塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨

曹自成 ,  云露 ,  平宏伟 ,  陈红汉 ,  耿锋 ,  韩俊 ,  黄诚 ,  吕海涛 ,  蒋华山 ,  刘永立

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4736 -4750.

PDF (3983KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4736 -4750. DOI: 10.3799/dqkx.2025.182

塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨

作者信息 +

Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock

Author information +
文章历史 +
PDF (4077K)

摘要

下寒武统玉尔吐斯组烃源岩已经被认为是塔里木盆地台盆区海相油气的主力烃源岩.目前对玉尔吐斯组烃源岩的认识主要基于野外露头和少量隆起区钻井岩心样品分析,而对斜坡和凹陷区烃源岩特征了解较少.理解玉尔吐斯组烃源岩干酪根碳同位素特征对于厘定烃源岩生烃机理及建立油气源对比关系具有重要的参考意义.通过对顺北地区不同断裂带原油和天然气样品开展详细的有机地化及碳同位素地球化学研究,在定量评价热成熟度对原油和天然气碳同位素影响的基础上,恢复了其初始碳同位素组成.利用油气形成过程干酪根与其生成油气组分的碳同位素分馏特点分别恢复了顺北地区奥陶系原油和天然气来源干酪根的碳同位素组成.结果表明:顺北地区生油干酪根碳同位素主要位于-32.3‰~-28.8‰,生气干酪根碳同位素主要位于-33.1‰~-29.8‰,原油和天然气主要来自以底栖藻类和浮游藻类混合生源为主的干酪根,其中原油还存在来自以浮游藻类为主要生源干酪根的贡献.偏轻的干酪根碳同位素特征表明顺北地区油气主要来自玉尔吐斯组烃源岩.根据成烃生物组合的变化,将玉尔吐斯组烃源岩划分为以浮游藻类为主要生源的生油型源岩(δ13C>-30‰)、以底栖和浮游藻类混合生源为主的油气兼生型源岩(-33.5‰<δ13C<-30‰)及以底栖藻类为主要生源的生气型源岩(δ13C<-33.5‰).随着烃源岩热成熟度的增加,早期以浮游藻类生油为主,而晚期底栖藻类生成油(主要为挥发油-凝析油)的贡献增加,从而导致早期生成油同位素偏重,而晚期生成油具有相对偏轻的碳同位素特征;同时,生油干酪根含量逐渐减小,而生气干酪根相对含量逐渐增加,导致烃源岩中干酪根总体碳同位素逐渐变轻.因此,不同烃源岩类型及不同生源干酪根差异生烃过程导致了玉尔吐斯组烃源岩生成的油气具有复杂的碳同位素特征(如储层原油族组分碳同位素倒转、烃源岩氯仿抽提物与干酪根碳同位素倒转等).研究结果可为塔里木盆地超深层油气相态预测提供新的约束.

Abstract

The source rocks of the Lower Cambrian Yurtus Formation have been considered as the main source rocks of marine oil and gas in the Tarim Basin. Currently, the understanding of source rocks of Yurtus Formation is mainly based on the sample analysis in outcrops in the basin margin and drilling core samples in uplift areas of the basin, while the characteristics of source rocks in slope and depression areas are less understood. Understanding the carbon isotope characteristics of kerogen in source rocks of Yurtus formation is of great reference significance for determining the hydrocarbon generation mechanism of source rocks and establishing the correlation between oil and gas sources. In this paper, the organic geochemistry and carbon isotope geochemistry of Ordovician crude oil and natural gas samples from different fault zones in Shunbei area are studied in detail. Based on the quantitative evaluation of the influence of thermal maturity on carbon isotopes of crude oil and natural gas, the initial carbon isotope composition of crude oil and natural gas is reconstructed. The carbon isotopic composition of kerogen from crude oil and natural gas in Shunbei area was recovered by the fractionation between kerogen and oil and gas during hydrocarbon formation. The results show that the carbon isotopes of oil-derived kerogen are mainly in the range of -32.3‰ to -28.8‰, and that of gas-derived kerogen is mainly in the range of -33.1‰ to -29.8‰. The crude oil and natural gas are mainly derived from the mixed source of benthic algae and planktonic algae, and part of crude oils in the Shunbei area are also from the main source of planktonic algae. The light carbon isotope characteristics of kerogen indicate that the oil and gas in Shunbei area mainly come from the source rocks of Yurtus Formation. Based on changes in the assemblage of hydrocarbon forming organisms, the source rocks of Yurtus Formation are divided into oil-generating source rocks with planktonic algae as the main source (δ13C>-30‰), oil-gas generating source rocks with benthic and planktonic algae as the main source (-33.5‰<δ13C<-30‰) and gas-generating source rocks with benthic algae as the main source (δ13C<-33.5‰). With the increase of thermal maturity of source rocks, the early oil is generated by planktic algae, while the late oil (mainly volatile oil-condensate oil) contributes more, resulting in the early oil isotope is heavier, while the late oil has relatively light carbon isotope characteristics. At the same time, the content of oil source kerogen gradually decreases, while the relative content of gas kerogen (benthic algae) gradually increases, and the total carbon isotope of kerogen in source rocks gradually becomes lighter. Therefore, the different source rock types and hydrocarbon generation processes of kerogens from different sources leads to the complex carbon isotope characteristics of the oil and gas generated from the source rocks of Yurtus Formation (such as the reversal of carbon isotope of the components of the reservoir crude oil group, the reversal of carbon isotope between the chloroform extract of the source rock and kerogen, etc.). The research results can provide a new constraint for the prediction of ultra-deep oil and gas phase state in Tarim Basin.

Graphical abstract

关键词

超深层 / 玉尔吐斯组 / 烃源岩 / 碳同位素 / 热成熟度 / 天然气 / 石油地质.

Key words

ultra-deep formations / Yurtus Formation / hydrocarbon source rock / carbon isotope / thermal maturity / natural gas / petroleum geology

引用本文

引用格式 ▾
曹自成,云露,平宏伟,陈红汉,耿锋,韩俊,黄诚,吕海涛,蒋华山,刘永立. 塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨[J]. 地球科学, 2025, 50(12): 4736-4750 DOI:10.3799/dqkx.2025.182

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

尽管在顺托果勒低隆起钻遇厚达14 m的上奥陶统吐木休克组优质烃源岩,但随着塔里木盆地下寒武统玉尔吐斯组优质烃源岩在野外露头(朱光有等,2016;Zhu et al.,2018)和钻井(朱传玲等,2014;杨海军等,2020)规模性发现以及油源对比新指标的应用(如芳基类异戊二烯烃及硫同位素)(Cai et al.,2009;李峰等,2021),玉尔吐斯组已经被证实是台盆区海相油气的主力烃源岩(漆立新,2020;马永生等,2022;罗明霞等,2024).围绕油源断层垂向输导和走滑断裂控储、控藏作用(王清华等,2021,2025;云露,2021;云露和邓尚,2022),塔里木盆地阿满过渡带顺北和富满奥陶系一间房和鹰山组超深层油气陆续取得重大发现(漆立新,2016;王清华等,2021),揭示了塔里木盆地在近源和近盆地中心领域具有重要的油气勘探潜力.因此,厘定玉尔吐斯组烃源岩的分布规律及生烃机理是指导未来超深层油气勘探的一个重要先决条件.然而,目前钻遇玉尔吐斯组烃源岩的钻井较少,且主要分布在隆起区(如轮探1井、塔深5井、星火1井、尉犁1井等),当前塔里木超深层油气勘探的2个重点地区顺北和富满油气田还没有钻井钻遇寒武系.此外,从塔北隆起到阿满过渡带寒武系地层埋深和地温梯度均逐渐增大,导致玉尔吐斯组烃源岩热成熟度逐渐增加.塔北隆起轮探1井玉尔吐斯组烃源岩在8 600 m左右埋深实测热成熟度达到1.6%Ro左右(杨海军等,2020),盆地模拟结果表明阿满过渡带玉尔吐斯组烃源岩热成熟度超过1.6%~2.0%Ro,已经进入生气阶段(李斌等,2022).由于如此高的热演化程度及缺少钻井约束,阿满过渡带甚至满加尔凹陷玉尔吐斯组烃源岩的母质类型及生烃特征等几乎难以通过常规手段获取,从而制约了对超深层成烃、成藏及油气分布规律的准确认识.

油气的碳同位素主要受控于其生烃母质及热成熟度(Stahl,1979Schoell,1984),在低热演化阶段,热成熟度对原油碳同位素影响较小(Clayton et al.,1986),此时原油碳同位素差异主要反映了其生烃母质的差异.因此,碳同位素一直是进行油源对比(Sofer et al.,1986Chung et al.,1992Ping et al.,2018)以及推测未知源岩的有效手段(Ping et al.,2021).本文将以阿满过渡带顺北油气田为研究区,利用已发现油气的碳同位素特征反演其生烃母质类型及生烃特征,进而建立玉尔吐斯组烃源岩生烃模式,为深入理解塔里木盆地超深层烃源岩生烃演化过程、油气相态变化及分布规律提供重要支撑.

1 区域地质

顺北地区位于塔里木盆地顺托果勒低隆起的北部及中东部.顺托果勒低隆起北邻沙雅隆起,南接卡塔克隆起,东西紧挨阿瓦提凹陷和满加尔凹陷,现今为一东南高、西北低、向西北倾伏的宽缓斜坡(图1).顺托果勒低隆起经历了加里东早期克拉通内裂陷阶段、加里东中期隆起形成及稳定沉降阶段、加里东晚期-海西早期隆起强烈挤压、抬升剥蚀阶段;海西晚期-燕山期的隆起消失阶段、喜山期的强烈挤压、构造定型阶段(漆立新,2016).

相比塔北和塔中两大古隆起,顺托果勒低隆起构造变形相对弱,各构造期地层剥蚀厚度较小,发育较齐全.早寒武世拉张背景下顺托果勒低隆起沉积了陆棚-斜坡相玉尔吐斯组烃源岩;中寒武世-中奥陶世广泛发育碳酸盐台地相沉积,形成了巨厚的碳酸盐岩储层,晚奥陶世为浅海陆棚,沉积了巨厚的桑塔木组泥岩,与下覆地层形成良好的生-储-盖组合.目前的主力勘探层系为中下统鹰山组(O1⁃2y)和中统一间房组(O2yj),埋深7 200~8 800 m.

工区内发育多条大型走滑断裂带,以顺北5号断裂带调节断层为界将顺托果勒低隆起划分为北西向和北东向2大走滑断裂体系,形成东西分区的构造格局(云露,2021;云露和邓尚,2022).走滑断裂具有垂向分层、侧向分带、多期活动特点,走滑构造破裂作用叠加深层岩溶作用形成了区内沿走滑断裂带分布的缝洞体系(云露等,2022;王清华等,2022).目前已发现的油气藏主要沿区内主干走滑断裂带分布,具有西油东气,北油南气的分布特点,其中北部以轻质油-挥发油藏为主,中东部以凝析气-干气为主(图1),自西向东天然气中原油裂解气贡献增加(曹自成等,2025).

2 研究思路与方法

2.1 基本思路

由于顺北地区现有钻井未钻遇下寒武统玉尔吐斯组烃源岩,本文主要利用已发现油气的碳同位素特征反演其生烃母质类型.总体的研究思路为:(1)对工区内原油样品开展详细的有机地化分析(包括饱和烃色质、芳烃色质,族组分和全油碳同位素);(2)分析各原油样品饱和烃生标和芳烃热成熟度参数,根据生标含量差异以及芳烃热成熟度参数综合判断研究区原油的热成熟度;(3)选择同源成熟度最低的和成熟度最高的样品进行对比分析,确定热成熟度对原油族组分碳同位素的定量影响;(4)通过原油热成熟度及建立的热成熟度对原油族组分碳同位素影响的定量评价模型恢复原油族组分原始碳同位素组成,进而根据原油族组分和干酪根碳同位素分馏预测生油干酪根的碳同位素组成;(5)针对天然气样品,本文主要利用热稳定性较低的丁烷的组分和碳同位素评价热成熟度对碳同位素的定量影响,根据正丁烷与生气干酪根的碳同位素分馏来预测天然气来源干酪根的碳同位素组成;(6)最终,根据恢复的生油和生气干酪根碳同位素组成建立顺北地区玉尔吐斯组烃源岩的生烃模型.

2.2 样品及分析技术方法

本文油气样品主要来自顺北1号带、5号带、4号带和8号带(图1表1).天然气碳同位素数据及部分原油样品的有机地化和碳同位素分析数据来自中石化西北油田分公司.由于收集数据部分原油样品低分子量芳烃在检测过程中损失较严重,影响到甲基菲指数的计算,因此,本论文采集了部分原油样品进行原油族组分分离、饱和烃色质和芳烃色质测试以及原油族组分碳同位素测试.具体测试方法如下:

取约50 mg油样,依次向锥形瓶中加入二氯甲烷(1 mL)和石油醚(20 mL),超声充分混匀,静置12 h析出沥青质.沉淀后的混合溶液通过内衬脱脂棉的漏斗过滤,得到不含沥青质的滤液,滤液用氮气吹扫浓缩至1 mL.为避免在此浓缩过程中化合物的过度损失,温度保持在40° C以下.随后,滤液转移到装有2.5 g 100~200目预先活化的(400 °C)中性氧化铝的色谱柱(180 mm)中.饱和烃部分用正己烷(10 mL )洗脱,芳烃用体积比为2∶1的二氯甲烷和正己烷混合液洗脱.非烃类用体积比为93∶7的二氯甲烷和甲醇混合液洗脱.

饱和烃GC⁃MS分析使用Agilent 5975B MSD与Agilent 7890A气相色谱仪,配有覆盖0.25 μm的5%苯基-甲基硅氧烷膜的WCOT熔融石英毛细管柱(30 m×0.25 mm i.d.).载气为氦气,柱流速为1 ml/min,四极杆的采集频率为50 Hz,质谱采用全扫描模式( m/z 50~ 800),电离能为70 eV,离子源温度为230 °C,电子倍增器电压为1 800 V.进样方式为脉冲不分流,进样量为1 μL;气相色谱仪的初始温度为50 °C,保持1 min,以20 °C/min的升温速率从50 °C升至100 °C;随后,以3 °C/min的升温速率从100 °C升至315 °C,保持20 min.采用60 m熔融石英毛细管柱利用同样设备对芳烃进行GCMS分析,芳烃GCMS分析的其他参数与饱和烃一致.原油和族组分的碳同位素测试仪器为Thermo Scientific Delta Plus V同位素质谱仪,δ 13C的重复样品精度为±0.1‰.

3 结果和讨论

3.1 生油母质的碳同位素特征

3.1.1 热成熟度对原油族组分碳同位素的影响

原油碳同位素组分主要受控于烃类来源母质的碳同位素组成(源控)和生烃及原油裂解过程碳同位素分馏(热成熟度控制)(Stahl,1979Schoell,1984Clayton,1991).由于C12C12键相对C12C13键更容易断裂,热力作用下生成的原油相对其生烃母质的碳同位素总是偏轻,通常小于2‰(Stahl,1979).原油中饱和烃、芳烃、非烃和沥青质等族组分碳同位素依次变重,其中非烃和沥青质碳同位素差别相对较小,而沥青质与其干酪根的碳同位素非常接近(<0.5‰)(Stahl,1979).因此,原油中非烃和沥青质的碳同位素可以用来推测其原始干酪根的碳同位素组成(Ping et al.,2018).然而,原油从干酪根生成后如经历更高的热力作用,热裂解会影响原油原始的碳同位素组成.Sofer(1984)认为热成熟度对原油碳同位素影响可能最高不超过2‰.

前人研究表明低热演化阶段(Ro<1.0%),热成熟度对原油族组分碳同位素影响基本可以忽略,在1.0%<Ro<1.3%阶段,饱和烃和芳烃碳同位素变化小于1‰,但在较高热演化阶段(1.3~1.7%Ro)原油中饱和烃和芳香烃碳同位素变重高达到2‰左右(Clayton and Bostick,1986).理论计算结果表明生油阶段原油碳同位素平均增加0.5‰,而50%的原油裂解阶段可能导致原油碳同位素增加1.5‰(Clayton,1991).因此,利用原油碳同位素进行油源对比时首先应该确定热成熟度对其族组分碳同位素的影响.

生物标志物和芳烃参数常用来表征原油的热成熟度.生标参数受热成熟度限制较大,主要适用于低熟-中等成熟阶段原油和烃源岩热成熟度确定,一旦进入生凝析油和湿气阶段,绝大部分生物标志物被破坏,例如随着热成熟度增加,甾萜烷含量逐步减小甚至消失.而芳烃热成熟参数适用范围较大,可以用来表征高-过成熟阶段烃类热成熟度.本文通过系统的检查研究区原油和凝析油的饱和烃和芳烃色质确定了研究区总体的原油热成熟度变化,顺北1号带和顺北5号带的北段和中段原油中基本保留了完整的甾萜烷,而顺北4号带、6号带和8号带均为凝析气藏,凝析油中甾萜烷含量很低,其中4号带部分凝析油中生标只可以检测到少量三环萜烷,6号带和8号带凝析油中几乎检测不到甾萜烷.此外,1号带、5号带中段和4号带原油中芳烃甲基菲指数差别不大,而6号带到8号带依次增加.结合生标和芳烃热成熟度参数,1号带和5号带原油总体成熟度最低,而8号带凝析油成熟度最高.

因此,本文遴选了研究区成熟度最低(顺北1、顺北5和顺北512H)和成熟度最高(顺北83X和顺北85X)的代表性样品用于分析热成熟度对原油族组分碳同位素的影响.图2为代表性样品的生标谱图.由图2可见,顺北1、顺北5和顺北512H三口井油样生标分布完整,三环萜烷相对霍烷含量低、具有较高丰度的C29规则甾烷,而顺北83X和顺北84X凝析油几乎检测不到甾萜烷;此外,顺北1、顺北5和顺北512H三口井油样芳烃热成熟度也较低,根据甲基菲指数和甲基菲比值计算的热成熟度约为0.89%Ro,而顺北83X和顺北84X凝析油平均热成熟度处于1.32%Ro (图3).图4为两组不同成熟度原油的族组分碳同位素分布对比图.由图可见,原油族组分碳同位素变化明显受热成熟度控制,总体随成熟度增加族组分碳同位素均变重,其中芳烃碳同位素变化最大,平均变重2.5‰,其次为非烃,平均变重1.5‰,饱和烃和沥青质碳同位素变化接近为1.1‰~1.2‰.如果假设进入生烃门限到生油高峰阶段原油族组分碳同位素变化可以忽略(Clayton,1991),则从生油高峰到生凝析气阶段,原油族组分碳同位素变化最高可变重2.5‰(如芳烃),同时饱芳比从平均6.7增加到21.4.芳烃碳同位素变化最大的原因主要由于原油中芳烃的裂解.根据原油各组分的热稳定性,极性组分最先裂解,随后是高分子量芳烃、高分子量饱和烃以及中-低分子量烃类(Behar et al.,2008Ping et al.,2017).尽管极性组分热稳定性最低而最先裂解,但由于其结构本身富含高分子量苯环和杂环化合物,这部分组分碳同位素本身较重,再者也不是原油裂解气的主要贡献者(Behar et al.,2008),因此在裂解过程中其同位素变化(变重)相对中-低分子量烃类要小得多(Clayton,1991).而中-高分子量烃类(如C14+芳烃和C14+饱和烃)本身同位素较轻,再者由于产生大量同位素较轻的烃类气体导致其同位素变化较大.可见,在高分子量芳烃裂解阶段,芳烃碳同位素变化最大,如成熟度再进一步增加达到饱和烃大量裂解阶段,则饱和烃碳同位素变化则会进一步增加.由此也可以说明至少在顺北8号带原油裂解程度还处于高分子芳烃裂解阶段.因此,图4中顺北83X和顺北85X凝析油中芳烃碳同位素重于非烃和沥青质的碳同位素主要由于芳烃的裂解.

3.1.2 原油中非烃和沥青质碳同位素倒转分析

顺北地区原油中非烃和沥青质碳同位素普遍存在倒转现象,既δ13C非烃>δ13C沥青质.原油族组分同位素倒转在塔北和塔中地区寒武系-奥陶系油藏也普遍存在,热演化及早期油生物降解和多期不同成熟度油充注被认为是主要原因(张中宁等,2006;张亚斌等,2022).然而,图4表明即使在较低热成熟度条件原油中δ13C非烃也明显重于δ13C沥青质,在这种低热演化级别,热成熟度不大可能单独导致非烃和沥青质的碳同位素发生倒转,除非存在两种或以上具有不同碳同位素特征原油的混合.流体包裹体成藏期研究结果表明1号带和5号带存在多期不同成熟度油充注(张钰等,2023),而在4号带和8号带主要为晚期成熟度较高的油充注(李慧莉等,2023;Cao et al.,2025).另外,我们统计了不同断裂带原油中非烃和沥青质碳同位素的差值(δ13C沥青质⁃δ13C非烃),发现1号断裂带均值最小(-0.6‰),5号带(-1.1‰)、4号带(-1.3‰)和8号带(-1.8‰)依次增加,反映随着热成熟度的增加非烃和沥青质的碳同位素倒转程度增加.由此推测,顺北地区非烃和沥青质碳同位素倒转的主要原因是早期低成熟度油与晚期较高成熟度油的混合,早期油族组分碳同位素可能具有正常分布序列,因为在顺北1号带发现至少有三分之一原油样品δ13C沥青质>δ13C非烃,而由于非烃和沥青质裂解导致的差异同位素变化,晚期较高成熟度油可能具有非烃和沥青质同位素倒转特征(δ13C沥青质<δ13C非烃).顺北1号和5号带北段和中段由于存在多期油混合,晚期较高成熟度油的贡献相对较小,从而导致油藏中非烃和沥青质碳同位素发生相对较弱的倒转或未倒转.而4号带和8号带以晚期高成熟度油充注为主(Cao et al.,2025),这部分油很可能经历了不同程度的原油裂解过程导致非烃和沥青质碳同位素差异演化因而其同位素倒转最强.

3.1.3 生油母质碳同位素预测

将原油族组分碳同位素与原油热成熟度分别作图发现顺北地区除少量原油样品热成熟度低于1.0%Ro(如顺北512井、顺北5井和顺北1井)和高于1.3%Ro(顺北83井和顺北85井)外,其他原油和凝析油热成熟度主要分布在1%~1.3% Ro之间.对比族组分碳同位素,热成熟度位于1%~1.3% Ro之间的原油中非烃和沥青质的碳同位素变化高达4‰~5‰(图5),而如此大的同位素变化很难用热力作用解释,而是反映了其源岩干酪根碳同位素的变化.根据图4两组不同成熟度原油族组分碳同位素分布,可以定量评价热力作用对碳同位素的影响(假设两者为线性变化),从而可以剔除热成熟度的影响,将顺北地区原油和凝析油族组分碳同位素矫正到同一热演化级别(如最低热成熟度0.89% Ro).由于图4中成熟度最低的原油中非烃和沥青质碳同位素同样发生倒转,前文分析非烃碳同位素变重可能受晚期油充注的影响,而晚期较高成熟度原油中沥青质含量较早期低成熟度油低,因此这几个样品中沥青质的碳同位素可能受晚期油充注的影响较小,可以反映早期低成熟度油的碳同位素特征.

结合图4中两组不同成熟度原油平均热成熟度和沥青质碳同位素,确定了热成熟度对沥青质碳同位素的影响程度近似为2.7‰/1% Ro.在此基础上将顺北地区原油中沥青质碳同位素校正到同样热成熟度级别(0.89%Ro).由于干酪根与沥青质碳同位素分馏较小(<0.5‰)(Stahl,1979),假设顺北地区原油中沥青质与其母源干酪根的碳同位素分馏为0.5‰,从而恢复了顺北地区原油和凝析油源岩干酪根的碳同位素组成(图6).图6中顺北油源岩干酪根碳同位素主要位于-29‰~-32‰,而且总体随着干酪根碳同位素变重原油中非烃和沥青质碳同位素倒转强度越弱(δ13C沥青质⁃δ13C非烃增加),表明顺北地区原油来自两种类型干酪根,一类具有较轻碳同位素特征(-32.3‰~-30.0‰),一类具有较重碳同位素特征(-30.0‰~-28.8‰),前者由于沥青质本身碳同位素偏轻,再加上其生成的油高演化阶段非烃和沥青质碳同位素差异演化导致两者同位素相较于后者更容易发生倒转.

3.2 天然气来源母质碳同位素特征

3.2.1 热成熟度对天然气组分碳同位素影响

热成因天然气的碳同位素主要受气源岩有机质类型及热成熟度控制(Stahl,1974Waples and Tornheim,1978Schoell et al.,1980Clayton,1991Dai et al.,1992Whiticar,1994,1996).同一成熟度条件下生成的天然气随碳数增加其与生烃母质的碳同位素分馏越弱,也即随碳数增加天然气碳同位素越重,这就意味着重烃气体与其生烃母质的碳同位素更接近(Waples and Tornheim,1978Clayton,1991).因此,天然气中重烃气体(例如丁烷)碳同位素可以用来进行气源对比(Ping et al.,2018Clayton,1991James et al.,1990).然而,烃类气体的热稳定性随碳数增加变弱,高热力作用下重烃气体的裂解会导致其碳同位素变重,甚至远重于其母质碳同位素组成(James,1983Guo et al.,2009),从而无法准确建立气-源关系.因此,利用天然气重烃气进行气源岩分析时需对其碳同位素进行热成熟度校正.前人对顺北地区天然气分析主要聚焦天然气成因和热成熟度(Chen et al.,2021;曹自成等,2025),而本文则主要利用天然气中丁烷的碳同位素反演其气源岩干酪根碳同位素特征.

天然气中正丁烷碳同位素通常重于异丁烷,因此,正丁烷碳同位素更适合表征其源岩的干酪根碳同位素特征(James et al.,1990).随着热成熟度增加,丁烷裂解会导致天然气中丁烷的相对摩尔含量减少,同时丁烷的碳同位素变重.因此,通过天然气中正丁烷的含量(相对于烃类气体的摩尔百分比)与其碳同位素的关系可以识别热成熟度对其碳同位素的影响,从而恢复其原始碳同位素组成(Ping et al.,2018).图7为顺北地区奥陶系和北部坳陷寒武-奥陶系天然气正丁烷相对含量与其碳同位素的关系图.首先,整个塔里木盆地北部坳陷寒武-奥陶系天然气中正丁烷碳同位素的变化范围很大(-23‰~-35‰);其次,碳同位素变化明显存在两个趋势,并且与正丁烷的含量密切相关.正丁烷含量高其碳同位素整体偏轻(-30‰~-35‰),反之则偏重,特别是当含量小于2%左右时碳同位素整体向变重方向演化,当正丁烷含量最低时,其碳同位素变重达-23‰~-30‰.可见,北部坳陷天然气中正丁烷的碳同位素变化一方面反映母源碳同位素的变化,另一方面则反映了热成熟度(丁烷裂解)或者TSR次生改造对其碳同位素的影响.图7中天然气可以分为2类,一类是正丁烷含量高于2%左右的,其碳同位素主要反映生气母质碳同位素,受热成熟度影响可以忽略;二类是正丁烷含量小于2%,其碳同位素变化主要受热成熟度或者TSR改造控制.显然,正丁烷含量越低其碳同位素特征越难以反映其母源碳同位素.另外,图7中碳同位素最轻和最重的两条包络线基本涵盖了98%的样品,并且两条包络线限定的碳同位素随含量减小变重趋势较一致,可能表明不同初始碳同位素的正丁烷在热力作用下碳同位素变重速率总体接近.由此可推测,发生正丁烷裂解的样品的初始碳同位素大致与未受裂解影响的样品碳同位素分布范围一致.因此,可将图7中顺北天然气中正丁烷含量超过2%的样品碳同位素范围(-31.3‰~-34.6‰)作为顺北地区奥陶系天然气中正丁烷初始碳同位素值.

3.2.2 天然气来源母质碳同位素预测

由于正丁烷与其生烃母质之间存在碳同位素分馏,并且其分馏程度与有机质类型有关.对腐殖型干酪根,两者碳同位素分馏较小,而腐泥型干酪根则较大(James et al.,1990Clayton,1991).Clayton (1991)利用瑞利分馏模型计算了腐泥型干酪根中烃类气体碳同位素随成熟度变化,发现丁烷的碳同位素值与其共生的油碳同位素类似,一般比其母质碳同位素轻1‰~2‰.干酪根热解实验也支持这一结论,腐殖型干酪根和腐泥型干酪根在热成熟度大于0.9%Ro后生成的丁烷和其干酪根碳同位素分馏均值分别为1.57‰和1.60‰(Andresen et al.,1995).由于热解实验中没有具体区分正构和异构丁烷,实际上干酪根同时生成的正丁烷碳同位素一般要重于异丁烷(James et al.,1990),因此,正丁烷与其生气母质碳同位素分馏还要弱些.Ping et al.(2018)对珠江口盆地天然气碳同位素研究发现,来自腐殖型干酪根生成HZ921井原油中沥青质和其伴生气中正丁烷碳同位素差值为0.8‰,考虑沥青质与其生烃母质之间碳同位素分馏一般小于0.5‰(Stahl,1979),HZ921井正丁烷与其母质之间碳同位素分馏在1.3‰左右(Ping et al.,2018).基于上述分析,本文选择正丁烷与其母质碳同位素分馏为1.5‰,由此确定了顺北地区天然气生气母质碳同位素分布大致为-33.1‰~-29.8‰.

3.3 顺北地区玉尔吐斯组烃源岩干酪根碳同位素特征

前人已经通过野外露头和钻井对塔里木盆地下寒武统烃源岩干酪根碳同位素做了大量分析(刘文汇等,2016;Zhu et al.,2018; 胡广等,2019;Deng et al.,2021; 杨海军等,2020;朱光有等,2022),图8列出来塔里木盆缘野外露头和隆起区钻井实测的下寒武统烃源岩干酪根碳同位素分布.总体来说,下寒武统烃源岩干酪根碳同位素分布较广(-39‰~-25.5‰),其中阿克苏什艾日克和柯坪东二沟剖面碳同位素较轻(<-34‰),而柯坪苏盖特布拉克、库鲁克塔格南雅尔当山剖面以及钻井揭示的下寒武统烃源岩干酪根碳同位素偏重(>-34‰).下寒武统烃源岩干酪根碳同位素变化范围大主要与烃源岩中成烃生物类型变化有关,如有机质以底栖藻类贡献为主则干酪根碳同位素偏轻(<-34‰),以浮游藻类为主贡献则干酪根碳同位素偏重(-30‰),两者混源贡献为主则干酪根碳同位素居中(-34‰~-30‰)(刘文汇等,2016;胡广等,2019).为了便于对比,本文根据已发表的塔河油田奥陶系原油沥青质碳同位素分布(-33.9‰~-28.0‰)(张亚斌等,2022)对塔河油田奥陶系原油的干酪根碳同位素进行恢复,由于生物降解和TSR对原油中沥青质碳同位素影响较小,主要是热成熟度影响较大,因此本文主要对塔河原油中最重的沥青质碳同位素做了热成熟度校正,参考顺北1号带轻质油藏原油沥青质受热成熟度影响最大变重0.8‰,塔河原油中沥青质最重的原始碳同位素组成大概为-28.8‰,根据干酪根和沥青质0.5‰的碳同位素分馏,塔河原油来源干酪根碳同位素分布范围为-33.4‰~-28.3‰.

本文恢复的顺北地区原油和天然气干酪根的碳同位素分布范围并不是太宽泛,主要集中在-33‰~-29‰之间,其中生气干酪根碳同位素相对偏轻(-33.1‰~-29.8‰),生油干酪根碳同位素偏重些(-32.3‰~-28.8‰)(图8).塔河原油干酪根碳同位素则相对顺北原油分布范围更为宽泛.结合成烃生物类型变化对干酪根碳同位素的影响(刘文汇等,2016;胡广等,2019),顺北和塔河油气母质主要以底栖和浮游藻类混合生源贡献为主,其中顺北原油和塔河原油还存在部分同位素较重的以浮游藻类为主要生源的干酪根贡献.这类原油在塔河各油区均有分布,在顺北主要分布在顺北1号带和5号带和4号带最南端.由于这类同位素较重的原油与同位素较轻的原油平面上并不是截然区分的,可能主要反映烃源岩局部在垂向上生源和成藏相对贡献的变化.对比钻井实测的下寒武统烃源岩干酪根碳同位素,轮探1井玉尔吐斯组烃源岩干酪根碳同位素分布较广,几乎涵盖了其他钻井下寒武统烃源岩干酪根碳同位素范围.但轮探1井干酪根碳同位素范围主要位于-32‰~-29‰,超过-32‰的样品只占8%(N=40).塔河原油还存在一部分碳同位素较轻原油(如塔河主体区、艾丁和托普台地区),表明玉尔吐斯组烃源岩干酪根碳同位素平面上变化较大.

结合顺北和塔河油气来源干酪根碳同位素分布,可将烃源岩干酪根碳为-33.5‰作为区分主要以底栖藻类和主要以底栖+浮游藻类混合生源为主的界限.以浮游藻类为主的烃源岩生油为主,少量生气;以底栖藻类为主的烃源岩以生气为主,也可以少量生挥发油-凝析油;底栖藻类和浮游藻类含量接近的烃源岩油气兼生.顺北和塔河原油主要来自以底栖藻类和浮游藻类混合生源为主的烃源岩,从油气碳同位素特征看,目前顺北和塔河地区还未见来自主要以底栖藻类为主的玉尔吐斯组烃源岩的贡献,即使有也主要以生气为主.

3.4 玉尔吐斯组烃源岩生烃模式

综上,从烃源岩成烃组合上可以将玉尔吐斯组烃源岩划分为3大类:(1)生油型(浮游藻类为主要生源,-30‰<δ13C干酪根 <-28‰);(2)油气兼生型(底栖和浮游藻类为主要生源,-33.5‰<δ13C干酪根 <-30‰);(3)生气型(底栖藻类为主要生源,-38‰<δ13C干酪根 <-33.5‰).塔里木盆地海相地层广泛存在原油族组分碳同位素倒转、烃源岩氯仿沥青族组分碳同位素倒转、烃源岩中氯仿沥青和干酪根碳同位素倒转等长期困扰着油气地质界的问题,实际上主要与下寒武统烃源岩生源构成及其碳同位素特征有关.本文总结了不同类型烃源岩生油气过程及其对应的碳同位素变化模式图(图9).下面分别阐述:

3.4.1 生油型源岩生烃及碳同位素特征

生油型源岩以浮游藻类生源为主,同样存在少量底栖藻类,为I型干酪根.这类烃源岩生烃门限相对高些,干酪根碳同位素较重,生成油碳同位素同样较重,具有很高的排油效率.随着烃源岩热成熟度增加,生成原油族组分碳同位素差异演化导致排出油和烃源岩内滞留烃族组分碳同位素发生倒转,同时,随着生排烃进行,残留干酪根中底栖藻类贡献逐渐增加,可能导致干酪根总体碳同位素变轻,从而发生干酪根碳同位素和抽提物碳同位素倒转.

3.4.2 油气兼生型源岩生烃及碳同位素特征

油气兼生型源岩主要以浮游藻类和底栖藻类混合贡献为主,两者贡献相差不大,为II型干酪根.这类烃源岩生烃门限相对低些,干酪根碳同位素相对生油型源岩偏轻,生成油碳同位素同样偏轻.这类烃源岩早期以浮游藻类生油贡献为主,生成油同位素相对重些,由于底栖藻类同样具有一定的生油潜力,主要是生成油质较轻的挥发油-凝析油,因此在生油窗晚期底栖藻类生成油贡献增加,此时生成油同位素偏轻,同时干酪根总体碳同位素变轻.因此,两种不同生源干酪根递序生油及混合以及热成熟度的影响导致油藏油族组分碳同位素倒转以及烃源岩滞留烃和干酪根碳同位素的倒转.

3.4.3 生气型源岩生烃及碳同位素特征

生气型源岩主要以底栖藻类为主,含少量浮游藻类,可少量生油(同位素偏重),为III型干酪根.与典型煤型气不同的是这类烃源岩生成天然气总体碳同位素偏轻,但各烃气之间碳同位素差别较小.

实际上,烃源岩生源发育存在很大的非均一性,同一层位源岩平面上和垂向上源岩类型变化较大,很难说某一套烃源岩类型是单一的,正是由于平面上和垂向上不同类型烃源岩组合的差异变化导致了塔里木盆地海相原油具有特别的碳同位素分布特征.例如同一位置发育生油型和油气兼生型源岩,不同来源油的混合很容易形成原油族组分碳同位素倒转;如生气型源岩和生油型/油气兼生型源岩共生,则生成的油气的碳同位素具有油重气轻的特征.

4 结论及意义

(1)利用顺北地区成熟度最低和成熟度最高的原油族组分碳同位素建立了热成熟度对原油沥青质碳同位素影响的定量关系,结合原油热成熟度将顺北地区原油沥青质碳同位素校正到同一热成熟度级别(0.89%Ro).利用沥青质与其来源干酪根碳同位素分馏(0.5‰)恢复了顺北地区原油来源母质的碳同位素分布(-29‰~-32‰).

(2)通过建立顺北地区天然气中正丁烷含量与其碳同位素的关系确定了热成熟度对正丁烷含量和碳同位素的影响.当天然气中正丁烷相对含量低于2%时其碳同位素受热成熟度影响而开始变重,由此确定了未受热成熟度影响的、能反映其来源母质的正丁烷初始碳同位素组成(-34.6‰~-31.3‰).根据正丁烷和其来源干酪根碳同位素分馏(1.5‰)恢复了顺北地区天然气来源母质的碳同位素分布(-33.1‰~-29.8‰).

(3)顺北地区天然气主要来自以底栖藻类和浮游藻类混合贡献为主的烃源岩,而原油还存在以浮游藻类为主的烃源岩的贡献.根据生源构成差异,将玉尔吐斯组烃源岩分成生油型(以浮游藻类为主)、油气兼生型(底栖藻类和浮游藻类)和生气型(以底栖藻类为主)三类.玉尔吐斯组烃源岩干酪根碳同位素多轻于其抽提物主要由于高演化阶段倾油干酪根大量生排油而导致其在源岩中相对比例降低,从而导致烃源岩总体干酪根碳同位素偏轻.因此,对于高演化烃源岩现今实测的烃源岩干酪根碳同位素并不能准确反映其原始生油干酪根碳同位素组成.除了热成熟度,平面和垂向上不同类型烃源岩的组合导致的不同同位素特征原油的混合也可以导致原油中族组分碳同位素倒转.本文建立的塔里木玉尔吐斯组烃源岩生烃模式对理解超深层油气地化特征、油气生成机制及油气相态预测具有重要的指导意义.

参考文献

[1]

Andresen,B.,Throndsen,T.,Råheim,A.,et al.,1995.A Comparison of Pyrolysis Products with Models for Natural Gas Generation.Chemical Geology,126(3-4):261-280.https://doi.org/10.1016/0009⁃2541(95)001220

[2]

Behar,F.,Lorant,F.,Mazeas,L.,2008.Elaboration of a New Compositional Kinetic Schema for Oil Cracking.Organic Geochemistry,39(6):764 - 782.https://doi.org/10.1016/j.orggeochem.2008.03.007

[3]

Cao Z.C., Yun, L., Ping, H.W., et al., 2025. Quantitative Evaluation of Gas Injection Contribution using Fluid Inclusion Data: A Case Study of the Condensate Gas Reservoirs of the Eastern Shunbei in the Tarim Basin. Journal of Earth Science, 36(6): 2819-2824. https://doi.org/10.1007/s12583-025-2039-7

[4]

Cao, Z.C.,Yun, L.,Ping, H.W.,et al.,2025. Geochemistry and Origin of Ordovician Natural Gas in Shunbei Area of Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 40-52 (in Chinese with English abstract).

[5]

Clayton,J.L.,Bostick,N.H.,1986.Temperature Effects on Kerogen and on Molecular and Isotopic Composition of Organic Matter in Pierre Shale near an Igneous Dike.Organic Geochemistry,10(1-3):135-143.https://doi.org/10.1016/01466380(86)900173

[6]

Clayton,C.J.,1991.Effect of Maturity on Carbon Isotope Ratios of Oils and Condensates.Organic Geochemistry,17(6):887 - 899.https://doi.org/10.1016/01466380(91)90030n

[7]

Chung,H.M.,Rooney,M.A.,Toon,M.B.,et al.,1992.Carbon Isotope Composition of Marine Crude Oils.AAPG Bulletin,76(7):1000-1007 https://doi.org/10.1306/bdff8952171811d78645000102c1865d

[8]

Cai,C.F.,Li,K.K.,Ma,A.L.,et al.,2009.Distinguishing Cambrian from Upper Ordovician Source Rocks:Evidence from Sulfur Isotopes and Biomarkers in the Tarim Basin.Organic Geochemistry,40(7):755 - 768.https://doi.org/10.1016/j.orggeochem.2009.04.008

[9]

Chen,Z.H.,Chai,Z.,Cheng,B.,et al.,2021.Geochemistry of HighMaturity Crude Oil and Gas from Deep Reservoirs and Their Geological Significance:A Case Study on Shuntuoguole Low Uplift,Tarim Basin,Western China.AAPG Bulletin,105(1):65 - 107.https://doi.org/10.1306/07072019015

[10]

Dai,J.X.,Song,Y.,Wu,C.L.,et al.,1992.Characteristics of Carbon Isotopes of Organic Alkane Gases in Petroliferous Basins of China.Journal of Petroleum Science and Engineering,7(3-4):329-338.https://doi.org/10.1016/09204105(92)90028y

[11]

Deng,Q.,Wang,H.Z.,Wei,Z.W.,et al.,2021.Different Accumulation Mechanisms of Organic Matter in Cambrian Sedimentary Successions in the Western and Northeastern Margins of the Tarim Basin,NW China.Journal of Asian Earth Sciences,207:104660.https://doi.org/10.1016/j.jseaes.2020.104660

[12]

Guo,L.G.,Xiao,X.M.,Tian,H.,et al.,2009.Distinguishing Gases Derived from Oil Cracking and Kerogen Maturation:Insights from Laboratory Pyrolysis Experiments.Organic Geochemistry,40(10):1074 - 1084.https://doi.org/10.1016/j.orggeochem.2009.07.007

[13]

Hu,G.,Liu,W.H.,Luo,H.Y.,et al.,2019.The Impaction of Original Organism Assemblages in Source Rocks on the Kerogen Carbon Isotopic Compositions:A Case Study of the Early Paleozoic Source Rocks in the Tarim Basin,China.Bulletin of Mineralogy,Petrology and Geochemistry,38(5):902 - 913,869(in Chinese with English abstract).

[14]

James,A.T.,1983.Correlation of Natural Gas by Use of Carbon Isotopic Distribution between Hydrocarbon Components.AAPG Bulletin,67(7):1176-1191.https://doi.org/10.1306/03b5b72216d111d78645000102c1865d

[15]

James,A.T.,1990.Correlation of Reservoired Gases Using the Carbon Isotopic Compositions of Wet Gas Components.AAPG Bulletin,74(9):1441-1458.https://doi.org/10.1306/0c9b24f7171011d78645000102c1865d

[16]

Kvalheim,O.M.,Christy,A.A.,Telnæs,N.,et al.,1987.Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution.Geochimica et Cosmochimica Acta,51(7):1883 - 1888.https://doi.org/10.1016/00167037(87)901797

[17]

Li,B.,Zhang,X.,Guo,Q.,et al.,2022.Basin Modeling of Cambrian UltraDeep Petroleum System in Tarim Basin.Acta Petrolei Sinica,43(6):804 - 815 (in Chinese with English abstract).

[18]

Liu,W.H.,Hu,G.,Teng,G.E.,2016.Organism Assemblages in the Paleozoic Source Rocks and Their Implications.Oil & Gas Geology,37(5):617 - 626 (in Chinese with English abstract).

[19]

Li,F.,Zhu,G.Y.,Lü,X.X.,et al.,2021.The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin.Acta Petrolei Sinica,42(11):1417 - 1436 (in Chinese with English abstract).

[20]

Luo,M.X.,Cao,Z.C.,Xu,Q.Q.,et al.,2024.Geochemical Characteristics and Geological Significance of Sinian Crude Oil from Well Tashen 5,Tahe Oilfield,Tarim Basin.Bulletin of Geological Science and Technology,43(1):135 - 149 (in Chinese with English abstract).

[21]

Li,H.L.,Gao,J.,Cao,Z.C.,et al.,2023.SpatialTemporal Distribution of Fluid Activities and Its Significance for Hydrocarbon Accumulation in the StrikeSlip Fault Zones,Shuntuoguole LowUplift,Tarim Basin.Earth Science Frontiers,30(6):316 - 328 (in Chinese with English abstract).

[22]

Ma,Y.S.,Cai,X.Y.,Yun,L.,et al.,2022.Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei UltraDeep Carbonate Oil and Gas Field,Tarim Basin,NW China.Petroleum Exploration and Development,49(1):1 - 17 (in Chinese with English abstract).

[23]

Ping,H.W.,Chen,H.H.,Thiéry,R.,et al.,2017.Effects of Oil Cracking on Fluorescence Color,Homogenization Temperature and Trapping Pressure Reconstruction of Oil Inclusions from Deeply Buried Reservoirs in the Northern Dongying Depression,Bohai Bay Basin,China.Marine and Petroleum Geology,80:538 - 562.https://doi.org/10.1016/j.marpetgeo.2016.12.024

[24]

Ping,H.W.,Chen,H.H.,Zhu,J.Z.,et al.,2018.Origin,Source,Mixing,and Thermal Maturity of Natural Gases in the Panyu Lower Uplift and the Baiyun Depression,Pearl River Mouth Basin,Northern South China Sea.AAPG Bulletin,102(11):2171 - 2200.https://doi.org/10.1306/04121817160

[25]

Ping,H.W.,Chen,H.H.,Zhai,P.Q.,et al.,2021.Evidence for Deeply Buried,OilProne Source Rocks in the Baiyun Depression,Pearl River Mouth Basin,Northern South China Sea.AAPG Bulletin,105(4):749 - 783.https://doi.org/10.1306/04072018144

[26]

Qi,L.X.,2016.Oil and Gas Breakthrough in UltraDeep Ordovician Carbonate Formations in Shuntuoguole Uplift,Tarim Basin.China Petroleum Exploration,21(3):38 - 51 (in Chinese with English abstract).

[27]

Qi,L.X.,2020.Characteristics and Inspiration of UltraDeep FaultKarst Reservoir in the Shunbei Area of the Tarim Basin.China Petroleum Exploration,25(1):102 - 111 (in Chinese with English abstract).

[28]

Radke,M.,1988.Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils.Marine and Petroleum Geology,5(3):224 - 236.https://doi.org/10.1016/02648172(88)900037

[29]

Radke, M., Leythaeuser, D., Teichmüller, M., 1984. Relationship between Rank and Composition of Aromatic Hydrocarbons for Coals of Different Origins. Org. Geochem. 6, 423-430.http://doi.org/10.1016/0146-6380(84)90065-2

[30]

Wang, Q.H.,Cai, Z. Z.,Ping, H.W.,et al., 2025. Geochemical Characteristics, Charging Differences, and Controlling Factors of the Ordovician Crude Oil in the FI17 Strike-Slip Fault Zone of the Fuman Oilfield, Tarim Basin. Bulletin of Geological Science and Technology44(5): 13-28 (in Chinese with English abstract).

[31]

Waples,D.W.,Tornheim,L.,1978.Mathematical Models for PetroleumForming Processes:Carbon Isotope Fractionation.Geochimica et Cosmochimica Acta,42(5):467 - 472.https://doi.org/10.1016/00167037(78)901965

[32]

Whiticar,M.J.,1994.Correlation of Natural Gases with Their Source.In:Leslie,B.M.; Wallace,G.D.,eds.,The Petroleum System:From Source to Trap.AAPG Memoir,261-283.https://doi.org/10.1306/m60585c16

[33]

Whiticar,M.J.,1996.Stable Isotope Geochemistry of Coals,Humic Kerogens and Related Natural Gases.International Journal of Coal Geology,32(1-4):191-215.https://doi.org/10.1016/s0166-5162(96)000420

[34]

Wang,Q.H.,Yang,H.J.,Wang,R.J.,et al.,2021.Discovery and Exploration Technology of FaultControlled Large Oil and Gas Fields of UltraDeep Formation in Strike Slip Fault Zone in Tarim Basin.China Petroleum Exploration,26(4):58 - 71 (in Chinese with English abstract).

[35]

Wang,Q.H.,Yang,H.J.,Li,Y.,et al.,2022.Control of StrikeSlip Fault on the Large Carbonate Reservoir in Fuman,Tarim Basin:A Reservoir Model.Earth Science Frontiers,29(6):239 - 251 (in Chinese with English abstract).

[36]

Stahl,W.,1974.Carbon Isotope Fractionations in Natural Gases.Nature,251:134 - 135.https://doi.org/10.1038/251134a0

[37]

Stahl,W.J.,1979.Carbon Isotopes in Petroleum Geochemistry.Lectures in Isotope Geology.Springer,Berlin,Heidelberg:Berlin,Heidelberg,274-282.https://doi.org/10.1007/9783642671616_23

[38]

Schoell,M.,1980.The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins.Geochimica et Cosmochimica Acta,44(5):649 - 661.https://doi.org/10.1016/00167037(80)901556

[39]

Schoell,M.,1984.Stable Isotopes in Petroleum Research.Advances in Petroleum Geochemistry.Academic Press,London,215-245.

[40]

Sofer,Z.,1984.Stable Carbon Isotope Compositions of Crude Oils:Application to Source Depositional Environments and Petroleum Alteration.AAPG Bulletin,68:68(1):31-49.https://doi.org/10.1306/ad46096316f711d78645000102c1865d

[41]

Sofer,Z.,Zumberge,J.E.,Lay,V.,1986.Stable Carbon Isotopes and Biomarkers as Tools in Understanding Genetic Relationship,Maturation,Biodegradation,and Migration of Crude Oils in the Northern Peruvian Oriente (Maranon) Basin.Organic Geochemistry,10(1-3):377-389.https://doi.org/10.1016/01466380(86)900379

[42]

Yang,H.J.,Chen,Y.Q.,Tian,J.,et al.,2020.Great Discovery and Its Significance of UltraDeep Oil and Gas Exploration in Well Luntan1 of the Tarim Basin.China Petroleum Exploration,25(2):62 - 72 (in Chinese with English abstract).

[43]

Yun,L.,2021.Controlling Effect of NE StrikeSlip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance,Tarim Basin.China Petroleum Exploration,26(3):41 - 52 (in Chinese with English abstract).

[44]

Yun,L.,Deng,S.,2022.Structural Styles of Deep StrikeSlip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation:A Case Study of Shunbei Oil and Gas Field.Acta Petrolei Sinica,43(6):770 - 787 (in Chinese with English abstract).

[45]

Zhang,Z.N.,Liu,W.H.,Zheng,J.J.,et al.,2006.Characteristics of Carbon Isotopic Composition of Soluble Organic Components of Deep Source Rocks in Tarim Basin.Acta Sedimentologica Sinica,24(5):769 - 773 (in Chinese with English abstract).

[46]

Zhu,G.Y.,Chen,F.R.,Chen,Z.Y.,et al.,2016.Discovery and Basic Characteristics of the HighQuality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin.Natural Gas Geoscience,27(1):8 - 21 (in Chinese with English abstract).

[47]

Zhu,G.Y.,Chen,F.R.,Wang,M.,et al.,2018.Discovery of the Lower Cambrian HighQuality Source Rocks and Deep Oil and Gas Exploration Potential in the Tarim Basin,China.AAPG Bulletin,102(10):2123 - 2151.https://doi.org/10.1306/03141817183

[48]

Zhu,G.Y.,Hu,J.F.,Chen,Y.Q.,et al.,2022.Geochemical Characteristics and Formation Environment of Source Rock of the Lower Cambrian Yuertusi Formation in Well Luntan 1 in Tarim Basin.Acta Geologica Sinica,96(6):2116 - 2130 (in Chinese with English abstract).

[49]

Zhu,C.L.,Yan,H.,Yun,L.,et al.,2014.Characteristics of Cambrian Source Rocks in Well XH1,Shaya Uplift,Tarim Basin.Petroleum Geology & Experiment,36(5):626 - 632 (in Chinese with English abstract).

[50]

Zhang,Y.B.,Li,X.B.,Wang,Z.D.,et al.,2022.Origin of Carbon Isotopic Inversion of Ordovician Crude Oil and Group Components in Tahe Oilfield,Tarim Basin.Natural Gas Geoscience,33(8):1332 - 1343 (in Chinese with English abstract).

[51]

Zhang,Y.,Cao,Z.C.,Chen,H.H.,et al.,2023.Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among StrikeSlip Fault Belts in Shunbei Area,Tarim Basin.Earth Science,48(6):2168 - 2188 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42272169)

国家自然科学基金企业创新发展联合基金集成项目(U24B6001)

国家“十五·五”科技专项课题(2025ZD1402301)

AI Summary AI Mindmap
PDF (3983KB)

61

访问

0

被引

详细

导航
相关文章

AI思维导图

/