腾冲地区新生代高钾钙碱性火山岩结构组成及形成过程

江涛 ,  郑建平 ,  苏玉平 ,  杨志国 ,  李鑫

地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4387 -4404.

PDF (14191KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4387 -4404. DOI: 10.3799/dqkx.2025.173

腾冲地区新生代高钾钙碱性火山岩结构组成及形成过程

作者信息 +

Structure Composition and Formation Process of Cenozoic High⁃K Calc⁃Alkaline Volcanic Rocks in Tengchong Area

Author information +
文章历史 +
PDF (14530K)

摘要

腾冲地区新生代以来,发育大量高钾钙碱性火山岩(玄武质粗面安山岩和粗面安山岩),但具体形成过程尚不明确.基于岩相学分析,对这些火山岩进行全岩主量、矿物主微量元素分析,并结合文献已发表数据,探讨其形成演化过程.岩石普遍具斑状结构,斑晶以橄榄石、辉石和斜长石为主,并发育聚斑晶.单斜辉石斑晶常见正环带、反环带及振荡环带,其中振荡环带指示岩浆演化过程中多批次基性岩浆补给混合和可能的局部混染作用.全岩主量元素分析显示它们属于高钾钙碱性系列岩石.单斜辉石、斜方辉石和斜长石斑晶及聚斑晶有相似的稀土元素和微量元素配分模式,但单斜辉石最富集微量元素,其次为斜长石,斜方辉石的含量最低.橄榄石斑晶化学指示岩浆源区可能来源于橄榄岩的部分熔融,而全岩微量元素及单斜辉石斑晶的成分特征记录岛弧环境信息.斑晶矿物平衡温压计算及地球物理学资料共同揭示研究区下方存在两个中酸性岩浆储库:浅部的英安质岩浆储库(深度为8.3~13.6 km)和深部的安山质岩浆储库(深度为18.4~30.2 km).本文研究样品均源于深部储库,形成过程包括:基性岩浆补给引发晶粥‒熔体的混合作用,当新生熔体在储库中占主导时,触发喷发,并携带半固结岩浆团至地表,形成典型的(聚)斑晶结构.

Abstract

Since the Cenozoic, a large amount of high-potassium calc-alkaline volcanic rocks (basaltic trachyandesite and trachyandesite) have developed in the Tengchong area, but the specific formation process remains unclear. Based on petrographic analysis, in this paper it conducts whole-rock major element and mineral major and trace element analyses of these volcanic rocks, and discusses their formation and evolution process in combination with the published data. The rocks commonly exhibit porphyritic textures, with phenocrysts predominantly consisting of olivine, pyroxene, and plagioclase, and the development of glomerocrysts. Clinopyroxene phenocrysts commonly show normal zoning, reverse zoning, and oscillatory zoning, with oscillatory zoning indicating multi-stage mafic magma replenishment and possible local contamination during magma evolution. Whole-rock major element analysis reveals that these rocks belong to the high-potassium calc-alkaline rock series. Clinopyroxene, orthopyroxene, and plagioclase phenocrysts and glomerocrysts show similar REE and trace element distribution patterns, with clinopyroxene being the most enriched in trace elements, followed by plagioclase, and orthopyroxene showing the lowest concentrations. The geochemical characteristics of olivine phenocrysts suggest that the magma source region may have originated from partial melting of peridotite, while the trace element compositions of the whole rocks and clinopyroxene phenocrysts record geochemical signatures characteristic of an arc-related tectonic setting. The mineral equilibrium temperature-pressure calculations reveal the existence of two intermediate to felsic magma reservoirs beneath the study area: a shallow dacitic magma reservoir (depth 8.3-13.6 km) and a deep andesitic magma reservoir (depth 18.4- 30.2 km). The studied samples are derived from the deeper reservoir. Their formation involves mafic magma recharge, triggering mixing between crystal mush and melt; when newly generated melts become dominant within the reservoir, eruption is triggered, carrying semi-consolidated magmatic clots to the surface and forming the typical (glomerocrystic) textures.

Graphical abstract

关键词

新生代 / 高钾钙碱性火山岩 / 斑晶 / 岩浆储库 / 腾冲地区 / 稀土元素 / 岩石学.

Key words

Cenozoic / high⁃K calc⁃alkaline volcanic rocks / phenocryst / magma reservoir / Tengchong area / rare earth elements / petrology

引用本文

引用格式 ▾
江涛,郑建平,苏玉平,杨志国,李鑫. 腾冲地区新生代高钾钙碱性火山岩结构组成及形成过程[J]. 地球科学, 2025, 50(11): 4387-4404 DOI:10.3799/dqkx.2025.173

登录浏览全文

4963

注册一个新账户 忘记密码

火山喷发是地球内部能量聚集释放的过程,伴随物质向地表的输运.岩浆冷却时,悬浮的晶体比例增加导致粘度上升,最终形成由晶体与间隙熔体构成的“晶粥”(Glazner et al., 2016).晶粥通常难以喷发,但可以通过球状晶体或堆积结核形式被携带(Cashman et al., 2017),其间隙熔体迁移可形成新生岩浆.火山岩斑晶的组成与空间分带记录岩浆储库演化过程:斑晶核部反映较原生熔体的成分与温度条件,而成分分带可揭示岩浆混合或封闭体系分异过程(Nakagawa et al., 2002),这对理解岩浆输运机制至关重要(Zhang et al., 2023).
腾冲地区新生代火山岩(8 Ma至今)形成基性‒中性‒酸性岩石系列,揭示了多阶段岩浆演化(赵勇伟和樊祺诚,2010).前人研究认为,这些岩浆形成于亚洲‒印度大陆碰撞后的板内构造环境(Wang et al., 2007),其源区可能为富集地幔(Zhang et al., 2012),并受印度板块及印度洋板块俯冲的影响(Guo et al., 2015).地幔源区的部分熔融生成母岩浆,经过不同程度的地壳混染和分离结晶,在地壳不同深度形成了岩浆储库,并受到多次岩浆补给和构造断裂带的影响(Yang et al., 2013Zhang et al., 2015Cheng et al., 2020).中性安山岩是腾冲地区新生代火山岩的主要岩石类型(Zhang et al., 2012),其形成过程主要由玄武质岩浆通过结晶分异作用,在地壳中形成安山质岩浆储库(Tian et al., 2018Duan et al., 2019),最终喷发形成安山岩.尽管已有研究集中于腾冲某一地点的安山岩矿物斑晶,认为其形成反映了岩浆补给与混合等过程(Yu et al., 2012Hu et al., 2018),但具体的岩浆储库深度和(聚)斑晶结构岩石形成过程还不清楚.
因此,当前关于腾冲地区新生代火山岩(尤其是中性安山岩)的研究仍然存在不足,其形成过程尚不明确.本文系统地分析了腾冲火山区各期次的火山岩,通过全岩主量元素分析、矿物斑晶原位主微量元素测试,结合岩相学特征与区域数据,系统解析其结构、成分特征与岩浆演化过程.

1 地质背景

腾冲地块位于青藏高原东南缘,是拉萨地块东南向的延伸部分(Mo et al., 2006).东部以高黎贡韧性剪切带为界,西部是密支那缝合带(Duan et al., 2019).该地块处于亚洲‒印度板块碰撞的最前沿,遭受了强烈的构造作用,广泛分布着岩浆活动及地热资源.火山活动主要受北东‒南西向走滑断裂带的控制.新生代以来,火山活动较为强烈,尤其是自8 Ma至今,火山活动更为频繁,形成了大量的高钾钙碱性岩浆岩(Cheng et al., 2020).

研究区发育有近70座火山,岩浆岩分布广泛,主要集中在南北向的狭长盆地中.火山活动时序呈现出从南北、东西向两侧向中部逐渐变新的特点,因此,该区域中部的火山岩时代较新,向两侧逐渐变老,形成对称分布(姜朝松,1998a,1998b).根据火成岩的形成时代可将火成岩分成四期:第一期(8~3 Ma)上新世;第二期(2.7~0.8 Ma)早更新世;第三期(0.8~0.2 Ma)晚更新世;第四期(<0.2 Ma)全新世(成智慧等,2020;Cheng et al., 2020).

采样区位于云南腾冲地区(98°15′~98°45′E,24°40′~25°30′ N),包括马鞍山(MAS)、大黑山(DHS)、打鹰山(DYS)、大空山(DKS)、曲石乡柱状节理观景台处(CJ)、芒棒(MB),7个地点(图1),所采集的样品均为新生代火山岩,结合前人研究,对本次采样样品进行分期及简单描述(表1).

2 岩相学特征

芒棒乡大石头场主要出露粗面安山岩,可见包体(图2a).马鞍山地区的火山岩含有大量气孔(图2b),部分气孔被拉长并定向排列,指示了岩浆的流动方向.曲石乡柱状节理观景台处发育大量的柱状节理(图2c).

岩石具有气孔构造和斑状结构,斑晶主要由斜长石和辉石组成,部分岩石含有橄榄石斑晶,有的则含有石英捕虏晶(图3c).斜长石呈他形‒半自形,常见聚片双晶,部分斜长石内部蚀变严重,形成筛状结构,还有一些斜长石具有环带结构(图3a、3b).辉石主要以单斜辉石为主,形态从自形到他形不等,部分辉石形成巨大的聚斑晶(图3d).橄榄石斑晶呈半自形至他形、粒状,大部分发育有裂纹.此外,样品中还存在大量的由辉石和斜长石组合形成的聚斑晶,部分聚斑晶是由辉石组合、橄榄石和长石组合而成.在这些聚斑晶中,辉石和斜长石呈半自形至他形.岩石中还含有铁钛氧化物、尖晶石、磷灰石等副矿物.基质主要由斜长石、辉石和橄榄石等矿物组成,部分岩石薄片中可见针状的微晶斜长石.

3 分析方法

本次研究对腾冲地区新生代火山岩开展了全岩主量元素,特别是其中的辉石和长石斑晶的原位主微量元素分析.

全岩主量元素分析测试是在中国地质大学(武汉)地质过程与矿产预测全国重点实验室完成,岩石样品被制成200目以下的粉末进行全岩主量测试,将制作好的玻璃片使用日本岛津公司生产的XRF⁃1800顺序扫描型X射线荧光光谱仪进行岩石的全岩主量元素含量测试,测试条件为:电压=40 kV、电流=70 mA,采用标准曲线法对数据进行定量校准,主量元素测试精度在4%以内,将测得的标样测试值与标样推荐值进行对比,含量相差在3%以内测试结果较为可靠.

矿物的原位微区主微量元素分析测试是在中国地质大学(武汉)地质过程与矿产预测全国重点实验室完成.具体的仪器参数见Hu et al.(2015),激光剥蚀的条件见Luo et al.(2018).得到原始数据利用ICPMS Data Cal软件进行处理,在数据处理过程中,我们需要对原始数据的背景信号和收集信号进行选择和滤峰,并进行仪器灵敏度的漂移校正及元素含量计算(采用无内标‒多外标法),最终归一化到100%,标样的测试值与推荐值误差范围需要控制在10%以内.

4 测试结果

4.1 全岩主量地球化学

主量元素测试结果表明,样品以玄武质粗面安山岩和粗面安山岩为主,均属高钾钙碱性系列火山岩(图4).其地球化学特征如下:SiO2含量为53.10%~58.26%,MgO含量偏低(3.18%~5.47%),反映岩浆的演化程度较高;Al2O3含量显著(16.54%~17.81%),CaO为5.52%~ 7.54%,K2O(2.31%~3.86%)与Na2O(3.10%~3.64%)呈现富碱特征.岩石学分类显示(图4),7个采样点的新生代火山岩均为中性安山质岩石,未出现明显的分期演化现象.

4.2 斑晶地球化学特征

4.2.1 橄榄石

橄榄石斑晶广泛发育,但在芒棒地区并未发现橄榄石斑晶.矿物化学分析显示,橄榄石斑晶Mg#范围为76~85,属于贵橄榄石,其CaO的含量大于0.1%(Simkin and Smith, 1970),Ti含量在53.6×10-6~120.2×10-6,一般而言,地幔捕虏晶Ti含量较低,通常小于70×10-6,且分布范围狭窄(Foley et al., 2013;曹俊等,2024).本研究的橄榄石多呈半自形至自形,未见地幔捕虏晶成因的扭折带.因此,橄榄石为斑晶而非捕虏晶,与前人研究结果一致(图5).橄榄石斑晶普遍发育正环带,且存在典型的“亮白边”现象,即橄榄石的核部明显富Mg贫Fe,而边部则相反,这表明岩浆演化的后期,Fe含量有所上升.

4.2.2 辉石

研究样品中辉石是主要的斑晶,7个采样点均可见及.矿物化学分析显示(图6a),单斜辉石斑晶(聚斑晶)的端元组分为Fs10.12~17.52

Wo36.46~43.94En64.22~80.23,其中CaO(17.61%~21.31%),Al2O3(3.49%~5.57%),TiO2(0.67%~1.50%),Mg#值范围为71~83,属普通辉石范畴.斜方辉石斑晶(聚斑晶)端元组分变化为Fs16.70~32.80Wo2.97~3.18En64.22~80.23,其中CaO(1.53%~1.84%),Al2O3(1.24%~3.46%),TiO2(0.25%~0.39%),Mg#值变化范围为66~82,主要为斜顽辉石.

根据单斜辉石的微量和稀土元素地球化学特征(图7),各采样点稀土元素球粒陨石标准化配分模式及微量元素原始地幔标准化蛛网图均呈现相似性.∑REE的范围为38.5×10-6~120.1×10-6,平均值为74.3×10-6,La/Yb比值介于1.15~3.84,LREE/HREE比值为1.70~3.49.总体而言,轻稀土(LREE:La、Ce、Pr、Nd)相对富集,并显示微弱Eu负异常(δEu = 0.65~0.90).微量元素体系以Th、LREE(La、Ce)、Nd、Sm的正异常与Ba、Nb、Ta、Pb、Sr、Zr的负异常为特征,与全岩相比,单斜辉石中强不相容元素(如Rb、Ba)含量相对较低,与这些元素在单斜辉石和熔体中的分配行为相吻合(图7b).这些元素富集‒亏损组合揭示岩浆演化过程中存在显著的结晶分异作用,导致残余熔体中不相容元素逐步富集的地球化学继承性特征.

斜方辉石的稀土元素总量(∑REE)范围为1.39×10-6~4.04×10-6(其中有一例为13.73×10-6),平均值为2.81×10-6.其La/Yb比值介于0.046~0.11,LREE/HREE比值则在0.04~0.49.斜方辉石的稀土元素含量普遍较低,且表现出显著的轻稀土元素(LREE)亏损,重稀土元素(HREE)则相对富集(图8).此外,部分斜方辉石斑晶存在轻微的Eu负异常(δEu=0.23~1.66).从斜方辉石的稀土元素球粒陨石标准化图和微量元素原始地幔标准化蛛网图来看,二者显示出较为一致的趋势.斜方辉石的微量元素原始地幔蛛网图显示出Nb、Sr、Eu元素的负异常,以及Pb、Hf元素的正异常(图8).

4.2.3 长石

长石在7个采样点普遍存在,是最常见的斑晶类型.在部分样品中,斜长石与辉石结合形成聚斑晶结构.岩相学观察与地球化学分析结果(图6b)表明,样品中主要发育斜长石斑晶,碱性长石斑晶较为少见.根据图6b所示,斜长石的成分范围为An54.73~66.69Ab31.59~49.92Or1.51~3.55(打鹰山除外(An46.53)),成分变化较窄,主要为拉长石(打鹰山(An46.53)为中长石).此外,马鞍山样品中的两个数据点落入歪长石区域,表明其中包含少量碱性长石成分.通过能谱分析(EDS)对斜长石斑晶进行半定量分析时,发现其中亦存在偏酸性的斜长石.

斜长石的稀土元素(∑REE)范围为3.87×10-6~28.49×10-6,平均值为11.05×10-6,整体稀土元素含量较低.LREE/HREE比值介于16.14~77.24,表明轻稀土元素(LREE)显著富集,重稀土元素(HREE)明显亏损(图9).同时,斜长石显示出明显Eu正异常(δEu=5.94~40.17),这主要是因为Eu在斜长石中的分配系数较高,使得其在结晶过程中更容易富集.在老龟坡(LGP)采样点,碱性长石的稀土元素含量较高(60.09×10-6和95.03×10-6).微量元素原始地幔蛛网图显示,长石具有Ba、La、Sr、Eu的正异常及Rb、Ce、Pb、Zr、Sm的负异常.总体而言,斜长石的稀土元素球粒陨石标准化图与微量元素原始地幔蛛网图呈现较为一致的趋势,且碱性长石(LGP)中的稀土元素与微量元素含量相对较高(图9).

5 矿物平衡温压

本研究采用斜长石‒熔体(Putirka, 2005)与单斜辉石‒熔体(Putirka et al., 2003)温压计,以全岩主量元素作为基质成分,限定喷发前岩浆系统的热力学状态.当KD(Fe⁃Mg)Cpx-liq=(XcpxFeOXliqMgO/ XcpxMgOXliqFeO)=0.28±0.08,单斜辉石与熔体处于平衡状态,在T> 1 050℃,KD(An⁃Ab)Pl-liq=(XplAbXliqAlO1.5XliqCaO/XplAn XliqNaO0.5XliqSiO2)=0.27±0.11,斜长石与熔体处于平衡状态(Putirka, 2008).剔除不平衡数据(图10a、10b),获得单斜辉石‒熔体温压计平衡温度为1 096~1 149 ℃,估计标准误差(SEE)为33 ℃,压力为2.9~8.5 kbar,SEE为1.7 kbar;斜长石‒熔体温压计平衡温度为1 069~ 1 158 ℃,SEE为23 ℃,压力为3.5~8.4 kbar,SEE为1.8 kbar(详见表2).两类温压计结果与Cheng et al.(2020)提出的深部岩浆储库温压条件高度吻合(图10c),表明腾冲岩浆多深度层次的演化特征.

6 讨论

6.1 斑晶矿物环带结构指示的岩浆补给与混合作用

本研究的样品主要为中性岩(玄武质粗面安山岩和粗面安山岩),属于高钾钙碱性系列(图4).结合前人数据,第一期火山岩偏基性,而其余三期火山岩则涵盖基性、中性及酸性成分,显示出基性‒中性‒酸性演化的趋势,形成基性玄武质‒中性安山质‒酸性英安质的岩石系列.

熔岩中的斑晶成分及其结构分区记录了岩浆的物理化学条件变化.封闭岩浆管道中的结晶作用通常形成自形斑晶和正环带斑晶(Carracedo, 1999).相反,持续的岩浆补给会引起岩浆储库内温度和成分波动,形成正环带、反环带及振荡环带斑晶(Streck, 2008).细微的振荡环带(厚度<15 μm),多由局部化学扩散形成,而较厚的振荡环带(>50 μm)通常与岩浆补给或大规模对流引起的成分波动有关(Elardo and Shearer, 2014).

橄榄石斑晶主要发育正环带,表现为典型的“亮白边”结构,Fe含量突增且无过渡带(图11a、11b),表明岩浆系统经历了快速的成分变化,可能与基性岩浆注入导致Fe含量显著升高有关.辉石的环带结构反映了岩浆演化过程中温度、压力、水含量和氧逸度等条件的变化.在本研究的火山岩中,单斜辉石广泛发育,主要呈现正环带、反环带(图11e)和振荡环带(图11g)结构,振荡环带表现出从核部到边部Mg#周期性变化的特征.

研究表明,镁铁质岩浆的补给显著导致Cr元素的富集,同时Mg#增大.Ti元素在单斜辉石中表现出轻微的不相容性,正常结晶过程中,晶体内部的Ti含量通常低于边缘.具明显振荡环带的单斜辉石中,Cr元素含量与Mg#变化一致,且Cr含量出现两次明显突增(图11h).同时,具有环带的单斜辉石(图11g)微量元素蛛网图显示,Rb、Ba等强不容元素较高(图7b),进一步反映了岩浆的补给过程.综合这些证据,表明岩浆演化过程中至少经历了两次镁铁质岩浆补给或局部混合作用.此外,Ti元素从核部到边缘呈现先减少后增加的变化,反映了岩浆成分的演化,表明基性岩浆补给过程中发生了混合作用.

振荡环带的厚度通常与岩浆补给或大尺度对流引起的成分波动相关.单斜辉石中较厚的环带(>50 μm)(图11e、11g)表明了这些成分波动的存在.此外,部分斜长石呈现筛状结构(图3b),并发育明显的熔蚀边(图11f),进一步证明岩浆储库中存在岩浆补给或局部混染作用,导致岩浆储库内温度和成分的变化.

6.2 聚斑晶的来源

研究区新生代火山岩普遍发育聚斑结构,芒棒地区的聚斑晶主要由单斜辉石和斜长石组成;曲石乡柱状节理观景台则常见单斜辉石+斜长石、辉石、橄榄石+辉石组合的聚斑晶,其余采样点的聚斑晶相对较少,主要为单斜辉石和斜长石的组合.这些聚斑晶中的矿物完整无破损,未见折断现象,表明它们可能来源于岩浆捕获半固结岩浆团(罗照华等,2011).

单斜辉石斑晶和聚斑晶的稀土元素球粒陨石标准化配分模式显示(图7),与全岩相比,轻稀土元素(La、Ce、Pr、Nd)含量较低,而中‒重稀土元素(Sm~Lu)配分模式与全岩一致.微量元素蛛网图中不相容元素含量较低,符合单斜辉石‒熔体间的元素分配行为,进一步支持聚斑晶源自岩浆储库内部的观点.

单斜辉石、斜方辉石和长石斑晶的稀土元素球粒陨石标准化图及微量元素原始地幔蛛网图呈现相似的配分模式(图7图8图9),表明四期火山岩可能源自同一初始岩浆(周真恒等,2000),并经历了单斜辉石与斜长石的分离结晶作用(樊祺诚等,1999;赵勇伟和樊祺诚,2010).四期火山岩具有从基性玄武岩→中性安山岩、粗安岩→酸性英安岩的连续演化趋势(图4a),且全岩稀土元素和微量元素配分模式的一致性进一步支持了这一观点(图7).因此,聚斑晶的形成可能反映了岩浆演化过程中,岩浆储库中半固结的岩浆团被岩浆捕获的过程.

6.3 岩浆源区及构造环境

橄榄石斑晶成分可有效指示地幔源区特征及演化过程(Sobolev et al., 2005,2007).相比辉石岩源区,橄榄岩源区熔体中的橄榄石通常具有更低的Fe/Mn比,更高的Ni、Mn和Ca含量,这主要由于Ni在橄榄石中高度相容,而Mn和Ca则相容于辉石(Sobolev et al., 2007).腾冲地区新生代火山岩中橄榄石斑晶表现出低Ni/Mg、低Ca/Fe和高Mn/Fe比值(图12),其中100×Mn/Fe值均大于1.4,Fe/Mn值为60~70,类似Kamchatka和中美洲地区的橄榄石特征(图12d),指示其熔体主要源自橄榄岩源区.

此外,腾冲地区新生代火山岩在地球化学上富集大离子亲石元素(LILEs,如Rb,U,Th,Pb)和轻稀土元素(LREEs,如La,Ce),亏损高场强元素(HFSEs,如Nb,Ta,Ti)(图7).基于前人研究,认为其源区为受到俯冲物质交代的富集地幔,指示火山岩形成于与俯冲相关的交代富集地幔环境(Zou et al., 2010,2014Zhou et al., 2012Guo et al., 2015Tian et al., 2018Duan et al., 2019Cheng et al., 2020).

单斜辉石成分,尤其是Ti和Al等微量元素含量,与构造环境密切相关(Leterrier et al., 1982).根据Alz(四配位Al占总Al百分比)值与TiO2含量的关系,可推测辉石母岩浆的源区特征(Loucks, 1990).岩石中单斜辉石斑晶,根据Alz值与TiO2含量关系,以及TiO2、MnO、Na2O含量和F1F2参数分析(Nisbet and Pearce, 1977),均主要落入弧相关玄武岩区域(图13a),四期火山岩样品主要集中于火山弧玄武岩区域,只有第二期部分样品位于火山弧与洋底玄武岩交界处(图13b).这表明腾冲新生代火山岩岩浆源区具有显著的岛弧特征,与全岩稀土和微量元素指示的构造环境一致(Li et al., 2012; Zhang et al., 2012; Guo et al., 2015; Cheng et al., 2020).

印度‒欧亚板块约60 Ma发生碰撞,而腾冲地区新生代火山活动始于约8 Ma,明显滞后于碰撞事件.关于其构造归属,存在多种解释:赵崇贺和陈廷方(1992)提出腾冲火山属“碰撞后弧火山”或“滞后型弧火山”,与怒江洋俯冲相关;陈廷方和赵崇贺(1994)基于微量元素特征确认其岛弧成分特征;Wang et al.(2007)则认为腾冲火山岩来源属于陆内环境,由于实皆断裂的右旋走滑运动引起成熟岛弧特征的火山爆发.综合分析表明,腾冲新生代火山岩虽形成于陆内环境,但其岩浆源区明显受印度板块(Guo et al., 2015)或印度洋板块俯冲的改造,继承了显著的岛弧火山岩地球化学特征.

6.4 岩浆储运系统

近年来,许多学者采用不同的方法对腾冲火山区进行广泛研究,揭示了该地区壳内存在明显的低速带,其深度为10~20 km,横向范围为20~30 km(Xu et al., 2012),尤其是在马站‒腾冲‒马鞍山和五合‒龙江‒团田一带,发现了两个地幔抬升点,这可能对应地壳中两个岩浆储库的位置(Yang et al., 2013Zhang et al., 2015).Zhao et al.(2021)通过环境噪声伴随层析成像揭示腾冲火山下的岩浆储层,研究表明腾冲下方存在一个体积约7 000 km3的大型玄武岩岩浆储层,深度为20~35 km.Hu et al.(2018)对腾冲火山区黑空山进行辉石平衡温压计算,结果显示黑空山下方存在一个深度为14~21 km的岩浆储库.Cheng et al.(2020)对该区的火山岩中的矿物进行平衡温压计算,结果表明腾冲地区下方存在两个岩浆储库,其深度分别为9~14 km和17~28 km.

通过平衡温压计算结果可知,在腾冲火山区下方存在一个深岩浆储库,温度为1 069~1 158 ℃,压力为4.7~8.5 kbar,对应的岩浆储库深度在18.4~30.2 km(图14a).由于本研究的岩石样品为中性岩,其浅部岩浆储库的存在可结合Cheng et al.(2020)对研究区英安岩中的角闪石的角闪石‒熔体平衡温压加以推断,该浅岩浆储库温度为893~943 ℃,压力为1.5~3.2 kbar,对应的岩浆储库深度介于8.3~13.6 km.因此,我们推测腾冲火山岩下方存在两个连续的岩浆储库,这一结论与前人通过地球物理手段获得的研究结果相一致(图14b).

因此,我们提出腾冲地区存在双层岩浆系统:浅部的英安质岩浆储库(8.3~13.6 km)和深部的安山质岩浆储库(18.4~30.2 km)(图15).研究样品均源于深部储库,揭示其岩浆活动特征.地壳中的岩浆储库通常以晶粥(mush)形态存在,处于相对稳定的状态,难以直接喷发至地表,而以熔体为主的岩浆储库则往往不稳定,更容易引起喷发(Cashman et al., 2017).在腾冲地区,受俯冲作用引发的交代过程的影响,富集地幔源区发生部分熔融,形成富集成分的玄武质岩浆,当这种基性岩浆上侵至深部岩浆储库时,形成对晶粥的补给,引发晶粥‒熔体的混合作用,当新生熔体在储库中所占比超过临界值时,触发喷发事件,并将半固结岩浆团携带至地表,形成火山岩中典型(聚)斑晶结构.

7 结论

腾冲地区新生代玄武质粗面安山岩和粗面安山岩,普遍有橄榄石、辉石、斜长石(聚)斑晶,属于高钾钙碱性系列岩石.单斜辉石的反环带及振荡环带结构指示基性岩浆补给和局部混染作用.(聚)斑晶的形成指示岩浆储库中半固结的晶粥团块被新生熔体捕获并搬运至地表.岩浆源区可能为橄榄岩经历部分熔融作用所产生的熔体,具有典型的岛弧地球化学特征,与全岩微量元素所揭示的构造环境高度吻合,反映出熔体在成因过程中在一定程度上继承了源区的地球化学属性.腾冲地区下方存在浅部英安质岩浆储库(深度为8.3~13.6 km)和深部安山质岩浆储库(深度为18.4~30.2 km).

参考文献

[1]

Cao, J., Chen, M. M., Wan, S. M., et al., 2024. Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China. Earth Science, 49(7): 2448-2474 (in Chinese with English abstract).

[2]

Carracedo, J. C., 1999. Growth, Structure, Instability and Collapse of Canarian Volcanoes and Comparisons with Hawaiian Volcanoes. Journal of Volcanology and Geothermal Research, 94(1-4): 1-19. https://doi.org/10.1016/S0377⁃0273(99)00095⁃5

[3]

Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055

[4]

Chen, K. F., He, H. Y., Stuart, F., et al., 2023a. Binary Mixing of Lithospheric Mantle and Asthenosphere beneath Tengchong Volcano, SE Tibet: Evidence from Noble Gas Isotopic Signatures. International Geology Review, 65(2): 236-252. https://doi.org/10.1080/00206814.2022.2042744

[5]

Chen, K. F., Liu, S. L., Yang, D. H., et al., 2023b. Lithospheric Thinning beneath the Tengchong Volcanic Field, Southern China: Insight from Cenozoic Calc⁃ Alkaline Basalts. Frontiers in Earth Science, 11: 1036001. https://doi.org/10.3389/feart.2023.1036001

[6]

Chen, T. F., 2003. The Petrology of the Volcanic Rocks in Tengchong, Yunnan. Sedimentary Geology and Tethyan Geology, 23(4): 56-61 (in Chinese with English abstract).

[7]

Chen, T. F., Zhao, C. H., 1994. Discussion on the Tectonic Setting of the Tengcong Cenozoic Volcanic Rocks. Journal of Southwest University of Science and Technology, 9(4): 52-59 (in Chinese with English abstract).

[8]

Cheng, Z. H., Guo, Z. F., Dingwell, D. B., et al., 2020. Geochemistry and Petrogenesis of the Post⁃Collisional High⁃K Calc⁃Alkaline Magmatic Rocks in Tengchong, SE Tibet. Journal of Asian Earth Sciences, 193: 104309. https://doi.org/10.1016/j.jseaes.2020.104309

[9]

Cheng, Z. H., Yang, Z. J., Zhao, W. B., et al., 2020. Gabbroic Xenoliths and Glomerocrysts in the Post⁃Collisional Trachyandestic Rocks from Tengchong, SE Tibet: Implications for the Magma Chamber Processes. Acta Petrologica Sinica, 36(7): 2127-2148 (in Chinese with English abstract).

[10]

Ding, L. L., Liu, J. Q., Guo, Z. F., et al., 2018. The Eruption Trigger of the Dacitic Magma in Tengchong during the Middle Pleistocene. Acta Petrologica Sinica, 34(1): 113-125 (in Chinese with English abstract).

[11]

Duan, X. Z., Fan, H. R., Zhang, H. F., et al., 2019. Melt Inclusions in Phenocrysts Track Enriched Upper Mantle Source for Cenozoic Tengchong Volcanic Field, Yunnan Province, SW China. Lithos, 324/325: 180-201. https://doi.org/10.1016/j.lithos.2018.10.034

[12]

Elardo, S. M., Shearer, C. K., 2014. Magma Chamber Dynamics Recorded by Oscillatory Zoning in Pyroxene and Olivine Phenocrysts in Basaltic Lunar Meteorite Northwest Africa 032. American Mineralogist, 99(2-3): 355-368. https://doi.org/10.2138/am.2014.4552

[13]

Fan, Q. C., Liu, R. X., Wei, H. Q., et al., 1999. Magmatic Evolution of Tengchong Active Volcano. Geological Review, 45(S1): 895-904 (in Chinese with English abstract).

[14]

Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025

[15]

Gao, J. F., Zhou, M. F., Robinson, P. T., et al., 2015. Magma Mixing Recorded by Sr Isotopes of Plagioclase from Dacites of the Quaternary Tengchong Volcanic Field, SE Tibetan Plateau. Journal of Asian Earth Sciences, 98: 1-17. https://doi.org/10.1016/j.jseaes.2014.10.036

[16]

Glazner, A., Bartley, J., Coleman, D., 2016. We Need a New Definition for “Magma”. Eos, 97. https://doi.org/10.1029/2016eo059741

[17]

Guo, Z. F., Cheng, Z. H., Zhang, M. L., et al., 2015. Post⁃Collisional High⁃K Calc⁃Alkaline Volcanism in Tengchong Volcanic Field, SE Tibet: Constraints on Indian Eastward Subduction and Slab Detachment. Journal of the Geological Society, 172(5): 624-640. https://doi.org/10.1144/jgs2014⁃078

[18]

Guo, Z. P., Zou, H. B., 2021. Decoupled Whole⁃Rock and Zircon Hf Isotopes in Young Evolved Post⁃Collisional Lavas from Dayingshan (SE Tibet): Evidence for Open⁃System Magmatic Processes. Lithos, 400/401: 106393. https://doi.org/10.1016/j.lithos.2021.106393

[19]

Hu, J. H., Song, X. Y., He, H. L., et al., 2018. Constraints of Texture and Composition of Clinopyroxene Phenocrysts of Holocene Volcanic Rocks on a Magmatic Plumbing System beneath Tengchong, SW China. Journal of Asian Earth Sciences, 154: 342-353. https://doi.org/10.1016/j.jseaes.2017.12.029

[20]

Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. “Wave” Signal⁃Smoothing and Mercury⁃Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k

[21]

Huang, X. W., Zhou, M. F., Wang, C. Y., et al., 2013. Chalcophile Element Constraints on Magma Differentiation of Quaternary Volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences, 76: 1-11. https://doi.org/10.1016/j.jseaes.2013.07.020

[22]

Jiang, C. S., 1998a. Period Division of Volcano Activities in the Cenozoic Era of Tengchong. Journal of Seismological Research, 21(4): 320 (in Chinese with English abstract).

[23]

Jiang, C. S., 1998b. Distribution Characteristics of Tengchong Volcano in the Cenozoic Era. Journal of Seismological Research, 21(4): 309-319 (in Chinese with English abstract).

[24]

Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo⁃Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012⁃821X(82)90122⁃4

[25]

Li, D. P., Luo, Z. H., Liu, J. Q., et al., 2012. Magma Origin and Evolution of Tengchong Cenozoic Volcanic Rocks from West Yunnan, China: Evidence from Whole Rock Geochemistry and Nd⁃Sr⁃Pb Isotopes. Acta Geologica Sinica ⁃ English Edition, 86(4): 867-878. https://doi.org/10.1111/j.1755⁃6724.2012.00712.x

[26]

Li, L. L., Wang, S. B., Liu, J. H., et al., 2015. Age and Origin of Mid⁃Pleistocene Volcanic Rocks from Qushi in Tengchong Area, Western Yunnan Province: SHRIMP Zircon U⁃Pb Dating and Constraint from Hf⁃in⁃Zircon Isotopes. Acta Petrologica Sinica, 31(9): 2609-2619 (in Chinese with English abstract).

[27]

Li, N., Zhang, L. Y., 2011. A Study on Volcanic Minerals and Hosted Melt Inclusions in Newly⁃Erupted Tengchong Volcanic Rocks, Yunnan Province. Acta Petrologica Sinica, 27(10): 2842-2854 (in Chinese with English abstract).

[28]

Li, N., Zhao, Y. W., Zhang, L. Y., et al., 2020. The Quaternary Eruptive Sequence of the Tengchong Volcanic Group, Southwestern China. Lithos, 354/355: 105173. https://doi.org/10.1016/j.lithos.2019.105173

[29]

Li, X., Liu, J. Q., 2012. A Study on the Geochemical Characteristics and Petrogenesis of Holocene Volcanic Rocks in the Tengchong Volcanic Eruption Field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(5): 1507-1516 (in Chinese with English abstract).

[30]

Lin, M. S., Peng, S. B., Qiao, W. T., 2017. 40Ar/39Ar Geochronology and Geochemistry of Pleistocene Trachyandesite in Tengchong, Western Yunnan, China, and Its Tectonic Implication. Acta Petrologica Sinica, 33(10): 3137-3146 (in Chinese with English abstract).

[31]

Lin, M. S., Peng, S. B., Qiao, W. T., et al., 2014. Characteristics and Genetic Significance of High Temperature Granulite Xenoliths in Cenozoic Volcanic Rocks, Tengchong, Western Yunnan Province, China. Earth Science, 39(7): 807-819 (in Chinese with English abstract).

[32]

Loucks, R. R., 1990. Discrimination of Ophiolitic from Nonophiolitic Ultramafic⁃Mafic Allochthons in Orogenic Belts by the Al/Ti Ratio in Clinopyroxene. Geology, 18(4): 346. https://doi.org/10.1130/0091⁃7613(1990)0180346:doofnu>2.3.co;2

[33]

Luo, T., Hu, Z. C., Zhang, W., et al., 2018. Reassessment of the Influence of Carrier Gases He and Ar on Signal Intensities in 193 nm Excimer LA⁃ICP⁃MS Analysis. Journal of Analytical Atomic Spectrometry, 33(10): 1655-1663. https://doi.org/10.1039/C8JA00163D

[34]

Luo, Z. H., Liu, J. Q., Zhao, C. P., et al., 2011. Deep Fluids and Magmatism: The Deep Processes beneath the Tengchong Volcano Group. Acta Petrologica Sinica, 27(10): 2855-2862 (in Chinese with English abstract).

[35]

Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision⁃Induced Asthenospheric Mantle Flow. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, 409: 507-530. https://doi.org/10.1130/2006.2409(24)

[36]

Nakagawa, M., Wada, K., Wood, C. P., 2002. Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand. Journal of Petrology, 43(12): 2279-2303. https://doi.org/10.1093/petrology/43.12.2279

[37]

Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776

[38]

Putirka, K. D., 2005. Igneous Thermometers and Barometers Based on Plagioclase+Liquid Equilibria: Tests of Some Existing Models and New Calibrations. American Mineralogist, 90(2-3): 336-346. https://doi.org/10.2138/am.2005.1449

[39]

Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61-120. https://doi.org/10.2138/rmg.2008.69.3

[40]

Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene⁃Liquid Thermobarometers for Mafic, Evolved, and Volatile⁃Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am⁃2003⁃1017

[41]

Simkin, T., Smith, J. V., 1970. Minor⁃Element Distribution in Olivine. The Journal of Geology, 78(3): 304-325.

[42]

Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle⁃Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113

[43]

Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine⁃Free Mantle Source of Hawaiian Shield Basalts. Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411

[44]

Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15

[45]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[46]

Tian, H. C., Yang, W., Li, S. G., et al., 2018. Low δ26Mg Volcanic Rocks of Tengchong in Southwestern China: A Deep Carbon Cycle Induced by Supercritical Liquids. Geochimica et Cosmochimica Acta, 240: 191-219. https://doi.org/10.1016/j.gca.2018.08.032

[47]

Tucker, R. T., Zou, H. B., Fan, Q. C., et al., 2013. Ion Microprobe Dating of Zircons from Active Dayingshan Volcano, Tengchong, SE Tibetan Plateau: Time Scales and Nature of Magma Chamber Storage. Lithos, 172/173: 214-221. https://doi.org/10.1016/j.lithos.2013.04.017

[48]

Wang, F., Peng, Z. C., Zhu, R. X., et al., 2006. Petrogenesis and Magma Residence Time of Lavas from Tengchong Volcanic Field (China): Evidence from U Series Disequilibria and 40Ar/39Ar Dating. Geochemistry, Geophysics, Geosystems, 7(1): 2005GC001023. https://doi.org/10.1029/2005GC001023

[49]

Wang, Y., Zhang, X. M., Jiang, C. S., et al., 2007. Tectonic Controls on the Late Miocene⁃Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2): 375-389. https://doi.org/10.1016/j.jseaes.2006.11.005

[50]

Xu, C. L., Zhao, G. T., He, Y. Y., et al., 2012. Geochemistry of Cenozoic Volcanic Rocks from Tengchong, Western Yunnan. Marine Geology & Quaternary Geology, 32(2): 65-75 (in Chinese with English abstract).

[51]

Xu, Y., Li, X. L., Wang, S., 2018. Seismic Structure beneath the Tengchong Volcanic Area (Southwest China) from Receiver Function Analysis. Journal of Volcanology and Geothermal Research, 357: 339-348. https://doi.org/10.1016/j.jvolgeores.2018.05.011

[52]

Xu, Y., Yang, X. T., Li, Z. W., et al., 2012. Seismic Structure of the Tengchong Volcanic Area Southwest China from Local Earthquake Tomography. Journal of Volcanology and Geothermal Research, 239/240: 83-91. https://doi.org/10.1016/j.jvolgeores.2012.06.017

[53]

Yang, H. Y., Hu, J. F., Hu, Y. L., et al., 2013. Crustal Structure in the Tengchong Volcanic Area and Position of the Magma Chambers. Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027

[54]

Yao, J., 2018. Research on the Geochemical Composition and Genesis of Cenozoic Volcanic Rocks in Tengchong (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).

[55]

Yu, H. M., Lin, C. Y., Shi, L. B., et al., 2010. Characteristics and Genesis of Mafic⁃Ultramafic Inclusions in Rough Andesite in Heikongshan, Tengchong. Scientia Sinica (Terrae), 40(12): 1697-1709 (in Chinese with English abstract).

[56]

Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Magmatic Processes Inferred from Chemical Composition, Texture and Crystal Size Distribution of the Heikongshan Lavas in the Tengchong Volcanic Field, SW China. Journal of Asian Earth Sciences, 58: 1-15. https://doi.org/10.1016/j.jseaes.2012.07.013

[57]

Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Microstructural Characteristics of Trachyandesite Lavas in Heikongshan, Ma’anshan and Dayingshan Volcanoes, Tengchong, Yunnan Province and Its Volcanological Implications. Acta Petrologica Sinica, 28(4): 1205-1216 (in Chinese with English abstract).

[58]

Zhang, J. F., Tang, J., Xu, W. L., et al., 2023. Translithospheric Magmatic Plumbing System of a Late Early Cretaceous Intraplate Volcano in NE China: Insights from Geochemistry and Phenocryst Composition. Lithos, 460/461: 107371. https://doi.org/10.1016/j.lithos.2023.107371

[59]

Zhang, L., Hu, Y. L., Qin, M., et al., 2015. Study on Crustal and Lithosphere Thicknesses of Tengchong Volcanic Area in Yunnan. Chinese Journal of Geophysics, 58(3): 256-268. https://doi.org/10.1002/cjg2.220171

[60]

Zhang, Y. T., Liu, J. Q., Meng, F. C., 2012. Geochemistry of Cenozoic Volcanic Rocks in Tengchong, SW China: Relationship with the Uplift of the Tibetan Plateau. Island Arc, 21(4): 255-269. https://doi.org/10.1111/j.1440⁃1738.2012.00819.x

[61]

Zhao, C. H., Chen, T. F., 1992. A Discussion on Magma⁃Tectonic Type of Cenozoic Volcanism from Tengchong Area (Yunnan Province): A New Type of Post⁃Collision arc⁃Volcanism. Geoscience, 6(2): 119-129 (in Chinese with English abstract).

[62]

Zhao, Y., Guo, Z., Wang, K., et al., 2021. A Large Magma Reservoir beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 126(7): e2021JB022116. https://doi.org/10.1029/2021JB022116

[63]

Zhao, Y. W., Fan, Q. C., 2010. Magma Origin and Evolution of Maanshan Volcano, Dayingshan Volcano and Heikongshan Volcano in Tengchong Area. Acta Petrologica Sinica, 26(4): 1133-1140 (in Chinese with English abstract).

[64]

Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc⁃Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860. https://doi.org/10.1007/s00410⁃011⁃0702⁃8

[65]

Zhou, Z. H., Xiang, C. Y., Jiang, C. S., 2000. Geochemistry of the Rare Earth and Trace Elements in the Volcanic Rocks in Tengchong, China. Journal of Seismological Research, 23(2): 215-230 (in Chinese with English abstract).

[66]

Zhu, B. Q., Mao, C. X., Lugmair, G. W., et al., 1983. Isotopic and Geochemical Evidence for the Origin of Plio⁃Pleistocene Volcanic Rocks near the Indo⁃Eurasian Collisional Margin at Tengchong, China. Earth and Planetary Science Letters, 65(2): 263-275. https://doi.org/10.1016/0012⁃821X(83)90165⁃6

[67]

Zou, H. B., Fan, Q. C., Schmitt, A. K., et al., 2010. U⁃Th Dating of Zircons from Holocene Potassic Andesites (Maanshan Volcano, Tengchong, SE Tibetan Plateau) by Depth Profiling: Time Scales and Nature of Magma Storage. Lithos, 118(1/2): 202-210. https://doi.org/10.1016/j.lithos.2010.05.001

[68]

Zou, H. B., Shen, C. C., Fan, Q. C., et al., 2014. U⁃Series Disequilibrium in Young Tengchong Volcanics: Recycling of Mature Clay Sediments or Mudstones into the SE Tibetan Mantle. Lithos, 192/193/194/195: 132-141. https://doi.org/10.1016/j.lithos.2014.01.017

基金资助

国家重点研发计划项目(2023YFF0804404)

国家自然科学基金项目(42320104001)

AI Summary AI Mindmap
PDF (14191KB)

37

访问

0

被引

详细

导航
相关文章

AI思维导图

/