东海含油气盆地基础地质问题研究进展及展望

朱伟林 ,  张迎朝 ,  蒋一鸣 ,  李宁 ,  赵世杰 ,  唐贤君 ,  何新建 ,  付晓伟

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4783 -4800.

PDF (9933KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4783 -4800. DOI: 10.3799/dqkx.2025.185

东海含油气盆地基础地质问题研究进展及展望

作者信息 +

Research Advances and Prospects on Fundamental Geological Issues of the East China Sea Petroliferous Basin

Author information +
文章历史 +
PDF (10170K)

摘要

东海盆地作为东亚陆缘构造演化的关键区域,其基底属性、俯冲过程及多期构造-沉积耦合机制长期存在争议.在现有地质-地球物理资料全面分析研究基础上,结合前人的证据和认识,对东海盆地关键基础地质问题进行了系统总结和评述,并提出未来研究的思路和方向.基底归属争议聚焦于华南陆壳延伸与外来地体拼贴两种假说,地壳厚度突变与锆石同位素为后者提供新证据,但地壳演化及碰撞造山带的时空约束仍待完善;中生代俯冲过程呈现低角度俯冲-板片拆离-岩浆弧迁移等阶段性演化,早侏罗世岛弧岩浆岩的发现修正了传统平俯冲模型,但白垩纪及新生代岩浆弧位置仍缺乏海域弧岩浆岩的直接证据.这很大程度上影响了中生界盆地性质及演化的认识.新生代盆地格局北部受俯冲后撤控制,南部可能与南海扩张密切相关,但还需俯冲及南海拉张过程等关键证据的支持.中生代古地理格局模糊,新生代物源体系突变及构造-沉积响应分异显著.当前研究缺乏华南陆域-东海盆地-琉球群岛地质证据的系统对比,未来需整合深部地球物理探测、高精度年代学与数值模拟,构建“俯冲-岩浆-沉积”协同演化模型,为油气资源勘探与陆缘动力学研究提供理论支撑.

Abstract

As a critical region for the tectonic evolution of the East Asian continental margin, the East China Sea basin has long been debated regarding its basement attributes, subduction processes, and multi-phase tectonic-sedimentary coupling mechanisms. Based on a comprehensive analysis of existing geological and geophysical data, combined with previous evidence and insights, in this paper it systematically summarizes and evaluates key fundamental geological issues of the East China Sea basin, proposing future research directions. The basement controversy centers on two hypotheses:the extension of the South China continental crust versus the accretion of exotic terranes. Abrupt crustal thickness variations and zircon isotopic data provide new evidence for the latter, but the spatiotemporal constraints on crustal evolution and collisional orogenic belts remain unresolved. The Mesozoic subduction process exhibits staged evolution, including low-angle subduction, slab detachment, and magmatic arc migration. The discovery of Early Jurassic island arc magmatic rocks revises the traditional flat-slab subduction model, yet direct evidence for Cretaceous and Cenozoic magmatic arc positions in offshore areas is still lacking, significantly hindering the understanding of Mesozoic basin nature and evolution. The Cenozoic basin architecture in the north is controlled by slab rollback, while the southern region may correlate closely with the South China Sea spreading, though critical evidence linking subduction and South China Sea extension processes is still needed. The Mesozoic paleogeographic framework remains ambiguous, while abrupt Cenozoic provenance shifts and differential tectonic-sedimentary responses are prominent. Current research lacks systematic comparisons of geological evidence among the South China continent, the East China Sea Basin, and the Ryukyu Islands. Future studies should integrate deep geophysical exploration, high-precision geochronology, and numerical modeling to establish a "subduction-magmatism-sedimentation" co-evolution model, providing theoretical support for hydrocarbon exploration and continental margin dynamics research.

Graphical abstract

关键词

东海盆地 / 板块俯冲 / 盆地演化 / 区域构造 / 石油地质.

Key words

East China Sea basin / plate subduction / basin evolution / regional tectonics / petroleum geology

引用本文

引用格式 ▾
朱伟林,张迎朝,蒋一鸣,李宁,赵世杰,唐贤君,何新建,付晓伟. 东海含油气盆地基础地质问题研究进展及展望[J]. 地球科学, 2025, 50(12): 4783-4800 DOI:10.3799/dqkx.2025.185

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

东海盆地位于华南陆缘与西太平洋俯冲带的交汇处,是研究东亚陆缘中-新生代地质演化的天然实验室.其复杂的基底属性、多期俯冲动力学过程及构造-沉积响应特征,不仅为揭示古太平洋板块俯冲机制与陆缘动力学演化提供了关键约束,更对区域油气资源勘探开发和长三角地区经济发展(姜月华等,2023)具有重要意义.

东海陆架盆地是中国近海海域最大的含油气盆地(图1),面积达25万 km²,中-新生代沉积巨厚,累计最大厚度超2万 m,最新一轮油气资源评价预测其油气资源量达67亿 t油当量,油气资源潜力巨大.然而,目前东海盆地的油气勘探成果与盆地规模极不相称,已发现商业油气田集中于西湖凹陷,其它凹陷的勘探成效并不理想.其关键原因之一是许多关键基础地质问题尚未解决.

东海陆架基底属性的归属是理解盆地演化的首要问题.早期研究基于重力异常与地壳厚度连续性,认为东海基底为华南陆壳的自然延伸(Maruyama et al., 1997;郝天珧等,2006).灵峰1井钻遇的古元古代片麻岩也支持基底连续性观点(李培廉和朱平,1992).然而,锆石同位素揭示了东、西华夏截然不同的地壳演化历史(Lin et al., 2018),海域锆石同位素组成的差异(Fu et al., 2022),也为“外来地体拼贴”假说提供了新证据.

该区中生代以来一直受控于俯冲体系,先后受古太平洋板块、太平洋板块及菲律宾板块俯冲的控制,是中国近海区受板块俯冲作用持续时间最长、历史最为复杂的地区(Zhu et al., 2019Suo et al., 2019).在此过程中,盆地经历了多期次构造迁移与不同原型盆地叠加,保存有丰富的与板块俯冲相关的地质记录.然而,古太平洋板块俯冲起止时间(Li et al., 2006Zhou et al., 2006)、俯冲过程的阶段性调整(Li and Li, 2007Li et al., 2018)及大陆弧的位置等都存在很大争议.继而增加了对东海盆地性质及演化的多解性(Suo et al., 2019Zhu et al., 2019;朱伟林等,2022).

本文系统梳理东海盆地基底演化、俯冲动力学与沉积响应的研究进展,剖析关键争议的成因,并提出海陆结合、多学科交叉的研究思路,以期为东亚陆缘构造理论体系的完善与油气勘探实践提供科学依据.

1 地质背景

东海盆地位于中国东南陆架区,东临琉球海沟,西接浙闽隆起,南北分别与台湾北部和日本西南部相邻,总体呈北东-南西向展布,包括东海陆架盆地和冲绳海槽盆地,其中前者是我国重要的含油气盆地之一(李家彪等,2017;Zhu et al., 2019)(图1).其地壳厚度由西向东逐渐减薄,岩浆发育,总体西弱东强(图2).东海盆地的构造演化与古太平洋板块俯冲过程密切相关.中生代早期(侏罗纪),古太平洋板块(Izanagi板块)以低角度向华南陆缘俯冲,引发陆内挤压变形(Li and Li, 2007).中侏罗世板片拆离触发大规模岩浆活动(Li et al., 2018),海域钻井揭示的早侏罗世岛弧岩浆岩对侏罗纪早期俯冲提供很好的约束(Xu et al., 2017).白垩纪俯冲角度增大,板片后撤导致岩浆弧向海迁移(Li et al.,2014),但岩浆弧的位置还存在一定争议(Liu et al., 2016Suo et al., 2019).新生代以来洋中脊俯冲(Wu et al.,2019,2022)、菲律宾海板块俯冲 (Wu et al., 2016)等俯冲体系发生多期重大调整,伴随南海的打开大地构造环境也发生分异(Fu et al., 2024).

盆地构造格局具有显著的时空分异性,中生代以福州凹陷和钱塘凹陷为代表,侏罗系-白垩系沉积厚度大且南北差异显著:南部福州凹陷发育海相-滨岸沼泽相地层,呈拗陷型结构,最大厚度逾5 000 m(王可德等,2000;冯晓杰等,2003),而北部钱塘凹陷以陆相红层为主.新生代盆地进一步分为西部坳陷带、中部隆起带和东部坳陷带,西部坳陷带(如长江坳陷及丽水-椒江拗陷)以古新统沉积为主,北部的长江坳陷为陆相湖盆沉积为特征,南部的丽水-椒江凹陷月桂峰组为陆相湖泊,灵峰组以后以海相为主;东部坳陷带(如西湖凹陷、钓北凹陷)为始新世-渐新世沉降中心,不同程度地受海侵或潮汐活动的影响(Suo et al., 2015Zhu et al., 2019).中中新世以来,冲绳海槽弧后扩张加剧,沉积中心进一步东迁(Shang et al., 2017).

2 基础地质问题研究进展

2.1 盆地基底演化

从20世纪70年代东海海域大规模地质地球物理普查开始,就一直存在东海陆架区基底归属的争议,争论的焦点在于东海陆架区基底属于华南陆壳的自然延伸(Maruyama et al., 1997;郝天珧等, 2006;Shi and Li,2012),还是曾为独立块体拼贴至华南东侧(朱夏,1987;李培廉和朱平,1992;Niu et al., 2015)(图1).

Hsü et al.(1990)关注到长乐-南澳断裂带零星分布的蛇纹岩,认为其为缝合带蛇绿岩的一部分,指示泉州东部存在外来地体.高天钧等(1991)将台湾海峡地体与华南大陆间的缝合带称为平潭-东山地体,该地体岩石圈厚度突增至290 km,远大于西侧的华南大陆(160 km),其角闪岩相变质作用发生在165 Ma,并结合未受变质活动影响的中白垩统石牛山组确定该地体与华南的拼贴发生在晚侏罗世-早白垩世.Lu et al. (1994)发现该带蛇绿岩中长基超基性岩为镁铁质超基性岩,堆积杂岩主量元素指示形成于岛弧-不成熟边缘海环境,富Sr、Ba、Nb、P,贫Y、Yb、Cr、Ni、Zr,富集轻稀土,且轻稀土分异程度高,亏损重稀土,据此认为该蛇绿岩源自深层俯冲带,是闽台微大陆与华南块体拼合的证据,并根据韧性剪切活动的时间确定拼合发生于120~100 Ma.此外,东海地体与闽浙东部火山弧拼贴时间还存在晚侏罗世的观点.前述学者将研究重点集中在长乐-南澳断裂带,但对该外来地体的确切范围缺乏详细的说明.Niu et al.(2015)综合前人东亚东部太平洋相关的花岗岩类分布及时序特征,认为中国大陆东部最年轻的花岗岩为~88 Ma,古太平洋的俯冲在该时期被迫停止,提出南海、东海直至日本区域基底为外来地体的科学假说,认为该地体于~100 Ma拼接至华南东缘,造成原西太平洋俯冲带的停止,华南岩浆活动的静止(~88 Ma至~50 Ma),新俯冲体系在日本-琉球一线形成(图1).Fu et al.(2022)根据福州凹陷两口揭示中生代地层最为连续的钻井进行了系统的碎屑锆石的U⁃Pb年龄和Lu⁃Hf同位素进行了首次原位测试,获得1 360个有效U⁃Pb年龄和1251组Hf同位素数据.结果显示,>150 Ma的锆石与华夏地块(Cathaysia)的同位素特征显著不同,提出浙闽隆起带以东可能至少部分基底不属于华夏地块,主要由太古宙(≥25亿年)地壳物质经再造形成,约在150 Ma与华夏地块碰撞(图3).宽角度地震显示闽火山带地壳厚度为30 km,向陆架盆地减薄至15 km,并存在明显的速度差异,且两者间存在50 km宽的高速异常区,可能为中生代缝合带(Wei et al., 2021).

除外来体的观点外,另有学者认为东海陆架基底应属于华南大陆的一部分(冯晓杰等,2003;郝天珧等, 2006;刘建华等,2007;Hu et al., 2012Shi and Li,2012),此外,还有学者在研究过程中直接将东海陆架区基底视为华南大陆向海域的延伸(如Maruyama et al., 1997;Li et al., 2006Li et al., 2012).该观点的主要证据有:(1)钓鱼岛以西的东海陆架区域与华南大陆为连片的低值重力异常区,地壳厚度缓慢减薄,不存在突变带(王和明和尹文荣,1986;江为为等,2001;郝天珧等,2006);(2)目前发现的最老基底为灵峰1井钻遇的古元古代片麻岩(李培廉和朱平,1992),其年龄与与闽浙沿海基底可进行对比(刘建华等,2007),且均为古太古代-新太古代地壳物质再循环的产物(向华等,2008;张国全,2012),可能为统一的基底(刘建华等,2007);(3)东海南部的福州凹陷发育相对完整的上侏罗统-上白垩统地层(王可德等,2000),地震剖面显示地层宽缓未见明显的褶皱等挤压构造(侯方辉等,2015),砂岩组分分析显示早白垩统地层开始以岩浆弧物源为主(冯晓杰等,2003),临近的沿海陆域岩浆岩从该时期开始强烈活动(Li et al., 2014),其物源变化趋势与华南岩浆活动很好对应;(4)日本-琉球-台湾-巴拉望存在中生代相对连续的太平洋板块的俯冲证据(Isozaki et al., 2010Shi and Li,2012).

2.2 中生代以来俯冲过程及岩浆弧迁移

东海盆地紧邻华南地块东部,其成盆机制及构造演化深受古太平洋板块俯冲体系的控制.近年来,围绕东海盆地的成盆动力学背景,学界从俯冲起始时间、岩浆弧迁移及新生代板块重建等方向取得重要进展,但仍存在诸多争议.

关于古太平洋板块向东亚的俯冲起始时间,当前仍缺乏统一认识.部分学者认为其俯冲历史最早可追溯至晚古生代(~280 Ma)(Li et al., 2006Li et al., 2012),也有观点认为太平洋板块俯冲的影响不早于侏罗纪(Zhou et al., 2006Chen et al., 2008).俯冲体系建立后,俯冲板片属性及俯冲状态的改变使得俯冲过程分为多个演化阶段,俯冲几何形态的阶段性调整已被广泛认可.对于侏罗纪,Li and Li(2007)提出早侏罗世为平俯冲阶段,导致华南陆内挤压变形;中侏罗世板片拆离触发大规模岩浆活动.然而,近年东海及南海北部钻井揭示了早侏罗世岛弧岩浆岩(Xu et al., 2017),这与平俯冲模式下“岛弧不发育”的预测相矛盾(Li and Li, 2007).为此,Li et al.(2018)综合陆域岩浆活动与海域构造特征,修正为“中侏罗世早期平俯冲、晚期拆离”模型,揭示了俯冲从低角度到高角度的动态演化.这认识凸显海域证据对俯冲演化模型的关键补充.

进入白垩纪,俯冲角度逐步增大、板片后撤导致岩浆岩带向海迁移(Li et al., 2014).但岩浆弧的位置仍是争论焦点部分学者认为华南沿海早白垩世岩浆岩为弧后成因,主岛弧可能位于台湾-琉球微陆块附近(Li et al., 2012Suo et al., 2019);而Liu et al.(2016)Zhao et al.(2021)则认为闽浙地区同期的中酸性岩浆岩具典型岛弧属性,并于~110 Ma后转化为弧后伸展环境.这一推测得到东海地区最新测试结果的支持,发现较大规模的~110 Ma的岩浆岩,且喷出岩以安山岩为主,地球化学构造判别图都显示为大陆弧环境(Hu et al., 2025).

晚白垩世至新生代是板块俯冲体系重建的关键转折期.华南陆域在88 Ma后出现岩浆活动停滞,对此有学者认为古太平洋板块(Izanagi)停止俯冲,太平洋板块主导的新体制于~50 Ma建立(Hall, 2002Niu et al., 2015).然而,Li et al.(2012)提出俯冲前锋向东跃迁至洋壳区域,板片持续消减.Wu et al.(2022)基于深部地震层析成像,进一步推测中国东部与日本间存在分隔古板块的走滑断裂(“青岛线”),认为Izanagi板块并未向华南俯冲,而是其它洋壳.但东海盆地区高磁异常特征可一直延伸至朝鲜和日本(Li et al., 2009),且钻井已揭示大量晚白垩世-新生代早期岩浆岩(表1),琉球群岛中北部增生楔发育情况与日本西南部基本一致(Kizaki, 1986),表明俯冲作用可能持续至新生代早期,俯冲延续与否的争议亟需海域同位素年代学与岩浆岩成因的直接约束.

值得注意的是,新生代东海盆地南、北部呈现显著的构造分异.Zhu et al.(2019)提出北部仍受西太平洋俯冲影响,而南部自晚始新世受控于南海形成前的早期拉张,渐新世可能属于南海被动陆缘的北延部分.碎屑锆石物源分析显示,菲律宾民都洛地块东北部晚始新世深海浊积岩物源主要来自东海盆地,且与台湾、南海北部等地区同期沉积截然不同,一定程度上证实了南海张裂初期延伸至东海盆地东部(Fu et al., 2024).南海北部洋壳现已俯冲至菲律宾海板块下(Sibuet et al., 2021),其与东海南部的动力学联系仍需更多证据的证实.这一分异特性暗示东亚陆缘构造体制从俯冲主导向多板块互动的转型.

综上所述,尽管关于东海陆架盆地中-新生代成盆背景的研究已取得重要认识,但受限于海域地质数据的匮乏和深部结构探测的不足,俯冲起始时间、岩浆弧空间展布及晚白垩世-新生代动力学转型机制仍是亟待解决的前沿问题.未来需强化海域与陆域、浅部与深部数据的整合性分析,以构建“俯冲-岩浆-盆地”协同演化的完整图景.

总之,相对陆域与南海北部的大量研究成果,已报道的东海陆架盆地俯冲相关岩浆岩记录十分有限,新生代东海盆地南部与南海北部的关系也缺乏系统研究,直接制约了对成盆动力学背景及盆地性质的客观认识.东海盆地区既发现了确切的早侏罗世弧岩浆岩(Xu et al., 2017),又可能存在白垩纪-新生代早期的岛弧岩浆岩(Zhu et al., 2019),其南部始新世也与南海北部具有较强的相关性.因此,只有基于东海盆地沉积地层及大量岩浆岩记录,海陆对比,才可能完善晚中生代以来,华南东缘板块俯冲历史,揭示东海盆地成盆机制.

2.3 东海盆地构造属性与时空分异特征研究进展

2.3.1 中生代盆地构造格局与沉积响应

东海盆地中生代沉积体系呈北东-南西向展布,发育福州、钱塘等典型凹陷.地震与钻井资料显示,中生代残留盆地具显著空间差异:北部白垩系分布零散且厚度薄,南部则保存完整的侏罗系-白垩系序列,最大厚度达5 000 m,呈现"南厚北薄、东厚西薄"特征(李家彪等,2017;钟锴等,2019).但东海盆地北部的中生界地层实际上并无任何钻井揭示,目前只是根据区域类比推测.从更大的区域范围看东海中生代盆地可能是东亚东缘巨型沉积体系的重要组成部分,与南海北部中生界具有连续性(朱伟林等,2022).

构造属性争议焦点集中于盆地所处俯冲体系位置(图4):(1)冯晓杰等(2003)提出“克拉通拗陷(晚三叠世-中侏罗世)-弧前(白垩纪)-弧后(晚白垩世末)”3阶段演化模式;(2)杨长清等(2019)主张白垩纪由活动大陆边缘挤压背景转为弧后断陷;(3)张勇等(2020)识别出弧后前陆(丽水凹陷)与弧前(福州凹陷)共存体系;(4)Suo et al.(2019)强调闽

浙陆域侏罗纪为弧后前陆盆地,雁荡凸起以东地区为弧前盆地.近期研究显示福州凹陷归入下侏罗统的地层中含大量的白垩纪锆石(Fu et al., 2022),表明地层定年可能需重新厘定,加剧了构造归属争议.

多数学者将东海南部的福州凹陷作为典型,认为该区域代表了东海中生代盆地的总体特征.然而,钱塘凹陷地震剖面显示该区域中生界沉积受控于控盆断裂,为典型的断陷盆地.福州凹陷中生界控沉积断裂并不发育,断裂大多形成于新生代(冯晓杰和蔡东升,2006).因此,东海盆地中生界沉积中福州凹陷与钱塘凹陷的盆地性质可能并不相同.此外,两凹陷经历的构造运动也有明显差异.福州凹陷中生界地层中可见明显的角度不整合,Yang et al.(2020)认为该不整合形成于晚侏罗世的渔山运动,为盆地性质由弧前盆地向弧后盆地转换的构造界面,但钱塘凹陷中生界地层内部暂未发现明显的角度不整合(杨传胜等,2017).这种南北差异可能反映俯冲体系空间分异,但具体耦合机制仍待探明.

2.3.2 新生代盆地动力学机制与分异演化

新生代东海陆架盆地呈"东西分带、南北分块"格局,自西向东划分为西部坳陷带、中部隆起带及东部坳陷带,沉积中心向东迁移,沉积地层具有西薄东厚(Suo et al., 2015;Zhu et al., 2019).其成因机制存在多学派争论(图4).

(1)弧后伸展主导模型:主流观点认为新生代盆地形成于古太平洋板块俯冲后撤引发的弧后扩张(Ren et al., 2002;赵金海,2004;Li et al., 2009).地震资料显示西部坳陷带发育古新/始新世断陷,东部坳陷带持续伸展至渐新世(Suo et al., 2015).

(2)走滑拉分模型:部分学者强调太平洋板块俯冲转向诱发走滑应力场(Xu et al., 2014;李三忠,2018),但盆地尺度走滑断裂的缺失削弱了该假说(Zhu et al., 2019).

(3)构造叠加模型:Zhu et al.(2019)提出南北分异机制—北部持续受俯冲体系控制,古太平洋板块、太平洋板块及菲律宾板块的俯冲先后形成了西部坳陷带、东部坳陷带及冲绳海槽盆地;南部自晚始新世开始受南海张裂过程的影响,逐渐转为被动陆缘,直至中中新世.

东海新生代盆地的区域差异演化特征显著.自西向东,盆地断拗不整合面的时代逐渐变新:西部坳陷带呈现古新世/始新世不整合面,而东部坳陷带则转变为始新世/渐新世不整合面,至东海盆地最东部的冲绳海槽仍处于断陷阶段(李三忠,2018).此外,盆地沉积中心亦呈现自西向东的迁移趋势,尽管关于迁移形式的研究仍存在争议(Suo et al., 2015;Zhu et al., 2019).

在不同区域,最显著的不整合界面时代及特征各异:丽水-椒江凹陷表现为晚始新世至渐新世的角度不整合;长江坳陷西部为古新世/始新世角度不整合;而东部最大规模的不整合则发生于早至中始新世期间(Zhu et al., 2019).值得一提的是,西湖凹陷在中新世亦存在多个角度不整合现象(Suo et al., 2015).

多数研究认为,东海盆地的演化受到太平洋板块俯冲后撤作用的驱动,呈现出自西向东的迁移趋势(Zhang et al., 2016;于兴河等,2017).同时,在盆地内部挤压背景下,构造反转亦展现出自西向东的迁移特征(周祖翼等,2002;张国华等,2015;蒋一鸣等,2016).

2.4 沉积充填过程

沉积充填作为盆山耦合过程的重要响应载体,不仅是解析区域构造演化阶段性的核心约束条件,也是分析大型储集体展布规律及烃源岩发育特征的关键地质依据.东海中-新生代盆地的沉积充填具有显著的时空分异特征,但现有研究多集中在新近系丽水、西湖凹陷等局部单元(田兵等,2012;谢晓军等,2024;章诚诚等,2024),而对部分凹陷(如长江坳陷、钱塘凹陷、钓北凹陷等)的沉积体系发育机制及盆地尺度的充填演化序列仍缺乏系统性研究.

就中生代沉积体系而言,钻井资料揭示福州凹陷存在侏罗系海相-滨岸沼泽相沉积,以及上覆的侏罗系-白垩系陆相红层(王可德等,2000).但需指出,这些钻井都分布于福州凹陷边缘,凹陷中部及东侧依旧缺乏约束.一般通过地震相结合盆地性质推测中生界沉积体系展布.朱伟林等(2022)认为从侏罗纪至白垩纪总体为海退,受岩浆弧规模及向海方向的迁移,陆相沉积范围逐步扩大.然而,华南陆域局部同样存在较大规模的海侵现象,如浙江东北部沿海象山石浦地区,发育大套的海相灰岩(120~100 Ma)(Hu et al., 2012).

新生代沉积相关的研究多集中于丽水-椒江凹陷、西湖凹陷等局部的单一凹陷上(于兴河等,2017;陈哲等,2020),总体缺乏盆地尺度的整体认识.东海陆架盆地新生代总体表现为南海北陆的格局,南部的丽水-椒江凹陷、钓北凹陷古近纪-中始新世以海相环境为主,西湖凹陷到晚始新世才发生海水的侵入,北部的长江坳陷中新世之前一直为陆相湖盆环境(Zhu et al., 2019).张迎朝等(2024)对东海陆架区晚古新世至渐新世4个关键时期的沉积体系进行了更为精细的刻画.另外,东海陆架盆地不同区域煤系地层分布时代存在明显的变化,从西到东时代变年轻.西部的丽水-椒江凹陷煤系地层主要发育于古新世-早始新世,中部的西湖凹陷主要发育于晚始新世(Zhu et al., 2012),南琉球群岛煤地层发育于早中新世(Saitoh and Masuda, 2004).煤层发育层位的差异,反映了区域平原化迁移规律.

值得关注的是,东海陆架盆地物源体系表现出与台湾岛及南海北部等区域明显不同的源汇体系.古新世整个丽水-椒江凹陷物源都来自临近凸起,碎屑锆石U⁃Pb年龄基本都为晚中生代(付晓伟等,2015;陈春峰等,2017),但始新世出现复杂的锆石年龄谱,超过1 000 Ma的年龄组分占绝对优势,物源区急剧扩大,延伸至朝鲜半岛及华北(Fu et al., 2022).

3 存在问题及研究展望

3.1 东海盆地基底研究的不足与未来方向

东海盆地的基底构造属性是中-新生代盆地动力学研究的关键科学问题之一,其物质组成、演化历史及与周邻地块的构造关系直接影响对东亚陆缘构造体制转换的理解.尽管近年来基于锆石年代学与地球物理探测取得一定进展(Wei et al., 2021Fu et al., 2022),东海基底研究仍存在显著不足,亟需多学科攻关突破.东海基底的物质组成及其与华夏地块、西太平洋微陆块的对比分析尚未形成明确共识.研究仅主要基于两口钻井(FZ⁃A和FZ⁃B)样品,空间覆盖有限,可能无法代表整个东海基底的特征.基于碎屑锆石U⁃Pb年龄及Hf同位素,虽然与东华夏地块存在较为显著的差异(Fu et al. 2022),但区分东海基底与华夏陆块物源仍旧存在多解性.此外,基底经历的变质-岩浆活化历史缺乏高精度同位素年代学约束,特别是缺乏基于东海盆地基底岩石揭示地壳演化信息的直接证据.现有锆石数据集中于~1.8 Ga(古元古代地壳再造)与270~150 Ma(中生代岩浆活化)两阶段.基底中是否存在不同于东华夏的独特构造事件仍未获得岩相学或测年证据支持.也因此,难以与东亚众多微陆块进行对比,给出陆块来源的详细信息.此外,东海基底与东华夏地块可能存在的缝合带,虽然获得了地球物理证据的支持(Wei et al., 2021),但钻井揭示的基底或者沉积中,并未有相关造山带的报道.外来地体的空间范围尚未完全确定,尤其是是否延伸至长乐-南澳断裂带以东的争议区域,需更多数据验证.

3.2 沟弧盆体系研究的不足及未来方向

东亚东缘沟弧盆体系的演化研究虽已取得显著进展,但对东海盆地及其邻区构造-岩浆-沉积相互作用的认知仍存在明显局限性.这些不足集中表现为华南陆域、东海盆地与琉球群岛地质记录相互割裂,缺乏系统对比分析,导致俯冲体系时空演化的耦合机制不清,制约了对华南中生代以来陆缘动力学的系统性理解(图1).

华南沟-弧-盆体系重建工作已经开展了大量的研究,虽然多数学者认为华南中生代陆域大规模岩浆活动与俯冲有关,但陆域并未发现大陆弧最为典型的岩石-安山岩,影响了俯冲模式的可靠性.此外,俯冲起止时间及大陆弧的位置一直存在争议.值得注意的是,东海盆地数十口钻井都钻遇了岩浆岩,发现了确切的早侏罗世弧岩浆岩(Xu et al., 2017),还显示发育多期次安山岩,时间涵盖晚中生代至新生代早期(表1).Hu et al.(2025)报道了丽水凹陷至西湖凹陷一带约110 Ma典型安第斯山型俯冲的安山岩带,再加上广泛发育可能的弧前盆地沉积,因此,只有基于东海盆地沉积地层及大量岩浆岩记录,系统开展岩浆岩年代学-地球化学-同位素综合研究,海陆对比,才可能完善晚中生代以来华南东缘板块俯冲历史.

虽然大量的研究都认为东海新生代盆地至少一部分为弧后盆地(Ren et al., 2002;赵金海,2004;Li et al., 2009Zhu et al., 2019),但遗憾的是受限于海水覆盖及潜在的政治争端,钓鱼岛隆皱带及冲绳海槽并无钻井证实盆地关键发育期的岩浆弧.琉球群岛作为现代西太沟弧盆体系的典型代表,其地质演化应与东海盆地息息相关.琉球中北部出露典型的增生楔,主要为白垩纪和始新世(图5).白垩纪增生楔片岩揉皱等挤压变形构造极为发育,岩石普遍变质(图6a~6d).始新世相对要弱得多,仅底部见弱变质作用(图6e),虽然普遍可见大型褶皱(图6f),泥岩通常并未强烈变形,绝大多数岩层也未变质,甚至胶结极为疏松(图6f).增生楔的发育为俯冲体系重建提供了重要约束.值得关注的是增生楔内发育的白垩纪浊积岩砂岩可能记录了东海盆地东部隆起区的物源信息,但相关工作并未开展.增生楔的阶段性发育与东海盆地内部构造事件是否存在成因联系也属研究空白.

3.3 盆地性质及演化研究的不足与未来方向

尽管近年来东海盆地构造演化研究取得显著进展,但仍存在若干关键科学问题亟待解决,主要体现在中生代盆地属性争议、新生代动力学机制矛盾及多期构造耦合效应3个方面.

东海中生代盆地的构造属性长期存在多种模式,不同学者核心矛盾源于俯冲体系空间展布的不确定性:福州凹陷与钱塘凹陷的构造差异显著,前者缺失控盆断裂且发育晚侏罗世角度不整合(Yang et al., 2020),后者则受断裂控制且地层连续(杨传胜等,2017),暗示两者可能分属不同构造单元.然而,现有研究未能明确这种差异是否由俯冲带分段性或板块俯冲角度变化所致.此外,福州凹陷钻井揭示下侏罗统含白垩纪碎屑锆石(Fu et al., 2022),挑战了传统地层划分方案,凸显年代学约束不足对构造重建的制约.

东海新生代盆地的成因机制存在多学派争论:(1)弧后伸展模型虽能解释沉积中心东迁现象(Suo et al., 2015),但难以协调西部挤压反转与东部持续伸展的时空矛盾;(2)构造叠加模型提出南北分异受控于俯冲体系与南海扩张(Zhu et al., 2019),虽然最新研究显示菲律宾东北民都洛地块可能为东海南部的共轭大陆边缘(Fu et al., 2024),但南海扩张对东海南部成盆演化的具体影响仍不明确;(3)走滑拉分模型因缺乏盆地尺度走滑断裂的直接证据(Zhu et al., 2019)而受到质疑.长江坳陷东部早-中始新世角度不整合被归因于Izanagi⁃Pacific洋中脊俯冲(Zhu et al., 2019),但该事件缺乏钻井资料的证实.更深层的问题在于,现有模型多基于单一动力机制,未能有效整合太平洋板块俯冲后撤、南海扩张及冲绳海槽弧后伸展等多重过程的协同效应.

东海盆地中-新生代演化呈现复杂的时空分异特征,虽然已有的演化模式一定程度上能够反映板块俯冲变化与盆地迁移演化的关系(图7),如古太平洋板块俯冲后撤形成东海西部坳陷带带,太平洋板块俯冲形成西部坳陷带,而菲律宾海板块俯冲形成冲绳海槽(Zhu et al., 2019),盆地内部多个构造界面可能与不同俯冲过程密切相关(蒋一鸣等,2024;Jiang et al., 2025),但板块俯冲与盆地响应的耦合机制仍处于探索阶段.中生代岩浆弧位置争议、新生代南北分异动力学根源等问题,均需揭示深部俯冲板片属性变化与浅表构造-沉积响应的内在联系.此外,始新世以来太平洋板块俯冲转向、南海扩张及弧后拉张的叠加效应,如何驱动盆地东西分带格局的形成,尚未建立定量动力学模型.当前研究多依赖定性解释,缺乏高分辨率地球物理数据与数值模拟的支撑,导致对隆拗转换、被动陆缘发育等关键过程的认识不足.

3.4 盆地充填研究的不足及未来方向

东海盆地中-新生代沉积充填研究虽取得一定进展,但仍存在一系列问题.中生代海相环境重建薄弱.尽管浙江象山石浦地区早白垩世海相灰岩(120~100 Ma)指示海水曾侵入陆域(Hu et al., 2012),但海域钻井仅FZ13⁃2⁃1井侏罗系发现浅海相化石,且钱塘凹陷白垩系以陆相红层为主.中生代陆域海相与临近海域陆相沉积存在明显矛盾,如何认识这种古地理格局显得尤为重要.

新生代沉积中心自西向东迁移(Suo et al., 2015)及煤系地层时代东延现象(Zhu et al., 2012)被归因于太平洋板块俯冲后撤,但西部挤压抬升与东部持续伸展的共存难以用单一机制解释.此外,物源体系时空分异显著:古新世丽水-椒江凹陷物源限于邻近凸起(付晓伟等,2015),而始新世出现华北-朝鲜半岛远源组分(Fu et al., 2022),其成因(构造抬升或古地理变迁)尚未明确.

东海盆地差异充填过程与复杂的构造差异演变属研究早期阶段.整合地震、钻井及露头数据,开展盆地尺度沉积充填综合研究,特别是加强长江坳陷、钱塘凹陷等薄弱区域的沉积分析,揭示其与控盆断裂、岩浆活动及构造事件等时空关联.结合深部地球物理数据,建立俯冲板片后撤、弧后伸展与沉积中心迁移的定量模型,通过数值模拟,量化太平洋板块俯冲转向、冲绳海槽扩张等多重动力对沉积分异的联合控制,解析沉积-构造动力学耦合机制.

4 结论

东海盆地构造演化长期受板块俯冲主导,板块俯冲模式众多,海域岩浆岩有望补充大陆弧的关键证据.俯冲体系的分歧,又加剧了对中新生代盆地性质、演化过程认识的难度.沉积充填过程既受盆地差异构造的控制,同时,有可能受区域远源大型物源的影响.海陆结合、多学科交叉、观测与模拟结合有望突破沟弧盆体系研究的传统局限,为华南陆缘构造及盆地演化提供新的理论框架.

参考文献

[1]

Chen,C.F.,Zhu,W.L.,Fu,X.W.,et al.,2017.Provenance Change and Its Influence in Late Paleocene,Jiaojiang Sag,East China Sea Shelf Basin.Journal of Tongji University (Natural Science),45(10):1522-1530,1548(in Chinese with English abstract).

[2]

Chen,C.H.,Lee,C.Y.,Shinjo,R.,2008.Was There Jurassic Paleo⁃Pacific Subduction in South China?:Constraints from 40Ar/39Ar Dating,Elemental and Sr⁃Nd⁃Pb Isotopic Geochemistry of the Mesozoic Basalts.Lithos,106(1-2):83-92.https://doi.org/10.1016/j.lithos.2008.06.009

[3]

Chen,Z.,Zhang,C.M.,Hou,G.W.,et al.,2020.Fault Distribution Patterns and Their Control on Sand Bodies in Pinghu Formation of Xihu Sag in East China Sea Shelf Basin.Oil & Gas Geology,41(4):824-837 (in Chinese with English abstract).

[4]

Feng,X.J.,Cai,D.S.,2006.Controls of Mesozoic and Cenozoic Tectonic Evolution on Source Rock Distribution in East China Sea Shelf Basin.China Offshore Oil and Gas,18(6):372-375 (in Chinese with English abstract).

[5]

Feng,X.J.,Cai,D.S.,Wang,C.X.,et al.,2003.The Meso⁃Cenozoic Tectonic Evolution in East China Sea Shelf Basin.China Offshore Oil and Gas,15(1):33-37 (in Chinese with English abstract).

[6]

Flower,M.F.J.,Russo,R.M.,Tamaki,K.,et al.,2001.Mantle Contamination and the Izu-Bonin-Mariana(IBM) ‘High-Tide Mark’: Evidence for Mantle Extrusion Caused by Tethyan Closure.Tectonophysics,333(1-2): 9-34.https://doi.org/10.1016/s0040-1951(00)00264-x

[7]

Fu,X.W.,Ding,W.W.,Dadd,K.,et al.,2022.An Exotic Origin of the Eastern East China Sea Basement before ~150 Ma.Science Bulletin,67(19):1939-1942.https://doi.org/10.1016/j.scib.2022.08.029

[8]

Fu,X.W.,Gao,S.L.,Zhu,W.L.,2024.The Northeast Mindoro Block is the Conjugate Margin of the Southern East China Sea Basin:Insight from Detrital Zircon Data.Marine and Petroleum Geology,162:106710.https://doi.org/10.1016/j.marpetgeo.2024.106710

[9]

Fu,X.W.,Zhu,W.L.,Chen,C.F.,et al.,2015.Detrital Zircon Provenance of Upper Mingyuefeng Formation in West Slope of Lishui⁃Jiaojiang Sag,the East China Sea.Earth Science,40(12):1987-2001 (in Chinese with English abstract).

[10]

Gao,T.J.,Huang,H.,Lin,Z.X.,1991.Two Significant Terrane Boundaries in Southeastern Coast of China.Geology of Fujian,10(1):1-15 (in Chinese with English abstract).

[11]

Guo,Z.,Liu,C.Y.,Tian,J.F.,2015.Structural Characteristics and Main Controlling Factors of Inversion Structures in Xihu Depression in Donghai Basin.Earth Science Frontiers,22(3):59-67 (in Chinese with English abstract).

[12]

Hall,R.,2002.Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific:Computer⁃Based Reconstructions,Model and Animations.Journal of Asian Earth Sciences,20(4):353-431.https://doi.org/10.1016/s1367⁃9120(01)00069⁃4

[13]

Hao,T.Y.,Xu,Y.,Xu,Y.,et al.,2006.Some New Understandings on Deep Structure in Yellow Sea and East China Sea.Chinese Journal of Geophysics,49(2):458-468 (in Chinese with English abstract).

[14]

Hou,F.H.,Zhang,X.H.,Li,G.,et al.,2015.From Passive Continental Margin to Active Continental Margin:Basin Recordings of Mesozoic Tectonic Regime Transition of the East China Sea Shelf Basin.Oil Geophysical Prospecting,50(5):980-990,807 (in Chinese with English abstract).

[15]

Hsü,K.J.,Li,J.L.,Chen,H.H.,et al.,1990.Tectonics of South China:Key to Understanding West Pacific Geology.Tectonophysics,183(1-4):9-39.https://doi.org/10.1016/0040⁃1951(90)90186⁃C

[16]

Hu,G.,Hu,W.X.,Cao,J.,et al.,2012.Deciphering the Early Cretaceous Transgression in Coastal Southeastern China:Constraints Based on Petrography,Paleontology and Geochemistry.Palaeogeography,Palaeoclimatology,Palaeoecology,317-318:182-195.https://doi.org/10.1016/j.palaeo.2012.01.008

[17]

Hu,L.C.,Li,N.,Fu,X.W.,et al.,2025.Unveiling the ∼110 Ma Continental Arc in South China:Geochemical and Isotopic Insights from Offshore Magmatic Records in the East China Sea Basin.Gondwana Research,143:239-255.https://doi.org/10.1016/j.gr.2025.03.013

[18]

Hu,X.M.,Huang,Z.C.,Wang,J.G.,et al.,2012.Geology of the Fuding Inlier in Southeastern China:Implication for Late Paleozoic Cathaysian Paleogeography.Gondwana Research,22(2):507-518.https://doi.org/10.1016/j.gr.2011.09.016

[19]

Isozaki,Y.,Aoki,K.,Nakama,T.,et al.,2010.New Insight into a Subduction⁃Related Orogen:A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands.Gondwana Research,18(1):82-105.https://doi.org/10.1016/j.gr.2010.02.015

[20]

Jiang,W.W.,Song,H.B.,Hao,T.Y.,et al.,2001.The Characters of Geology and Geophysics of Shell Basins of East China Sea and Adjacent Sea Area.Progress in Geophysics,16(2):18-27 (in Chinese with English abstract).

[21]

Jiang,Y.M.,He,X.J.,Zhang,S.L.,2016.The Characteristics of “Inverse⁃Transform” Tectonic Migration Evolution of the East China Sea Shelf Basin—By Taking the Marginal Structure of Xihu Sag for Exammple.Journal of Yangtze University (Natural Science Edition),13(26):1-8 (in Chinese with English abstract).

[22]

Jiang,Y.M.,Tang,X.J.,Fu, X.W., et al., 2025.Differential Geological Responses and Geodynamic Mechanisms of Major Cenozoic Tectonic Movements in the East China Sea Shelf Basin.Journal of Asian Earth Sciences, 284:106569.https://doi.org/10.1016/j.jseaes.2025.106569

[23]

Jiang,Y.M.,Wu,L.L.,Qin,J.,et al.,2024.Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression,East China Sea Basin.Earth Science,49(12): 4450-4464 (in Chinese with English abstract).

[24]

Jiang,Y.H.,Zhou,Q.P.,Ni,H.Y.,et al.,2023.Progress of Environmental Geological Investigation and Research in the Yangtze River Economic Zone.East China Geology,44(3): 239-261 (in Chinese with English abstract).

[25]

Kizaki,K.,1986.Geology and Tectonics of the Ryukyu Islands.Tectonophysics,125(1-3):193-207.https://doi.org/10.1016/0040⁃1951(86)90014⁃4

[26]

Li,C.F.,Zhou,Z.Y.,Ge,H.P.,et al.,2009.Rifting Process of the Xihu Depression,East China Sea Basin.Tectonophysics,472(1-4):135-147.https://doi.org/10.1016/j.tecto.2008.04.026

[27]

Li,J.B.,Ding,W.W.,Wu,Z.Y.,et al.,2017.Origin of the East China Sea.Science China:Earth Sciences,47(4):406-411 (in Chinese).

[28]

Li,J.H.,Dong,S.W.,Cawood,P.A.,et al.,2018.An Andean⁃Type Retro⁃Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling.Earth and Planetary Science Letters,490:170-179.https://doi.org/10.1016/j.epsl.2018.03.008

[29]

Li,J.H.,Zhang,Y.Q.,Dong,S.W.,et al.,2014.Cretaceous Tectonic Evolution of South China:A Preliminary Synthesis.Earth⁃Science Reviews,134:98-136.https://doi.org/10.1016/j.earscirev.2014.03.008

[30]

Li,P.L.,Hou,H.B.,Ma,H.F.,2000.Tectonics and Petroleum Potential of the East China Sea Shelf Rift Basin.Acta Geologica Sinica,74(3):651-660.https://doi.org/10.1111/j.1755⁃6724.2000.tb00037.x

[31]

Li,P.L.,Zhu,P.,1992.Basement Tectonic Evolution and Basin Formation Mechanism of the East China Sea Shelf Basin.Marine Geology & Quaternary Geology,12(3):37-43 (in Chinese with English abstract).

[32]

Li,S.Z.,Suo,Y.H.,Li,X.Y.,et al.,2018.Mesozoic Plate Subduction in West Pacific and Tectono⁃Magmatic Response in the East Asian Ocean⁃Continent Connection Zone.Chinese Science Bulletin,63(16):1550-1593 (in Chinese).

[33]

Li,X.H.,Li,Z.X.,Li,W.X.,et al.,2006.Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island.The Journal of Geology,114(3):341-353.https://doi.org/10.1086/501222

[34]

Li,Z.X.,Li,X.H.,2007.Formation of the 1 300 km⁃Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat⁃Slab Subduction Model.Geology,35(2):179.https://doi.org/10.1130/g23193a.1

[35]

Li,Z.X.,Li,X.H.,Chung,S.L.,et al.,2012.Magmatic Switch⁃on and Switch⁃Off along the South China Continental Margin since the Permian:Transition from an Andean⁃Type to a Western Pacific⁃Type Plate Boundary.Tectonophysics,532-535:271-290.https://doi.org/10.1016/j.tecto.2012.02.011

[36]

Lin,S.F.,Xing,G.F.,Davis,D.W.,et al.,2018.Appalachian⁃Style Multi⁃Terrane Wilson Cycle Model for the Assembly of South China.Geology,46(4):319-322.https://doi.org/10.1130/g39806.1

[37]

Liu,J.H.,Wu,J.S.,Fang,Y.X.,et al.,2007.Pre⁃Cenozoic Groups in the Shelf Basin of the East China Sea.Acta Oceanologica Sinica,29(1):66-75 (in Chinese with English abstract).

[38]

Liu,J.S.,Xu,H.Z.,Jiang,Y.M.,et al.,2020.Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin.Acta Geologica Sinica,94(3):675-691 (in Chinese with English abstract).

[39]

Liu,L.,Xu,X.S.,Xia,Y.,2016.Asynchronizing Paleo⁃Pacific Slab Rollback beneath SE China:Insights from the Episodic Late Mesozoic Volcanism.Gondwana Research,37:397-407.https://doi.org/10.1016/j.gr.2015.09.009

[40]

Lu,H.,Jia,D.,Wang,Z.,et al.,1994.Tectonic Evolution of the Dongshan Terrane,Fujian Province,China.Journal of South American Earth Sciences,7(3/4):349-365.https://doi.org/10.1016/0895⁃9811(94)90020⁃5

[41]

Maruyama,S.,Isozaki,Y.,Kimura,G.,et al.,1997.Paleogeographic Maps of the Japanese Islands:Plate Tectonic Synthesis from 750 Ma to the Present.Island Arc,6(1):121-142.https://doi.org/10.1111/j.1440⁃1738.1997.tb00043.x

[42]

Nakae,S.,Kaneko,N.,Miyazaki,K.,et al.,2010.Geological Map of Japan 1∶200 000,Yoron Jima and Naha.Geological Survey of Japan,AIST.

[43]

Niu,Y.L.,Liu,Y.,Xue,Q.Q.,et al.,2015.Exotic Origin of the Chinese Continental Shelf:New Insights into the Tectonic Evolution of the Western Pacific and Eastern China since the Mesozoic.Science Bulletin,60(18):1598-1616.https://doi.org/10.1007/s11434⁃015⁃0891⁃z

[44]

Northrup,C.J.,Royden,L.H.,Burchfiel,B.C.,1995.Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia.Geology,23(8): 719.https://doi.org/10.1130/0091-7613(1995)0230719:motppr>2.3.co;2

[45]

Ren,J.Y.,2018.Genetic Dynamics of China Offshore Cenozoic Basins.Earth Science,43(10)3337-3361(in Chinese with English abstract).

[46]

Ren,J.Y.,Tamaki,K.,Li,S.T.,et al.,2002.Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas.Tectonophysics,344(3/4):175-205.https://doi.org/10.1016/S0040⁃1951(01)00271⁃2

[47]

Saitoh,Y.,Masuda,F.,2004.Miocene Sandstone of ‘Continental’ Origin on Iriomote Island,Southwest Ryukyu Arc,Eastern Asia.Journal of Asian Earth Sciences,24(2):137-144.https://doi.org/10.1016/j.jseaes.2003.10.002

[48]

Shang,L.N.,Zhang,X.H.,Jia,Y.G.,et al.,2017.Late Cenozoic Evolution of the East China Continental Margin:Insights from Seismic,Gravity,and Magnetic Analyses.Tectonophysics,698:1-15.https://doi.org/10.1016/j.tecto.2017.01.003

[49]

Shi,H.S.,Li,C.F.,2012.Mesozoic and Early Cenozoic Tectonic Convergence⁃to⁃Rifting Transition Prior to Opening of the South China Sea.International Geology Review,54(15):1801-1828.https://doi.org/10.1080/00206814.2012.677136

[50]

Sibuet,J.C.,Zhao,M.H.,Wu,J.,et al.,2021.Geodynamic and Plate Kinematic Context of South China Sea Subduction during Okinawa Trough Opening and Taiwan Orogeny.Tectonophysics,817:229050.https://doi.org/10.1016/j.tecto.2021.229050

[51]

Suo,Y.H.,Li,S.Z.,Jin,C.,et al.,2019.Eastward Tectonic Migration and Transition of the Jurassic⁃Cretaceous Andean⁃Type Continental Margin along Southeast China.Earth⁃Science Reviews,196:102884.https://doi.org/10.1016/j.earscirev.2019.102884

[52]

Suo,Y.H.,Li,S.Z.,Zhao,S.J.,et al.,2015.Continental Margin Basins in East Asia:Tectonic Implications of the Meso⁃Cenozoic East China Sea Pull⁃Apart Basins.Geological Journal,50(2):139-156.https://doi.org/10.1002/gj.2535

[53]

Tian,B.,Li,X.Y.,Pang,G.Y.,et al.,2012.Sedimentary Systems of the Superimposed Rift⁃Subsidence Basin:Taking Lishui⁃Jiaojiang Sag of the East China Sea as an Example.Acta Sedimentologica Sinica,30(4):696-705 (in Chinese with English abstract).

[54]

Tao,R.M.,1994.Discussion on Basin Formation Mechanism and Basin Types in East China Sea Continental Shelf Basin Based on West Pacific Plate Tectonics.China Offshore Oil and Gas,8(1): 14-20 (in Chinese with English abstract).

[55]

Wang,H.M.,Yin,W.R.,1986.Gravity and Magnetic Anomaly and the Geological Tectonics of the East China Sea.Oil & Gas Geology,7(4):295-307 (in Chinese with English abstract).

[56]

Wang,K.D.,Wang,J.P.,Xu,G.Q.,et al.,2000.The Discovery and Division of the Mesozoic Strata in the Southwest of Donghai Shelf Basin.Journal of Stratigraphy,24(2):129-131 (in Chinese with English abstract).

[57]

Wei,X.D.,Ding,W.W.,Christeson,G.L.,et al.,2021.Mesozoic Suture Zone in the East China Sea:Evidence from Wide⁃Angle Seismic Profiles.Tectonophysics,820:229116.https://doi.org/10.1016/j.tecto.2021.229116

[58]

Wu,J.T.,Wu,J.,2019.Izanagi⁃Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin.Geology,47(10):953-957.https://doi.org/10.1130/g46778.1

[59]

Wu,J.,Lin,Y.A.,Flament,N.,et al.,2022.Northwest Pacific⁃Izanagi Plate Tectonics since Cretaceous Times from Western Pacific Mantle Structure.Earth and Planetary Science Letters,583:117445.https://doi.org/10.1016/j.epsl.2022.117445

[60]

Wu,J.,Suppe,J.,Lu,R.Q.,et al.,2016.Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods.Journal of Geophysical Research:Solid Earth,121(6):4670-4741.https://doi.org/10.1002/2016JB012923

[61]

Xiang,H.,Zhang,L.,Zhou,H.W.,et al.,2008.Zircon U⁃Pb Ages and Hf Isotopes of Basic⁃Ultrabasic Metamorphic Rocks in the Metamorphic Basement of Southwestern Zhejiang:The Response of Metamorphic Basement of Cathaysian Block to Indosinian Orogeny in South China.Science in China (Series D),38(4):401-413 (in Chinese).

[62]

Xie,X.J.,Xiong,L.Q.,Han,Y.K.,et al.,2024.New Insights into Reservoirs Heterogeneous Genesis of Favorable Facies in Pinghu Formation,Xihu Depression.Earth Science,49(4):1400-1410 (in Chinese with English abstract).

[63]

Xu,C.H.,Zhang,L.,Shi,H.S.,et al.,2017.Tracing an Early Jurassic Magmatic Arc from South to East China Seas.Tectonics,36(3):466-492.https://doi.org/10.1002/2016TC004446

[64]

Xu,J.Y.,Ben⁃Avraham,Z.,Kelty,T.,et al.,2014.Origin of Marginal Basins of the NW Pacific and Their Plate Tectonic Reconstructions.Earth⁃Science Reviews,130:154-196.https://doi.org/10.1016/j.earscirev.2013.10.002

[65]

Yang,C.Q.,Sun,J.,Yang,Y.Q.,et al.,2020.Key Factors Controlling Mesozoic Hydrocarbon Accumulation in the Southern East China Sea Basin.Marine and Petroleum Geology,118:104436.https://doi.org/10.1016/j.marpetgeo.2020.104436

[66]

Yang,C.Q.,Yang,C.S.,Sun,J.,et al.,2019.Mesozoic Evolution and Dynamics Transition in Southern Shelf Basin of the East China Sea.Journal of Jilin University (Earth Science Edition),49(1):139-153 (in Chinese with English abstract).

[67]

Yang,C.S.,Li,G.,Yang,C.Q.,et al.,2012.Temporal and Spatial Distribution of the Igneous Rocks in the East China Sea Shelf Basin and Its Adjacent Regions.Marine Geology & Quaternary Geology,32(3):125-133 (in Chinese with English abstract).

[68]

Yang,C.S.,Yang,C.Q.,Yang,Y.Q.,et al.,2017.Characteristics of Mesozoic Strata in the East China Shelf Basin and Their Geotectonic Implications.Periodical of Ocean University of China,47(11):86-95 (in Chinese with English abstract).

[69]

Yang,W.D.,Cui,Z.K.,Zhang,Y.B.,2010.Geology and Mineral Resources of the East China Sea.Ocean Press,Beijing (in Chinese).

[70]

Yu,X.H.,Li,S.L.,Cao,B.,et al.,2017.Oligocene Sequence Stratigraphic Framework and Depositional Response in the Xihu Sag,East China Sea Shelf Basin.Acta Sedimentologica Sinica,35(2):299-314 (in Chinese with English abstract).

[71]

Yuan,W.,Yang,Z.Y.,Zhao,X.X.,et al.,2018.Early Jurassic Granitoids from Deep Drill Holes in the East China Sea Basin:Implications for the Initiation of Palaeo⁃Pacific Tectono⁃Magmatic Cycle.International Geology Review,60(7):813-824.https://doi.org/10.1080/00206814.2017.1351312

[72]

Zhang,C.C.,Fang,C.G.,Liu,T.,et al.,2024.Research Progress on Flood-Triggered Hyperpycnal Flows in Sedimentary Basins.East China Geology,45(1): 49-61 (in Chinese with English abstract).

[73]

Zhang,G.H.,Zhang,J.P.,2015.A Discussion on the Tectonic Inversion and Its Genetic Mechanism in the East China Sea Shelf Basin.Earth Science Frontiers,22(1):260-270 (in Chinese with English abstract).

[74]

Zhang,G.Q.,Wang,Q.S.,Yu,Y.P.,et al.,2012.Stratigraphic Age and Subdivision of Volcanic Rocks in Eastern Zhejiang.Journal of Stratigraphy,36(3):641-652 (in Chinese with English abstract).

[75]

Zhang,J.P.,Li,S.Z.,Suo,Y.H.,2016.Formation,Tectonic Evolution and Dynamics of the East China Sea Shelf Basin.Geological Journal,51(Suppl.1):162-175.https://doi.org/10.1002/gj.2808

[76]

Zhang,Y.Z.,Jiang,Y.M.,Zou,W.,et al.,2024.Lithostratigraphic Division and Correlation of the Paleogene in the East China Sea Basin.Journal of Stratigraphy,48(4):341-359 (in Chinese with English abstract).

[77]

Zhang,Y.,Yao,Y.J.,Li,X.J.,et al.,2020.Tectonic Evolution and Resource⁃Environmental Effect of China Seas and Adjacent Areas under the Multisphere Geodynamic System of the East Asia Ocean⁃Continent Convergent Belt since Mesozoic.Geology in China,47(5):1271-1309 (in Chinese with English abstract).

[78]

Zhao,J.H.,2004.The Forming Factors and Evolvement of the Mesozoic and Cenozoic Basin in the East China Sea.Offshore Oil,24(4):6-14 (in Chinese with English abstract).

[79]

Zhao,L.,Guo,F.,Zhang,X.B.,et al.,2021.Cretaceous Crustal Melting Records of Tectonic Transition from Subduction to Slab Rollback of the Paleo⁃Pacific Plate in SE China.Lithos,384-385:105985.https://doi.org/10.1016/j.lithos.2021.105985

[80]

Zhong,K.,Wang,X.F.,Zhang,T.,et al.,2019.Distribution of Residual Mesozoic Basins and Their Exploration Potential in the Western Depression Zone of East China Sea Shelf Basin.Marine Geology & Quaternary Geology,39(6):41-51 (in Chinese with English abstract).

[81]

Zhou,X.M.,Sun,T.,Shen,W.Z.,et al.,2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes,29(1):26-33.https://doi.org/10.18814/epiiugs/2006/v29i1/004

[82]

Zhou,Z.Y.,Jia,J.Y.,Li,J.B.,et al.,2002.Quantitative Study on Inversion Structures in Xihu Depression,East China Sea:Constraints from Fission Track Analysis Data.Marine Geology & Quaternary Geology,22(1):63-67 (in Chinese with English abstract).

[83]

Zhu,W.L.,Xu,X.H.,Wang,B.,et al.,2022.Late Mesozoic Continental Arc Migration in Southern China and Its Effects on the Evolution of Offshore Forearc Basins.Earth Science Frontiers,29(6):277-290 (in Chinese with English abstract).

[84]

Zhu,W.L.,Zhong,K.,Fu,X.W.,et al.,2019.The Formation and Evolution of the East China Sea Shelf Basin:A New View.Earth⁃Science Reviews,190:89-111.https://doi.org/10.1016/j.earscirev.2018.12.009

[85]

Zhu,X.,1987.On the Evolution of Continental Margins of China.Marine Geology & Quaternary Geology,7(3):115-120 (in Chinese with English abstract).

[86]

Zhu,Y.M.,Li,Y.,Zhou,J.,et al.,2012.Geochemical Characteristics of Tertiary Coal⁃Bearing Source Rocks in Xihu Depression,East China Sea Basin.Marine and Petroleum Geology,35(1):154-165.https://doi.org/10.1016/j.marpetgeo.2012.01.005

基金资助

国家自然科学基金(42430806)

第二十七届中国科协年会学术论文联合资助

AI Summary AI Mindmap
PDF (9933KB)

54

访问

0

被引

详细

导航
相关文章

AI思维导图

/