腾冲地区新生代高钾钙碱性火山岩结构组成及形成过程
江涛 , 郑建平 , 苏玉平 , 杨志国 , 李鑫
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4387 -4404.
腾冲地区新生代高钾钙碱性火山岩结构组成及形成过程
Structure Composition and Formation Process of Cenozoic High⁃K Calc⁃Alkaline Volcanic Rocks in Tengchong Area
,
腾冲地区新生代以来,发育大量高钾钙碱性火山岩(玄武质粗面安山岩和粗面安山岩),但具体形成过程尚不明确.基于岩相学分析,对这些火山岩进行全岩主量、矿物主微量元素分析,并结合文献已发表数据,探讨其形成演化过程.岩石普遍具斑状结构,斑晶以橄榄石、辉石和斜长石为主,并发育聚斑晶.单斜辉石斑晶常见正环带、反环带及振荡环带,其中振荡环带指示岩浆演化过程中多批次基性岩浆补给混合和可能的局部混染作用.全岩主量元素分析显示它们属于高钾钙碱性系列岩石.单斜辉石、斜方辉石和斜长石斑晶及聚斑晶有相似的稀土元素和微量元素配分模式,但单斜辉石最富集微量元素,其次为斜长石,斜方辉石的含量最低.橄榄石斑晶化学指示岩浆源区可能来源于橄榄岩的部分熔融,而全岩微量元素及单斜辉石斑晶的成分特征记录岛弧环境信息.斑晶矿物平衡温压计算及地球物理学资料共同揭示研究区下方存在两个中酸性岩浆储库:浅部的英安质岩浆储库(深度为8.3~13.6 km)和深部的安山质岩浆储库(深度为18.4~30.2 km).本文研究样品均源于深部储库,形成过程包括:基性岩浆补给引发晶粥‒熔体的混合作用,当新生熔体在储库中占主导时,触发喷发,并携带半固结岩浆团至地表,形成典型的(聚)斑晶结构.
Since the Cenozoic, a large amount of high-potassium calc-alkaline volcanic rocks (basaltic trachyandesite and trachyandesite) have developed in the Tengchong area, but the specific formation process remains unclear. Based on petrographic analysis, in this paper it conducts whole-rock major element and mineral major and trace element analyses of these volcanic rocks, and discusses their formation and evolution process in combination with the published data. The rocks commonly exhibit porphyritic textures, with phenocrysts predominantly consisting of olivine, pyroxene, and plagioclase, and the development of glomerocrysts. Clinopyroxene phenocrysts commonly show normal zoning, reverse zoning, and oscillatory zoning, with oscillatory zoning indicating multi-stage mafic magma replenishment and possible local contamination during magma evolution. Whole-rock major element analysis reveals that these rocks belong to the high-potassium calc-alkaline rock series. Clinopyroxene, orthopyroxene, and plagioclase phenocrysts and glomerocrysts show similar REE and trace element distribution patterns, with clinopyroxene being the most enriched in trace elements, followed by plagioclase, and orthopyroxene showing the lowest concentrations. The geochemical characteristics of olivine phenocrysts suggest that the magma source region may have originated from partial melting of peridotite, while the trace element compositions of the whole rocks and clinopyroxene phenocrysts record geochemical signatures characteristic of an arc-related tectonic setting. The mineral equilibrium temperature-pressure calculations reveal the existence of two intermediate to felsic magma reservoirs beneath the study area: a shallow dacitic magma reservoir (depth 8.3-13.6 km) and a deep andesitic magma reservoir (depth 18.4- 30.2 km). The studied samples are derived from the deeper reservoir. Their formation involves mafic magma recharge, triggering mixing between crystal mush and melt; when newly generated melts become dominant within the reservoir, eruption is triggered, carrying semi-consolidated magmatic clots to the surface and forming the typical (glomerocrystic) textures.
新生代 / 高钾钙碱性火山岩 / 斑晶 / 岩浆储库 / 腾冲地区 / 稀土元素 / 岩石学.
Cenozoic / high⁃K calc⁃alkaline volcanic rocks / phenocryst / magma reservoir / Tengchong area / rare earth elements / petrology
| [1] |
Cao, J., Chen, M. M., Wan, S. M., et al., 2024. Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China. Earth Science, 49(7): 2448-2474 (in Chinese with English abstract). |
| [2] |
Carracedo, J. C., 1999. Growth, Structure, Instability and Collapse of Canarian Volcanoes and Comparisons with Hawaiian Volcanoes. Journal of Volcanology and Geothermal Research, 94(1-4): 1-19. https://doi.org/10.1016/S0377⁃0273(99)00095⁃5 |
| [3] |
Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055 |
| [4] |
Chen, K. F., He, H. Y., Stuart, F., et al., 2023a. Binary Mixing of Lithospheric Mantle and Asthenosphere beneath Tengchong Volcano, SE Tibet: Evidence from Noble Gas Isotopic Signatures. International Geology Review, 65(2): 236-252. https://doi.org/10.1080/00206814.2022.2042744 |
| [5] |
Chen, K. F., Liu, S. L., Yang, D. H., et al., 2023b. Lithospheric Thinning beneath the Tengchong Volcanic Field, Southern China: Insight from Cenozoic Calc⁃ Alkaline Basalts. Frontiers in Earth Science, 11: 1036001. https://doi.org/10.3389/feart.2023.1036001 |
| [6] |
Chen, T. F., 2003. The Petrology of the Volcanic Rocks in Tengchong, Yunnan. Sedimentary Geology and Tethyan Geology, 23(4): 56-61 (in Chinese with English abstract). |
| [7] |
Chen, T. F., Zhao, C. H., 1994. Discussion on the Tectonic Setting of the Tengcong Cenozoic Volcanic Rocks. Journal of Southwest University of Science and Technology, 9(4): 52-59 (in Chinese with English abstract). |
| [8] |
Cheng, Z. H., Guo, Z. F., Dingwell, D. B., et al., 2020. Geochemistry and Petrogenesis of the Post⁃Collisional High⁃K Calc⁃Alkaline Magmatic Rocks in Tengchong, SE Tibet. Journal of Asian Earth Sciences, 193: 104309. https://doi.org/10.1016/j.jseaes.2020.104309 |
| [9] |
Cheng, Z. H., Yang, Z. J., Zhao, W. B., et al., 2020. Gabbroic Xenoliths and Glomerocrysts in the Post⁃Collisional Trachyandestic Rocks from Tengchong, SE Tibet: Implications for the Magma Chamber Processes. Acta Petrologica Sinica, 36(7): 2127-2148 (in Chinese with English abstract). |
| [10] |
Ding, L. L., Liu, J. Q., Guo, Z. F., et al., 2018. The Eruption Trigger of the Dacitic Magma in Tengchong during the Middle Pleistocene. Acta Petrologica Sinica, 34(1): 113-125 (in Chinese with English abstract). |
| [11] |
Duan, X. Z., Fan, H. R., Zhang, H. F., et al., 2019. Melt Inclusions in Phenocrysts Track Enriched Upper Mantle Source for Cenozoic Tengchong Volcanic Field, Yunnan Province, SW China. Lithos, 324/325: 180-201. https://doi.org/10.1016/j.lithos.2018.10.034 |
| [12] |
Elardo, S. M., Shearer, C. K., 2014. Magma Chamber Dynamics Recorded by Oscillatory Zoning in Pyroxene and Olivine Phenocrysts in Basaltic Lunar Meteorite Northwest Africa 032. American Mineralogist, 99(2-3): 355-368. https://doi.org/10.2138/am.2014.4552 |
| [13] |
Fan, Q. C., Liu, R. X., Wei, H. Q., et al., 1999. Magmatic Evolution of Tengchong Active Volcano. Geological Review, 45(S1): 895-904 (in Chinese with English abstract). |
| [14] |
Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025 |
| [15] |
Gao, J. F., Zhou, M. F., Robinson, P. T., et al., 2015. Magma Mixing Recorded by Sr Isotopes of Plagioclase from Dacites of the Quaternary Tengchong Volcanic Field, SE Tibetan Plateau. Journal of Asian Earth Sciences, 98: 1-17. https://doi.org/10.1016/j.jseaes.2014.10.036 |
| [16] |
Glazner, A., Bartley, J., Coleman, D., 2016. We Need a New Definition for “Magma”. Eos, 97. https://doi.org/10.1029/2016eo059741 |
| [17] |
Guo, Z. F., Cheng, Z. H., Zhang, M. L., et al., 2015. Post⁃Collisional High⁃K Calc⁃Alkaline Volcanism in Tengchong Volcanic Field, SE Tibet: Constraints on Indian Eastward Subduction and Slab Detachment. Journal of the Geological Society, 172(5): 624-640. https://doi.org/10.1144/jgs2014⁃078 |
| [18] |
Guo, Z. P., Zou, H. B., 2021. Decoupled Whole⁃Rock and Zircon Hf Isotopes in Young Evolved Post⁃Collisional Lavas from Dayingshan (SE Tibet): Evidence for Open⁃System Magmatic Processes. Lithos, 400/401: 106393. https://doi.org/10.1016/j.lithos.2021.106393 |
| [19] |
Hu, J. H., Song, X. Y., He, H. L., et al., 2018. Constraints of Texture and Composition of Clinopyroxene Phenocrysts of Holocene Volcanic Rocks on a Magmatic Plumbing System beneath Tengchong, SW China. Journal of Asian Earth Sciences, 154: 342-353. https://doi.org/10.1016/j.jseaes.2017.12.029 |
| [20] |
Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. “Wave” Signal⁃Smoothing and Mercury⁃Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k |
| [21] |
Huang, X. W., Zhou, M. F., Wang, C. Y., et al., 2013. Chalcophile Element Constraints on Magma Differentiation of Quaternary Volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences, 76: 1-11. https://doi.org/10.1016/j.jseaes.2013.07.020 |
| [22] |
Jiang, C. S., 1998a. Period Division of Volcano Activities in the Cenozoic Era of Tengchong. Journal of Seismological Research, 21(4): 320 (in Chinese with English abstract). |
| [23] |
Jiang, C. S., 1998b. Distribution Characteristics of Tengchong Volcano in the Cenozoic Era. Journal of Seismological Research, 21(4): 309-319 (in Chinese with English abstract). |
| [24] |
Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo⁃Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012⁃821X(82)90122⁃4 |
| [25] |
Li, D. P., Luo, Z. H., Liu, J. Q., et al., 2012. Magma Origin and Evolution of Tengchong Cenozoic Volcanic Rocks from West Yunnan, China: Evidence from Whole Rock Geochemistry and Nd⁃Sr⁃Pb Isotopes. Acta Geologica Sinica ⁃ English Edition, 86(4): 867-878. https://doi.org/10.1111/j.1755⁃6724.2012.00712.x |
| [26] |
Li, L. L., Wang, S. B., Liu, J. H., et al., 2015. Age and Origin of Mid⁃Pleistocene Volcanic Rocks from Qushi in Tengchong Area, Western Yunnan Province: SHRIMP Zircon U⁃Pb Dating and Constraint from Hf⁃in⁃Zircon Isotopes. Acta Petrologica Sinica, 31(9): 2609-2619 (in Chinese with English abstract). |
| [27] |
Li, N., Zhang, L. Y., 2011. A Study on Volcanic Minerals and Hosted Melt Inclusions in Newly⁃Erupted Tengchong Volcanic Rocks, Yunnan Province. Acta Petrologica Sinica, 27(10): 2842-2854 (in Chinese with English abstract). |
| [28] |
Li, N., Zhao, Y. W., Zhang, L. Y., et al., 2020. The Quaternary Eruptive Sequence of the Tengchong Volcanic Group, Southwestern China. Lithos, 354/355: 105173. https://doi.org/10.1016/j.lithos.2019.105173 |
| [29] |
Li, X., Liu, J. Q., 2012. A Study on the Geochemical Characteristics and Petrogenesis of Holocene Volcanic Rocks in the Tengchong Volcanic Eruption Field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(5): 1507-1516 (in Chinese with English abstract). |
| [30] |
Lin, M. S., Peng, S. B., Qiao, W. T., 2017. 40Ar/39Ar Geochronology and Geochemistry of Pleistocene Trachyandesite in Tengchong, Western Yunnan, China, and Its Tectonic Implication. Acta Petrologica Sinica, 33(10): 3137-3146 (in Chinese with English abstract). |
| [31] |
Lin, M. S., Peng, S. B., Qiao, W. T., et al., 2014. Characteristics and Genetic Significance of High Temperature Granulite Xenoliths in Cenozoic Volcanic Rocks, Tengchong, Western Yunnan Province, China. Earth Science, 39(7): 807-819 (in Chinese with English abstract). |
| [32] |
Loucks, R. R., 1990. Discrimination of Ophiolitic from Nonophiolitic Ultramafic⁃Mafic Allochthons in Orogenic Belts by the Al/Ti Ratio in Clinopyroxene. Geology, 18(4): 346. https://doi.org/10.1130/0091⁃7613(1990)0180346:doofnu>2.3.co;2 |
| [33] |
Luo, T., Hu, Z. C., Zhang, W., et al., 2018. Reassessment of the Influence of Carrier Gases He and Ar on Signal Intensities in 193 nm Excimer LA⁃ICP⁃MS Analysis. Journal of Analytical Atomic Spectrometry, 33(10): 1655-1663. https://doi.org/10.1039/C8JA00163D |
| [34] |
Luo, Z. H., Liu, J. Q., Zhao, C. P., et al., 2011. Deep Fluids and Magmatism: The Deep Processes beneath the Tengchong Volcano Group. Acta Petrologica Sinica, 27(10): 2855-2862 (in Chinese with English abstract). |
| [35] |
Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision⁃Induced Asthenospheric Mantle Flow. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, 409: 507-530. https://doi.org/10.1130/2006.2409(24) |
| [36] |
Nakagawa, M., Wada, K., Wood, C. P., 2002. Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand. Journal of Petrology, 43(12): 2279-2303. https://doi.org/10.1093/petrology/43.12.2279 |
| [37] |
Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776 |
| [38] |
Putirka, K. D., 2005. Igneous Thermometers and Barometers Based on Plagioclase+Liquid Equilibria: Tests of Some Existing Models and New Calibrations. American Mineralogist, 90(2-3): 336-346. https://doi.org/10.2138/am.2005.1449 |
| [39] |
Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61-120. https://doi.org/10.2138/rmg.2008.69.3 |
| [40] |
Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene⁃Liquid Thermobarometers for Mafic, Evolved, and Volatile⁃Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am⁃2003⁃1017 |
| [41] |
Simkin, T., Smith, J. V., 1970. Minor⁃Element Distribution in Olivine. The Journal of Geology, 78(3): 304-325. |
| [42] |
Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle⁃Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113 |
| [43] |
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine⁃Free Mantle Source of Hawaiian Shield Basalts. Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411 |
| [44] |
Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15 |
| [45] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [46] |
Tian, H. C., Yang, W., Li, S. G., et al., 2018. Low δ26Mg Volcanic Rocks of Tengchong in Southwestern China: A Deep Carbon Cycle Induced by Supercritical Liquids. Geochimica et Cosmochimica Acta, 240: 191-219. https://doi.org/10.1016/j.gca.2018.08.032 |
| [47] |
Tucker, R. T., Zou, H. B., Fan, Q. C., et al., 2013. Ion Microprobe Dating of Zircons from Active Dayingshan Volcano, Tengchong, SE Tibetan Plateau: Time Scales and Nature of Magma Chamber Storage. Lithos, 172/173: 214-221. https://doi.org/10.1016/j.lithos.2013.04.017 |
| [48] |
Wang, F., Peng, Z. C., Zhu, R. X., et al., 2006. Petrogenesis and Magma Residence Time of Lavas from Tengchong Volcanic Field (China): Evidence from U Series Disequilibria and 40Ar/39Ar Dating. Geochemistry, Geophysics, Geosystems, 7(1): 2005GC001023. https://doi.org/10.1029/2005GC001023 |
| [49] |
Wang, Y., Zhang, X. M., Jiang, C. S., et al., 2007. Tectonic Controls on the Late Miocene⁃Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2): 375-389. https://doi.org/10.1016/j.jseaes.2006.11.005 |
| [50] |
Xu, C. L., Zhao, G. T., He, Y. Y., et al., 2012. Geochemistry of Cenozoic Volcanic Rocks from Tengchong, Western Yunnan. Marine Geology & Quaternary Geology, 32(2): 65-75 (in Chinese with English abstract). |
| [51] |
Xu, Y., Li, X. L., Wang, S., 2018. Seismic Structure beneath the Tengchong Volcanic Area (Southwest China) from Receiver Function Analysis. Journal of Volcanology and Geothermal Research, 357: 339-348. https://doi.org/10.1016/j.jvolgeores.2018.05.011 |
| [52] |
Xu, Y., Yang, X. T., Li, Z. W., et al., 2012. Seismic Structure of the Tengchong Volcanic Area Southwest China from Local Earthquake Tomography. Journal of Volcanology and Geothermal Research, 239/240: 83-91. https://doi.org/10.1016/j.jvolgeores.2012.06.017 |
| [53] |
Yang, H. Y., Hu, J. F., Hu, Y. L., et al., 2013. Crustal Structure in the Tengchong Volcanic Area and Position of the Magma Chambers. Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027 |
| [54] |
Yao, J., 2018. Research on the Geochemical Composition and Genesis of Cenozoic Volcanic Rocks in Tengchong (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract). |
| [55] |
Yu, H. M., Lin, C. Y., Shi, L. B., et al., 2010. Characteristics and Genesis of Mafic⁃Ultramafic Inclusions in Rough Andesite in Heikongshan, Tengchong. Scientia Sinica (Terrae), 40(12): 1697-1709 (in Chinese with English abstract). |
| [56] |
Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Magmatic Processes Inferred from Chemical Composition, Texture and Crystal Size Distribution of the Heikongshan Lavas in the Tengchong Volcanic Field, SW China. Journal of Asian Earth Sciences, 58: 1-15. https://doi.org/10.1016/j.jseaes.2012.07.013 |
| [57] |
Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Microstructural Characteristics of Trachyandesite Lavas in Heikongshan, Ma’anshan and Dayingshan Volcanoes, Tengchong, Yunnan Province and Its Volcanological Implications. Acta Petrologica Sinica, 28(4): 1205-1216 (in Chinese with English abstract). |
| [58] |
Zhang, J. F., Tang, J., Xu, W. L., et al., 2023. Translithospheric Magmatic Plumbing System of a Late Early Cretaceous Intraplate Volcano in NE China: Insights from Geochemistry and Phenocryst Composition. Lithos, 460/461: 107371. https://doi.org/10.1016/j.lithos.2023.107371 |
| [59] |
Zhang, L., Hu, Y. L., Qin, M., et al., 2015. Study on Crustal and Lithosphere Thicknesses of Tengchong Volcanic Area in Yunnan. Chinese Journal of Geophysics, 58(3): 256-268. https://doi.org/10.1002/cjg2.220171 |
| [60] |
Zhang, Y. T., Liu, J. Q., Meng, F. C., 2012. Geochemistry of Cenozoic Volcanic Rocks in Tengchong, SW China: Relationship with the Uplift of the Tibetan Plateau. Island Arc, 21(4): 255-269. https://doi.org/10.1111/j.1440⁃1738.2012.00819.x |
| [61] |
Zhao, C. H., Chen, T. F., 1992. A Discussion on Magma⁃Tectonic Type of Cenozoic Volcanism from Tengchong Area (Yunnan Province): A New Type of Post⁃Collision arc⁃Volcanism. Geoscience, 6(2): 119-129 (in Chinese with English abstract). |
| [62] |
Zhao, Y., Guo, Z., Wang, K., et al., 2021. A Large Magma Reservoir beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 126(7): e2021JB022116. https://doi.org/10.1029/2021JB022116 |
| [63] |
Zhao, Y. W., Fan, Q. C., 2010. Magma Origin and Evolution of Maanshan Volcano, Dayingshan Volcano and Heikongshan Volcano in Tengchong Area. Acta Petrologica Sinica, 26(4): 1133-1140 (in Chinese with English abstract). |
| [64] |
Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc⁃Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860. https://doi.org/10.1007/s00410⁃011⁃0702⁃8 |
| [65] |
Zhou, Z. H., Xiang, C. Y., Jiang, C. S., 2000. Geochemistry of the Rare Earth and Trace Elements in the Volcanic Rocks in Tengchong, China. Journal of Seismological Research, 23(2): 215-230 (in Chinese with English abstract). |
| [66] |
Zhu, B. Q., Mao, C. X., Lugmair, G. W., et al., 1983. Isotopic and Geochemical Evidence for the Origin of Plio⁃Pleistocene Volcanic Rocks near the Indo⁃Eurasian Collisional Margin at Tengchong, China. Earth and Planetary Science Letters, 65(2): 263-275. https://doi.org/10.1016/0012⁃821X(83)90165⁃6 |
| [67] |
Zou, H. B., Fan, Q. C., Schmitt, A. K., et al., 2010. U⁃Th Dating of Zircons from Holocene Potassic Andesites (Maanshan Volcano, Tengchong, SE Tibetan Plateau) by Depth Profiling: Time Scales and Nature of Magma Storage. Lithos, 118(1/2): 202-210. https://doi.org/10.1016/j.lithos.2010.05.001 |
| [68] |
Zou, H. B., Shen, C. C., Fan, Q. C., et al., 2014. U⁃Series Disequilibrium in Young Tengchong Volcanics: Recycling of Mature Clay Sediments or Mudstones into the SE Tibetan Mantle. Lithos, 192/193/194/195: 132-141. https://doi.org/10.1016/j.lithos.2014.01.017 |
国家重点研发计划项目(2023YFF0804404)
国家自然科学基金项目(42320104001)
/
| 〈 |
|
〉 |