org/10.5194/bg⁃7⁃621⁃2010 |
| [46] |
Hinder, S. L., Gravenor, M. B., Edwards, M., et al., 2014. Multi⁃Decadal Range Changes vs. Thermal Adaptation for North East Atlantic Oceanic Copepods in the Face of Climate Change. Global Change Biology, 20(1): 140-146. https://doi.org/10.1111/gcb.12387 |
| [47] |
Hinder, S. L., Manning, J. E., Gravenor, M. B., et al., 2012. Long⁃Term Changes in Abundance and Distribution of Microzooplankton in the NE Atlantic and North Sea. Journal of Plankton Research, 34(1): 83-91. https://doi.org/10.1093/plankt/fbr087 |
| [48] |
Hirche, H. J., Kosobokova, K., 2007. Distribution of Calanus finmarchicus in the Northern North Atlantic and Arctic Ocean-Expatriation and Potential Colonization. Deep Sea Research Part II: Topical Studies in Oceanography, 54(23-26): 2729-2747. https://doi.org/10.1016/j.dsr2.2007.08.006 |
| [49] |
Hoover, B. A., García⁃Reyes, M., Batten, S. D., et al., 2021. Spatio⁃Temporal Persistence of Zooplankton Communities in the Gulf of Alaska. PLoS One, 16(1): e0244960. https://doi.org/10.1371/journal.pone.0244960 |
| [50] |
Hu, S. N., Fedorov, A. V., 2020. Indian Ocean Warming as a Driver of the North Atlantic Warming Hole. Nature Communications, 11: 4785. https://doi.org/10.1038/s41467⁃020⁃18522⁃5 |
| [51] |
Jahn, A., Holland, M. M., 2013. Implications of Arctic Sea Ice Changes for North Atlantic Deep Convection and the Meridional Overturning Circulation in CCSM4⁃CMIP5 Simulations. Geophysical Research Letters, 40(6): 1206-1211. https://doi.org/10.1002/grl.50183 |
| [52] |
Jahn, A., Holland, M. M., Kay, J. E., 2024. Projections of an Ice⁃Free Arctic Ocean. Nature Reviews Earth & Environment, 5(3): 164-176. https://doi.org/10.1038/s43017⁃023⁃00515⁃9 |
| [53] |
Ji, R. B., Edwards, M., Mackas, D. L., et al., 2010. Marine Plankton Phenology and Life History in a Changing Climate: Current Research and Future Directions. Journal of Plankton Research, 32(10): 1355-1368. https://doi.org/10.1093/plankt/fbq062 |
| [54] |
Johannesen, E., Ingvaldsen, R. B., Bogstad, B., et al., 2012. Changes in Barents Sea Ecosystem State, 1970-2009: Climate Fluctuations, Human Impact, and Trophic Interactions. ICES Journal of Marine Science, 69(5): 880-889. https://doi.org/10.1093/icesjms/fss046 |
| [55] |
Jonkers, L., Hillebrand, H., Kucera, M., 2019. Global Change Drives Modern Plankton Communities away from the Pre⁃Industrial State. Nature, 570(7761): 372-375. https://doi.org/10.1038/s41586⁃019⁃1230⁃3 |
| [56] |
Jorda, G., Marbà, N., Bennett, S., et al., 2020. Ocean Warming Compresses the Three⁃Dimensional Habitat of Marine Life. Nature Ecology & Evolution, 4(1): 109-114. https://doi.org/10.1038/s41559⁃019⁃1058⁃0 |
| [57] |
Kaiser, P., Hagen, W., Bode⁃Dalby, M., et al., 2022. Tolerant but Facing Increased Competition: Arctic Zooplankton versus Atlantic Invaders in a Warming Ocean. Frontiers in Marine Science, 9: 908638. https://doi.org/10.3389/fmars.2022.908638 |
| [58] |
Kefford, B. J., Ghalambor, C. K., Dewenter, B., et al., 2022. Acute, Diel, and Annual Temperature Variability and the Thermal Biology of Ectotherms. Global Change Biology, 28(23): 6872-6888. https://doi.org/10.1111/gcb.16453 |
| [59] |
Kléparski, L., Beaugrand, G., Edwards, M., et al., 2022. Morphological Traits, Niche⁃Environment Interaction and Temporal Changes in Diatoms. Progress in Oceanography, 201: 102747. https://doi.org/10.1016/j.pocean.2022.102747 |
| [60] |
Kosobokova, K. N., 1999. The Reproductive Cycle and Life History of the Arctic Copepod Calanus Glacialis in the White Sea. Polar Biology, 22(4): 254-263. https://doi.org/10.1007/s003000050418 |
| [61] |
Kraft, A., Bauerfeind, E., Nöthig, E. M., 2011. Amphipod Abundance in Sediment Trap Samples at the Long⁃Term Observatory HAUSGARTEN (Fram Strait, ∼79°N/4°E). Variability in Species Community Patterns. Marine Biodiversity, 41(3): 353-364. https://doi.org/10.1007/s12526⁃010⁃0052⁃1 |
| [62] |
Kraft, A., Bauerfeind, E., Nöthig, E. M., et al., 2012. Size Structure and Life Cycle Patterns of Dominant Pelagic Amphipods Collected as Swimmers in Sediment Traps in the Eastern Fram Strait. Journal of Marine Systems, 95: 1-15. https://doi.org/10.1016/j.jmarsys.2011.12.006 |
| [63] |
Kraft, A., Nöthig, E. M., Bauerfeind, E., et al., 2013. First Evidence of Reproductive Success in a Southern Invader Indicates Possible Community Shifts among Arctic Zooplankton. Marine Ecology Progress Series, 493: 291-296. https://doi.org/10.3354/meps10507 |
| [64] |
Kromkamp, J. C., van Engeland, T., 2010. Changes in Phytoplankton Biomass in the Western Scheldt Estuary during the Period 1978-2006. Estuaries and Coasts, 33(2): 270-285. https://doi.org/10.1007/s12237⁃009⁃9215⁃3 |
| [65] |
Kvile, K. Ø., Ashjian, C., Feng, Z. X., et al., 2018. Pushing the Limit: Resilience of an Arctic Copepod to Environmental Fluctuations. Global Change Biology, 24(11): 5426-5439. https://doi.org/10.1111/gcb.14419 |
| [66] |
Li, H. B., Xu, Z. Q., Zhang, W. C., et al., 2016. Boreal Tintinnid Assemblage in the Northwest Pacific and Its Connection with the Japan Sea in Summer 2014. PLoS One, 11(4): e0153379. https://doi.org/10.1371/journal.pone.0153379 |
| [67] |
Lindley, J. A., Daykin, S., 2005. Variations in the Distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the North⁃Eastern Atlantic Ocean and Western European Shelf Waters. ICES Journal of Marine Science, 62(5): 869-877. https://doi.org/10.1016/j.icesjms.2005.02.009 |
| [68] |
Liu, H., Gong, X., 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.036 |
| [69] |
Longhurst, A.R., 2001. Pelagic Biogeography. In: Steele, J.H., Thorpe, S.A., Turekian, K.K., eds., Encyclopedia of Ocean Sciences, vol. 4. Academic Press, San Diego, 356-363. https://doi.org/10.1016/B978⁃012374473⁃9.00288⁃5 |
| [70] |
Mackas, D. L., Batten, S., Trudel, M., 2007. Effects on Zooplankton of a Warmer Ocean: Recent Evidence from the Northeast Pacific. Progress in Oceanography, 75(2): 223-252. https://doi.org/10.1016/j.pocean.2007.08.010 |
| [71] |
Mackas, D. L., Goldblatt, R., Lewis, A. G., 1998. Interdecadal Variation in Developmental Timing of Neocalanus plumchrus Populations at Ocean Station P in the Subarctic North Pacific. Canadian Journal of Fisheries and Aquatic Sciences, 55(8): 1878-1893. https://doi.org/10.1139/f98⁃080 |
| [72] |
Mackas, D. L., Greve, W., Edwards, M., et al., 2012. Changing Zooplankton Seasonality in a Changing Ocean: Comparing Time Series of Zooplankton Phenology. Progress in Oceanography, 97/98/99/100: 31-62. https://doi.org/10.1016/j.pocean.2011.11.005 |
| [73] |
Melle, W., Runge, J., Head, E., et al., 2014. The North Atlantic Ocean as Habitat for Calanus finmarchicus: Environmental Factors and Life History Traits. Progress in Oceanography, 129: 244-284. https://doi.org/10.1016/j.pocean.2014.04.026 |
| [74] |
Mészáros, L., van der Meulen, F., Jongbloed, G., et al., 2021. Climate Change Induced Trends and Uncertainties in Phytoplankton Spring Bloom Dynamics. Frontiers in Marine Science, 8: 669951. https://doi.org/10.3389/fmars.2021.669951 |
| [75] |
Michael, K., Suberg, L. A., Wessels, W., et al., 2021. Facing Southern Ocean Warming: Temperature Effects on Whole Animal Performance of Antarctic Krill (Euphausia superba). Zoology, 146: 125910. https://doi.org/10.1016/j.zool.2021.125910 |
| [76] |
Møller, E. F., Nielsen, T. G., 2020. Borealization of Arctic Zooplankton⁃Smaller and Less Fat Zooplankton Species in Disko Bay, Western Greenland. Limnology and Oceanography, 65(6): 1175-1188. https://doi.org/10.1002/lno.11380 |
| [77] |
Neukermans, G., Oziel, L., Babin, M., 2018. Increased Intrusion of Warming Atlantic Water Leads to Rapid Expansion of Temperate Phytoplankton in the Arctic. Global Change Biology, 24(6): 2545-2553. https://doi.org/10.1111/gcb.14075 |
| [78] |
Niehoff, B., Hirche, H. J., 2005. Reproduction of Calanus glacialis in the Lurefjord (Western Norway): Indication for Temperature⁃Induced Female Dormancy. Marine Ecology Progress Series, 285: 107-115. https://doi.org/10.3354/meps285107 |
| [79] |
Oliver, E. C. J., Burrows, M. T., Donat, M. G., et al., 2019. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 6: 734. https://doi.org/10.3389/fmars.2019.00734 |
| [80] |
Ono, A., Moteki, M., 2017. Spatial Distribution of Salpa thompsoni in the High Antarctic Area off Adélie Land, East Antarctica during the Austral Summer 2008. Polar Science, 12: 69-78. https://doi.org/10.1016/j.polar.2016.11.005 |
| [81] |
Oziel, L., Sirven, J., Gascard, J. C., 2016. The Barents Sea Frontal Zones and Water Masses Variability (1980-2011). Ocean Science, 12(1): 169-184. https://doi.org/10.5194/os⁃12⁃169⁃2016 |
| [82] |
Parmesan, C., Yohe, G., 2003. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421(6918): 37-42. https://doi.org/10.1038/nature01286 |
| [83] |
Pata, P. R., Galbraith, M., Young, K., et al., 2022. Persistent Zooplankton Bioregions Reflect Long⁃Term Consistency of Community Composition and Oceanographic Drivers in the NE Pacific. Progress in Oceanography, 206: 102849. https://doi.org/10.1016/j.pocean.2022.102849 |
| [84] |
Pata, P. R., Galbraith, M., Young, K., et al., 2024. Data⁃Driven Determination of Zooplankton Bioregions and Robustness Analysis. MethodsX, 12: 102676. https://doi.org/10.1016/j.mex.2024.102676 |
| [85] |
Perry, A. L., Low, P. J., Ellis, J. R., et al., 2005. Climate Change and Distribution Shifts in Marine Fishes. Science, 308(5730): 1912-1915. https://doi.org/10.1126/science.1111322 |
| [86] |
Piñones, A., Fedorov, A. V., 2016. Projected Changes of Antarctic Krill Habitat by the End of the 21st Century. Geophysical Research Letters, 43(16): 8580-8589. https://doi.org/10.1002/2016GL069656 |
| [87] |
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., et al., 2019. Greater Vulnerability to Warming of Marine versus Terrestrial Ectotherms. Nature, 569(7754): 108-111. https://doi.org/10.1038/s41586⁃019⁃1132⁃4 |
| [88] |
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., et al., 2013. Global Imprint of Climate Change on Marine Life. Nature Climate Change, 3(10): 919-925. https://doi.org/10.1038/nclimate1958 |
| [89] |
Poloczanska, E. S., Burrows, M. T., Brown, C. J., et al., 2016. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 3: 62. https://doi.org/10.3389/fmars.2016.00062 |
| [90] |
Polyakov, I.V., Alkire, M.B., Bluhm, B.A., et al., 2020. Borealization of the Arctic Ocean in Response to Anomalous Advection from Sub⁃Arctic Seas. Frontiers in Marine Science, 7: 491. https://doi.org/10.3389/fmars.2020.00491 |
| [91] |
Qi, Z. H., Shi, R. J., Dai, M., et al., 2021. A Review on Ecological Characteristics of Creseis acicula and Preliminary Analysis on Its Outbreak Triggers in Daya Bay. Journal of Tropical Oceanography, 40(5): 147-152 (in Chinese with English abstract). https://doi.org/10.11978/2020112 |
| [92] |
Richardson, A. J., 2008. In Hot Water: Zooplankton and Climate Change. ICES Journal of Marine Science, 65(3): 279-295. https://doi.org/10.1093/icesjms/fsn028 |
| [93] |
Schlüter, M. H., Kraberg, A., Wiltshire, K. H., 2012. Long⁃Term Changes in the Seasonality of Selected Diatoms Related to Grazers and Environmental Conditions. Journal of Sea Research, 67(1): 91-97. https://doi.org/10.1016/j.seares.2011.11.001 |
| [94] |
Schröter, F., Havermans, C., Kraft, A., et al., 2019. Pelagic Amphipods in the Eastern Fram Strait with Continuing Presence of Themisto Compressa Based on Sediment Trap Time Series. Frontiers in Marine Science, 6: 311. https://doi.org/10.3389/fmars.2019.00311 |
| [95] |
Schultz, M., Choquet, M., Tverberg, V., et al., 2023. Calanus helgolandicus⁃More Than a Guest in the North? Journal of Plankton Research, 45(1): 33-36. https://doi.org/10.1093/plankt/fbac070 |
| [96] |
Schultz, M., Nielsen, T. G., Møller, E. F., 2020. The Importance of Temperature and Lipid Accumulation for Initiation and Duration of Calanus hyperboreus Spawning. Journal of Plankton Research, 42(2): 159-171. https://doi.org/10.1093/plankt/fbaa003 |
| [97] |
Schwartzlose, R. A., Alheit, J., Bakun, A., et al., 1999. Worldwide Large⁃Scale Fluctuations of Sardine and Anchovy Populations. South African Journal of Marine Science, 21(1): 289-347. https://doi.org/10.2989/025776199784125962 |
| [98] |
Sheng, G. L., Tao, H. L., Song, S. W., et al., 2025. Applications of Ancient DNA Research in the Field of Geobiology. Earth Science, 50(3): 1105-1121 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.155 |
| [99] |
Shevchenko, O. G., Shulgina, M. A., Shulkin, V. M., et al., 2020. The Long⁃Term Dynamics and Morphology of the Diatom Thalassiosira Nordenskioeldii Cleve, 1873 (Bacillariophyta) from the Coastal Waters of Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 46(4): 284-291. https://doi.org/10.1134/S1063074020040069 |
| [100] |
Shi, Y. Q., Liu, Y. J., Shan, X. J., et al., 2025. Climate Change Induced First Record of Porpita porpita (Linnaeus, 1758) in the Yellow Sea, China. Marine Pollution Bulletin, 210: 117333. https://doi.org/10.1016/j.marpolbul.2024.117333 |
| [101] |
Słomska, A. W., Panasiuk, A., 2022. Environmental Conditions for the Successful Development of Salpa Thompsoni (Tunicata: Thaliaceae) Blastozooids and Embryos in the Atlantic Sector of the Southern Ocean. Marine Biology, 169(11): 138. https://doi.org/10.1007/s00227⁃022⁃04125⁃9 |
| [102] |
Słomska, A. W., Panasiuk, A., Weydmann⁃Zwolicka, A., et al., 2021. Historical Abundance and Distributions of Salpa Thompsoni Hot Spots in the Southern Ocean and Projections for Further Ocean Warming. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(8): 2095-2102. https://doi.org/10.1002/aqc.3443 |
| [103] |
Southward, A. J., 1980. The Western English Channel-An Inconstant Ecosystem? Nature, 285(5764): 361-366. https://doi.org/10.1038/285361a0 |
| [104] |
Staten, P. W., Lu, J., Grise, K. M., et al., 2018. Re⁃ Examining Tropical Expansion. Nature Climate Change, 8(9): 768-775. https://doi.org/10.1038/s41558⁃018⁃0246⁃2 |
| [105] |
Sunday, J. M., Bates, A. E., Dulvy, N. K., 2011. Global Analysis of Thermal Tolerance and Latitude in Ectotherms. Proceedings Biological Sciences, 278(1713): 1823-1830. https://doi.org/10.1098/rspb.2010.1295 |
| [106] |
Sunday, J. M., Pecl, G. T., Frusher, S., et al., 2015. Species Traits and Climate Velocity Explain Geographic Range Shifts in an Ocean⁃Warming Hotspot. Ecology Letters, 18(9): 944-953. https://doi.org/10.1111/ele.12474 |
| [107] |
Swadling, K. M., Constable, A. J., Fraser, A. D., et al., 2023. Biological Responses to Change in Antarctic Sea Ice Habitats. Frontiers in Ecology and Evolution, 10: 1073823. https://doi.org/10.3389/fevo.2022.1073823 |
| [108] |
Tachibana, A., Nomura, H., Ishimaru, T., 2019. Impacts of Long⁃Term Environmental Variability on Diapause Phenology of Coastal Copepods in Tokyo Bay, Japan. Limnology and Oceanography, 64(S1): S273-S283. https://doi.org/10.1002/lno.11030 |
| [109] |
Tarling, G. A., Freer, J. J., Banas, N. S., et al., 2022. Can a Key Boreal Calanus Copepod Species Now Complete Its Life⁃Cycle in the Arctic? Evidence and Implications for Arctic Food⁃Webs. Ambio, 51(2): 333-344. https://doi.org/10.1007/s13280⁃021⁃01667⁃y |
| [110] |
Thackeray, S. J., Henrys, P. A., Hemming, D., et al., 2016. Phenological Sensitivity to Climate across Taxa and Trophic Levels. Nature, 535(7611): 241-245. https://doi.org/10.1038/nature18608 |
| [111] |
Thoman, R.L., Moon, T.A., Druckenmiller, M.L., 2023. Arctic Report Card 2023. NOAA, Washington D.C.. https://doi.org/10.25923/5vfa⁃k694 |
| [112] |
Usov, N. V., Khaitov, V. M., Kutcheva, I. P., et al., 2021. Phenological Responses of the Arctic, Ubiquitous, and Boreal Copepod Species to Long⁃Term Changes in the Annual Seasonality of the Water Temperature in the White Sea. Polar Biology, 44(5): 959-976. https://doi.org/10.1007/s00300⁃021⁃02851⁃2 |
| [113] |
Wang, C. F., Wang, X. Y., Xu, Z. Q., et al., 2022a. Planktonic Tintinnid Community Structure Variations in Different Water Masses of the Arctic Basin. Frontiers in Marine Science, 8: 775653. https://doi.org/10.3389/fmars.2021.775653 |
| [114] |
Wang, C. F., Xu, Z. Q., He, Y., et al., 2022b. Neritic Tintinnid Community Structure and Mixing with Oceanic Tintinnids in Shelf Waters of the Pacific Arctic Region during Summer. Continental Shelf Research, 239: 104720. https://doi.org/10.1016/j.csr.2022.104720 |
| [115] |
Wang, C. F., Xu, Z. Q., Liu, C. G., et al., 2019. Vertical Distribution of Oceanic Tintinnid (Ciliophora: Tintinnida) Assemblages from the Bering Sea to Arctic Ocean through Bering Strait. Polar Biology, 42(11): 2105-2117. https://doi.org/10.1007/s00300⁃019⁃02585⁃2 |
| [116] |
Wiltshire, K. H., Malzahn, A. M., Wirtz, K., et al., 2008. Resilience of North Sea Phytoplankton Spring Bloom Dynamics: An Analysis of Long⁃Term Data at Helgoland Roads. Limnology and Oceanography, 53(4): 1294-1302. https://doi.org/10.4319/lo.2008.53.4.1294 |
| [117] |
Winder, M., Berger, S. A., Lewandowska, A., et al., 2012. Spring Phenological Responses of Marine and Freshwater Plankton to Changing Temperature and Light Conditions. Marine Biology, 159(11): 2491-2501. https://doi.org/10.1007/s00227⁃012⁃1964⁃z |
| [118] |
Woillez, M., Rivoirard, J., Petitgas, P., 2009. Notes on Survey⁃Based Spatial Indicators for Monitoring Fish Populations. Aquatic Living Resources, 22(2): 155-164. https://doi.org/10.1051/alr/2009017 |
| [119] |
Woodgate, R. A., Aagaard, K., Weingartner, T. J., 2005. Monthly Temperature, Salinity, and Transport Variability of the Bering Strait through Flow. Geophysical Research Letters, 32(4): 2004GL021880. https://doi.org/10.1029/2004GL021880 |
| [120] |
Xu, Z. L., Gao, Q., 2009. Labidocera Euchaeta: Its Distribution in Yangtze River Estuary and Responses to Global Warming. Chinese Journal of Applied Ecology, 20(5): 1196-1201 (in Chinese with English abstract). |
| [121] |
Yamaguchi, R., Rodgers, K. B., Timmermann, A., et al., 2022. Trophic Level Decoupling Drives Future Changes in Phytoplankton Bloom Phenology. Nature Climate Change, 12(5): 469-476. https://doi.org/10.1038/s41558⁃022⁃01353⁃1 |
| [122] |
Yang, H., Lohmann, G., Krebs⁃Kanzow, U., et al., 2020. Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate. Geophysical Research Letters, 47(5): e2019GL085868. https://doi.org/10.1029/2019GL085868 |
| [123] |
Yoshiki, T. M., Chiba, S., Sasaki, Y., et al., 2015. Northerly Shift of Warm⁃Water Copepods in the Western Subarctic North Pacific: Continuous Plankton Recorder Samples (2001-2013). Fisheries Oceanography, 24(5): 414-429. https://doi.org/10.1111/fog.12119 |
| [124] |
Zanna, L., Khatiwala, S., Gregory, J. M., et al., 2019. Global Reconstruction of Historical Ocean Heat Storage and Transport. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1126-1131. https://doi.org/10.1073/pnas.1808838115 |
| [125] |
Zhang, W., Li, J., Li, H., et al., 2025. A New Tintinnid Ciliate of Salpingella (Ciliophora: Spirotrichea) from the Subarctic North Pacific Ocean to Arctic Ocean, with Notes on Its Habitat. Zoological Systematics, 50(4): 293—301. https://doi.org/10.11865/zs.2025402 |
| [126] |
Zhang, W. C., Zhao, Y., Dong, Y., et al., 2021. Biogeography of Epipelagic Marine Plankton. Oceanologia et Limnologia Sinica, 52(2): 332-345 (in Chinese with English abstract). https://doi.org/10.11693/hyhz20200100211 |
国家重点研发项目(2022YFC3105301)
国家自然科学基金项目(42476143)
国家自然科学基金项目(42076139)
/
| 〈 |
|
〉 |