蓝细菌与蒙脱石对低温原白云石形成的协同促进效应

陈婷 ,  戴兆毅 ,  邱轩 ,  常标 ,  王红梅 ,  刘邓

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4938 -4949.

PDF (4685KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4938 -4949. DOI: 10.3799/dqkx.2025.200

蓝细菌与蒙脱石对低温原白云石形成的协同促进效应

作者信息 +

Synergistic Effects of Cyanobacteria and Montmorillonite on Formation of Low-Temperature Protodolomite

Author information +
文章历史 +
PDF (4797K)

摘要

白云石[CaMg(CO32]的成因机制是地球科学领域长期关注的重要问题.尽管已有研究表明特定微生物功能群和黏土矿物能够分别催化原白云石(有序白云石的关键前驱体)的形成,然而对于蓝细菌这一古老且广泛分布的光合微生物的催化作用,特别是其与黏土矿物的协同效应机制,目前仍缺乏深入认识.研究以耐盐蓝细菌Synechococcus elongatus FACHB⁃410为研究对象,通过对比有无蒙脱石的矿化实验体系,探究了黏土矿物与蓝细菌对碳酸盐矿物沉淀的协同调控作用.实验结果表明,在蓝细菌—蒙脱石共存体系中,X⁃射线衍射(X⁃ray diffraction,XRD)和拉曼光谱证实主要形成原白云石,而不含蒙脱石的体系则生成单水方解石和低镁方解石.通过扫描电镜(scanning electron microscopy,SEM)、聚焦离子束显微镜(focused ion beam microscopy,FIB⁃SEM)和透射电镜(transmission electron microscopy,TEM)等表征技术,发现原白云石以纳米晶粒形式组装并分布于蒙脱石表面.基于密度泛函理论(density functional theory,DFT)的计算模拟进一步表明,蒙脱石促进蓝细菌介导原白云石形成的关键机制在于其表面负电性,即通过强静电作用吸附水合镁离子,有利于其去水合化反应的发生,从而显著降低原白云石的成核能垒.

Abstract

The formation mechanism of dolomite [CaMg(CO3)2] remains a longstanding enigma in earth sciences. Previous studies have identified certain microorganisms and clay minerals as catalysts in the crystallization of low-temperature protodolomite, a crucial precursor to ordered dolomite. However, the role of cyanobacteria and particularly their potential synergistic effects with clay minerals remain poorly understood. In this study, we investigated bioprecipitation of carbonate minerals using the halotolerant cyanobacterium Synechococcus elongatus FACHB-410 in the presence and absence of montmorillonite. Our results demonstrated that protodolomite occurred as the predominant solid product in the montmorillonite-amended biosystems as confirmed by X-ray diffraction (XRD) and Raman spectroscopy, whereas monohydrocalcite and low-magnesian calcite were the primary products in the montmorillonite-free biosystems. Multiple microscopic techniques, including scanning electron microscopy (SEM), focused ion beam microscopy (FIB-SEM), and transmission electron microscopy (TEM), revealed that protodolomite nucleated as nanocrystals preferentially on montmorillonite surfaces. Density functional theory (DFT) simulations further elucidated that surface electronegativity of montmorillonite played a key role in promoting protodolomite formation by strongly adsorbing Mg2+ ions through electrostatic interactions, thereby facilitating their dehydration and significantly lowering the nucleation energy barrier.

Graphical abstract

关键词

白云石之谜 / 黏土矿物 / 原白云石 / 蓝细菌 / 微生物矿化.

Key words

dolomite problem / clay minerals / protodolomite / cyanobacteria / microbial mineralization

引用本文

引用格式 ▾
陈婷,戴兆毅,邱轩,常标,王红梅,刘邓. 蓝细菌与蒙脱石对低温原白云石形成的协同促进效应[J]. 地球科学, 2025, 50(12): 4938-4949 DOI:10.3799/dqkx.2025.200

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

白云石[CaMg(CO32]作为一种热力学性质稳定的碳酸盐矿物,其晶体结构具有显著的阳离子有序分布特征:钙离子层(Ca2+)与镁离子层(Mg2+)以近似1∶1的摩尔比沿c轴方向间隔碳酸根离子层(CO32-)交替排布(Gregg et al.,2015Warren,2000).地质记录显示,白云石在地质历史时期曾广泛分布于台地碳酸盐岩中(Warren,2000).尽管现代海水具有高的Mg/Ca摩尔比值(~5.2)且其白云石饱和程度超出1~2个数量级,但在全新世海洋沉积物中却鲜见白云石沉积(Warren,2000).更加令人疑惑的是,已有研究在室温饱和溶液中进行长达32年的模拟实验,试图沉淀出白云石,最终未能成功(Land,1998).这一现象就是困惑了沉积学家长达两个世纪的“白云石之谜”.目前研究表明,上述矛盾主要源于低温条件下白云石的成核与生长受到的动力学限制,其中主要制约因子包括Mg2+的强水合作用以及现代海水中较低的CO32-活度(Lippmann,1973;李波等,2010;由雪莲等,2011;Gregg et al.,2015;许杨阳等,2018;Kim et al.,2023).

尽管现代白云石沉积较为罕见,但研究人员仍在一些强蒸发环境中发现了原生/准同生的白云石沉淀实例,例如中东潮坪、巴西和澳大利亚的潟湖,以及若干内陆盐湖等(Vasconcelos et al.,1995Deng et al.,2010Brauchli et al.,2016;于娜等,2018;Liu et al.,2019aFang et al.,2023).由于这些环境缺乏热液活动证据,原生/准同生白云石的发现极大地推动了关于白云石低温成因机制的研究.野外调查与室内模拟实验表明,一些微生物功能群(例如,嗜盐好氧菌、硫酸盐还原菌和产甲烷古菌)及其代谢产物(特别是胞外聚合物)能够在常温条件下促进原白云石(也被称为无序白云石)的成核与生长(Vasconcelos et al.,1995;Sánchez⁃Román et al.,2008;由雪莲等,2011,2018;Krause et al.,2012Zhang et al.,2015Petrash et al.,2017Qiu et al.,2017Huang et al.,2019Liu et al.,2020a,2020b).原白云石虽然化学成分与白云石基本一致,但其晶体结构中Ca2+与Mg2+无序分布,热力学不稳定,可在埋藏成岩过程中转变为结构有序的白云石(Rodriguez⁃Blanco et al.,2015Zheng et al.,2021).因此,微生物被认为是白云石形成的重要催化剂,并由此发展出“微生物(有机)白云石模式”(McKenzie and Vasconcelos,2009).该模式的作用机制主要体现在两个方面:首先,微生物的代谢活动可提高周围溶液的碱度和pH值,从而显著增加(原)白云石的饱和度;另一方面,微生物细胞及分泌的胞外聚合物富含羧基等带负电荷的官能团,能够选择性吸附Mg2+和Ca2+,从而促进这些离子的去水合化过程,为原白云石的成核与生长创造有利条件(McKenzie and Vasconcelos,2009Krause et al.,2012).

近年来,除微生物及其有机成分外,研究发现一些无机组分在白云石形成过程中同样发挥着重要的催化作用(Zhang et al.,2012Liu et al.,2019bFang et al.,2023Meng et al.,2024).其中,黏土矿物是代表性的无机催化剂.实验研究表明,以蒙脱石和伊利石为代表的2∶1型黏土矿物及其非晶态前驱体能够有效促进原白云石的沉淀结晶(Liu et al.,2019bChen et al.,2024).这一作用主要归因于黏土矿物表面暴露的羟基官能团对Ca2+与Mg2+的选择吸附,加速其摆脱水分子束缚,降低成核能垒,从而为原白云石的成核提供有利的界面环境(Liu et al.,2019b).黏土矿物对白云石沉淀的影响并不局限于实验室研究.实际上,一些沉积学和地球化学证据表明,在白云岩和碱性湖泊沉积物中,白云石和黏土矿物之间存在较为密切的共生关系(Pérez et al.,2015Wanas and Sallam,2016;姚婷婷等,2020;赵思博等,2025),暗示了黏土矿物在白云石形成过程中具有催化作用.

需要指出的是,作为地球上最古老的光合产氧生物,蓝细菌在各类沉积环境中广泛分布,是叠层石等微生物岩的主要建造者(You et al.,2013).尽管地质记录中普遍存在白云质微生物岩,但蓝细菌在(原)白云石的形成过程中的作用仍不清楚.值得注意的是,自然沉积环境中黏土矿物与微生物普遍共存,且二者间发生着复杂的相互作用(Dong et al.,2009;谢树成等,2018;董海良等,2024).然而,关于微生物与黏土矿物协同作用对低温白云石生物矿化过程的影响尚不明确.针对以上问题,本研究选取了细长聚球藻(Synechococcus elongatus FACHB⁃410)和蒙脱石为研究载体.其中,聚球藻属是海洋蓝细菌的优势类群,而蒙脱石则是2∶1型黏土矿物的典型代表.通过设计含蒙脱石与不含蒙脱石的蓝细菌矿化实验,评估黏土矿物在微生物诱导碳酸盐矿物沉淀过程中的作用,为解释沉积环境中微生物—黏土矿物相互作用及其对(原)白云石形成的贡献提供理论依据.

1 实验材料与方法

1.1 蓝细菌培养

本研究选用的S. elongatus FACHB⁃410购自中国科学院水生生物研究所淡水藻种库.该菌株作为典型的耐盐蓝细菌,具有2.1‰~52.5‰的广谱盐度适应能力(Qiu et al.,2012).S. elongatus先经活化,再接种于含人工模拟海水培养基锥形瓶中进行培养.人工模拟海水培养基组成包括(L-1):NaCl (27.80 g),MgSO4 (0.44 g),KCl (0.60 g),NaNO3 (1.00 g),CaCl2·2H2O (0.10 g),NaHCO3 (0.08 g),KH2PO4 (50.00 mg),NH4Cl (26.70 mg),H3BO3 (34.00 mg),CoCl2·6H2O (0.02 mg),ZnCl2 (0.30 mg),(NH42Mo7O24· 4H2O(0.30 mg),Na2· EDTA(0.50 mg),FeCl3·6H2O (5.00 mg),Tris缓冲液(1.00 g)以及VB12 (0.004 mg).培养基盐度为30‰,pH=7.20.为避免NaHCO3和VB12在高温下分解,其母液采用0.22 μm滤膜过滤除菌,而培养基其余组分则通过高压蒸汽进行灭菌.待高温灭菌后的培养基冷却至室温后,在无菌操作条件下将NaHCO3和VB12母液按比例加入培养基中,充分混匀.培养条件设置为:温度25 ℃、持续光照强度2 000 lx、振荡速度150 rpm.为监测细胞生长状态,培养期间定期监测培养液的pH值和细胞密度(OD730).

1.2 蒙脱石预处理

本研究采用美国黏土矿物协会提供的标准蒙脱石样品(SWy⁃3),该矿物原产于美国怀俄明州.样品预处理过程如下:首先使用玛瑙研钵对原始样品进行充分研磨,随后将粉末样品分散于0.5 mol/L NaCl溶液中,在室温条件下持续搅拌24 h进行钠化处理,以统一矿物层间阳离子类型.根据斯托克斯法则,离心提取粒径小于0.5 μm的组分.随后用去离子水反复清洗5次以去除矿物表面残留离子.最后,离心收集蒙脱石并置于室温下自然风干.

1.3 微生物矿化实验

在上述人工模拟海水培养基的基础上,将MgSO4和CaCl2·2H2O的浓度分别调整为9.63 g/L(即80 mmol/L Mg2+)和1.47 g/L(即10 mmol/L Ca2+),使初始Mg/Ca摩尔比为8.该比值略高于现代海水,但与典型现代白云石沉积环境(如巴西Lagoa Vermelha潟湖)的数值接近(Vasconcelos et al.,1995).随后,在培养基中加入预处理后的蒙脱石(2 g/L)制备成悬浊液,同时设置不添加蒙脱石的对照组,每组实验均设置两个平行重复.两组培养基的初始pH均用0.1 mol/L NaOH溶液调节至7.20左右,随后在121 ℃条件下高压蒸汽灭菌20 min.待培养基冷却至室温后,接种预先培养的蓝细菌菌液,使各组体系初始OD730值统一为0.20.在光照培养箱中恒温(25 ℃)振荡(150 rpm)培养30 d后,通过离心(10 000 g,10 min)收集上清液和沉淀物.其中,上清液用于水化学检测.沉淀物先用无水乙醇清洗3遍,再冷冻干燥,用于后续矿物学分析.

1.4 水化学分析及矿物学表征

矿化体系的上清液采用电感耦合等离子体发射光谱仪(ICP⁃OES,ICAP⁃6300型,美国Thermo Scientific)测定反应前后Ca2+、Mg2+离子浓度变化,同时使用精密pH计(UB⁃7,美国Denver Instrument)测量溶液pH值.矿化产物的物相组成通过X⁃射线衍射仪(XRD,X1型,美国Scintag,Cu Kα辐射源)进行分析,工作条件为:扫描速度2°/min,扫描范围5°~55°(2θ).为进一步识别矿物相,本研究还采用了共聚焦显微激光拉曼光谱仪(Raman,Alpha 300⁃R型,德国WITec)进行扫描分析.样品的形貌和结构通过场发射扫描电子显微镜(FE⁃SEM,SU8010型,日本Hitachi)和聚焦离子束——扫描电子显微镜双束系统(FIB⁃SEM,Crossbeam 540型,德国Carl Zeiss公司)进行观察,并结合能谱仪(EDS,X⁃MaxN 80 T型,Oxford)进行元素半定量分析.此外,利用透射电子显微镜(TEM,Talos F200x型,美国Thermo Scientific)对矿物晶体的微观结构和晶格特征进行深入分析.

1.5 基于密度泛函理论(DFT)的模拟计算

如前文所述,镁离子的去水合作用是(原)白云石沉淀反应的关键步骤.笔者团队前期的研究基于第一性原理的密度泛函理论(DFT)模拟计算,证实微生物细胞表面的羧基等负电荷官能团能够有效吸附六水合镁离子[Mg(H2O)62+],并催化其去水合化反应(Liu et al.,2020b).为探究蒙脱石是否具有类似效果,本研究从原子尺度出发,重点探讨蒙脱石(010)晶面(富含羟基)对Mg(H2O)62+吸附作用.所有DFT计算均在开源量子化学软件CP2K程序(http://www.cp2k.org)中完成,计算基于高斯平面波混合(GPW)方法进行电子结构可视化展示.

2 实验结果

2.1 蓝细菌矿化体系的水化学特征

根据表1所示检测结果,经过30 d的培养,蓝细菌矿化体系的pH值在有无蒙脱石条件下均呈现显著上升趋势.具体而言,单纯蓝细菌体系的最终pH值达到9.58,含蒙脱石的蓝细菌体系为9.27.两种体系溶液Ca2+均表现出明显下降特征:蓝细菌体系中的Ca2+浓度下降至1.35 mmol/L,含蒙脱石体系降至1.74 mmol/L.两种实验体系溶液中的Mg2+变化具有显著差异:蓝细菌体系中的Mg2+浓度略微下降为78.86 mmol/L,而含蒙脱石体系中Mg2+浓度则降低至71.05 mmol/L.值得注意的是,含蒙脱石的蓝细菌体系溶液中镁钙离子的减少量呈现近似等摩尔比关系(Mg/Ca=0.95).

2.2 矿化产物的矿物学表征

2.2.1 XRD结果分析

微生物矿化体系的产物XRD结果如图1所示.在未添加蒙脱石的实验体系中,蓝细菌矿化产物主要为单水方解石和低镁方解石(图1a).其中,低镁方解石的(104)晶面衍射峰位于29.817° 2θ(d104=2.994 Å)(图1b),根据Bischoff经验公式计算(Bischoff et al.,1983),其MgCO3摩尔百分比为14.35%.当矿化体系引入蒙脱石后,在蓝细菌和蒙脱石的共同作用下,形成的矿物相发生了变化.除了蒙脱石的特征峰之外,碳酸盐矿物(104)衍射峰明显向高角度偏移(30.698° 2θ,d104=2.910 Å)(图1b),对应的MgCO3摩尔百分比提升至44.93%,其化学组成接近(原)白云石.值得注意的是,该碳酸盐矿物XRD图谱中未出现超结构衍射峰[如(101)、(021)和(015)],且衍射峰半峰宽较大,这些特征证实含蒙脱石的微生物矿化体系固体产物为原白云石.

2.2.2 拉曼结果分析

为进一步确认蓝细菌—蒙脱石体系反应产物的矿物组成,对样品进行拉曼光谱测试.显微观察发现产物中存在两种形貌显著差异的矿物:一类为直径约5 μm的球状颗粒;另一类为粒径较小的聚集体,且无规则的形状(图2a).两种类型的矿物在空间上紧密接触.拉曼图谱(图2b)分析显示,球形颗粒在1 094 cm-1处可见明显的CO32-的对称伸缩振动(v1),302 cm-1处可见CO32-的转动模式特征,这些特征与文献中原白云石的拉曼指纹高度吻合(Gunasekaran et al.,2006Sun et al.,2014).而形状不规则的聚集体经鉴定为蒙脱石.需要指出的是,本实验所采用波长为532 nm的激光,该波段易激发蒙脱石产生强烈荧光干扰(Ritz et al.,2016),其拉曼信号未被有效采集.此外,受激光辐照的影响,蒙脱石的颜色明显加深,表明其结构可能受到部分破坏(图2a).

2.2.3 FIB⁃SEM结果分析

SEM和EDS结果显示,在无蒙脱石存在的条件下,蓝细菌矿化产物主要为低镁方解石,其晶体呈球状,直径为10~15 μm(图3).同时,可观察到蓝细菌细胞附着于低镁方解石表面(图3).蓝细菌—蒙脱石矿化体系生成的原白云石以球状和哑铃状为主,粒径较小,为2~4 μm,并分布于片状蒙脱石表面或边缘区域(图4a).高分辨显微成像进一步揭示这些原白云石球体由纳米级晶粒组装而成(图4c,4d).其中,部分原白云石颗粒可见嵌有蒙脱石片层(图4d),表明蒙脱石可能作为异相成核模板参与白云石晶体生长.

为探究原白云石颗粒内部结构与元素分布,本研究采用FIB对样品进行截面切割,并结合EDS进行元素分析(图5).结果显示,Ca和Mg信号高度重叠,指示该区域为原白云石,而Si的分布在整个截面上广泛存在,证实原白云石主要在蒙脱石基质上生长.结合图4图5的结果表明,原白云石晶体优先沿蒙脱石表面及片层边缘形成.

2.2.4 TEM结果分析

TEM结果表明,原白云石球状颗粒与片状蒙脱石呈明显的界面接触关系(图6a).蒙脱石片层边缘呈现不规则形态,其(001)晶面间距测定为1.3 nm(图6b).附着于蒙脱石表面的原白云石颗粒显示出典型的多晶衍射特征,其中(104)、(006)和(113)等晶面衍射清晰可辨(图6c).高分辨TEM进一步显示0.2 Å的晶格间距,这与原白云石(113)晶面的理论值一致(图6d).通过高角环形暗场扫描模式(HAADF),原白云石主要沿着蒙脱石片状结构的边缘生长(图6a、6e).对图6e中的白云石颗粒进行了元素分析,结果显示,Ca和Mg元素主要富集于晶体核部(图6f,6g),在边缘区域信

号强度显著降低(图6i).

2.3 DFT结果分析

DFT计算从分子尺度揭示了蒙脱石与Mg(H2O)62+的相互作用机制.模拟结果表明,蒙脱石(010)晶面对Mg(H2O)62+具有选择性吸附特性.差分电荷分析(图7a)显示吸附过程存在电子云重排现象,表明Mg(H2O)62+在蒙脱石表面发生了电荷转移.进一步的结构解析(图7b)表明,蒙脱石表面羟基通过形成稳定的Mg⁃O键实现对Mg(H2O)62+的高效结合.值得注意的是,该吸附过程表现出显著的热力学自发性,其吸附能变化为-1.18 eV.这一结果在理论上验证了蒙脱石作为原白云石成核模板的潜力.

3 讨论

本研究证实,耐盐蓝细菌S. elongatus具有诱导碳酸盐矿物沉淀的能力,这一发现为蓝细菌通过光合作用诱导碳酸盐沉淀的经典理论提供了新的实验证据.在不含蒙脱石的矿化体系中,S. elongatus主要诱导形成单水方解石和低镁方解石(MgCO3的摩尔含量为14.35%),该一矿物组合特征与已报道的S. leopoliensis、Leptolyngbya boryana等蓝细菌菌株的矿化产物近似(Obst et al.,2006Wang et al.,2023Zhao et al.,2024),表明该矿化模式可能在蓝细菌中具有普遍性(Kamennaya et al.,2012).目前学界普遍认为,蓝细菌介导的碳酸盐矿化过程与其独特的碳固定机制密切相关.具体而言,由于蓝细菌的核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)的羧化效率相对较低,其在进化过程中形成了胞内CO2浓缩机制以提高碳固定效率(Badger et al.,2002Riding,2006).在该机制中,蓝细菌以HCO3-为主要的无机碳源,通过主动转运进入胞内,并在含有RuBisCO的羧酶体中转化为CO2和OH-Görgen et al.,2020).产生的OH-进一步释放到胞外,导致局部微环境pH升高,促进溶液过饱和,从而为碳酸盐矿物的沉淀创造了有利条件.特别值得注意的是,S. elongatus表现出选择形成低镁方解石的特性.综合前期表面化学分析数据,该菌株细胞表面羧基官能团密度为5.2×10-4 mol/g (Qiu et al.,2018).这一特性可能通过两种机制影响含镁方解石的矿化过程:(1)带负电的羧基通过静电吸附作用降低镁离子水合能,从而促进镁离子进入碳酸盐晶格;(2)在细胞表面特定空间排布的羧基基团可以作为模板引导含镁方解石晶格定向排列.然而,该菌株的羧基密度仍低于原白云石形成所需的临界阈值(8.1×10-4 mol/g)(Kenward et al.,2013),这从分子层面合理解释了本研究中单纯蓝细菌矿化体系原白云石的缺失现象.

有意思的是,在蒙脱石参与的蓝细菌矿化体系中,矿化产物主要为原白云石.DFT计算揭示,蒙脱石(010)晶面对水合镁离子表现出显著吸附偏好,证实蒙脱石可作为有效的Mg2+富集位点.Liu等人(2019b)已证实,高负电荷密度的黏土矿物(如蒙脱石和伊利石)能够在过饱和溶液中促进原白云石的形成.类似现象在自然界中亦有报道,例如,美国Deep Springs湖和我国内蒙古吉布胡郎图诺尔等强碱性盐湖中,黏土矿物广泛存在,并常与自生白云石共生(Meister et al.,2011;于娜等,2018).值得注意的是,这些沉积环境中通常也有蓝细菌分布.本研究的创新之处在于,相较于前人关注的单一黏土矿物体系,本研究揭示了蓝细菌与黏土矿物在复合体系中所发挥的重要协同效应(图8).可能机制包括:(1)蓝细菌通过光合作用提高环境中原白云石的过饱和度.在初始矿化阶段,体系对碳酸盐矿物本为不饱和状态,而蓝细菌的代谢活动提高了体系pH值和碱度,从而为原白云石的沉淀创造了有利条件.(2)蓝细菌细胞及其胞外聚合物与蒙脱石颗粒共同提供了大量带负电的表面成核位点,增强了对镁离子的静电吸附与去水合效应.Liu等人(2019b)的研究表明,在无机模拟体系中,黏土矿物含量是影响原白云石沉淀的关键因素:当黏土矿物含量为6 g/L时,原白云石产量最高;而当含量降至2 g/L时,仅沉淀微量原白云石,其XRD图谱中(104)峰表现为较弱而宽化的鼓包.本研究尽管采用低添加量(2 g/L)的蒙脱石,但由于蓝细菌和蒙脱石之间存在协同催化作用,原白云石产量显著提高,并成为最终产物的主要矿物相.这一发现对理解地质记录中的微生物白云岩形成机制具有启示意义.如前文所述,此前被证实能够诱导原白云石形成的微生物主要局限于极端嗜盐好氧菌、硫酸盐还原菌和产甲烷古菌等特定类群(Vasconcelos et al.,1995Roberts et al.,2004;Sánchez⁃Román et al.,2011Bontognali et al.,2014;段勇等,2017;Qiu et al.,2017;药彦辰等,2018;Fan et al.,2023).本研究表明,在黏土矿物参与下,蓝细菌也能介导原白云石的形成.由于蓝细菌是叠层石等微生物岩的重要建造者之一,这为解释前寒武纪叠层石白云岩和显生宙微生物白云岩的成因提供了新思路(Perri et al.,2007,2013Bontognali et al.,2010You et al.,2013Netto et al.,2022).

4 结论

室内矿化实验研究表明,耐盐蓝细菌S. elongatus FACHB⁃410在Mg/Ca摩尔比为8的溶液中能够诱导单水方解石和低镁方解石的形成.当在该体系中添加蒙脱石后,实验检测到了原白云石的生成.显微成像结果显示,合成的原白云石具有典型的微球状形貌,由纳米级晶粒组装而成,且其晶体结构中镁钙离子呈无序分布.原白云石球粒主要附着于蒙脱石片层表面或边缘,另有部分球粒表面可见蒙脱石薄片嵌入.DFT计算证实,蒙脱石表面羟基对含水镁离子的吸附反应具有热力学自发性,这一现象与已报道的微生物细胞及胞外聚合物的表面特性高度一致.以上研究结果表明,在蓝细菌创造的局部过饱和溶液环境中,蒙脱石与蓝细菌细胞通过协同作用,有效促进了镁离子进入原白云石晶格.这一发现不仅揭示了微生物—矿物界面相互作用对原白云石形成的促进作用,同时对促进“白云石之谜”深入研究具有重要理论意义.

参考文献

[1]

Badger,M.R.,Hanson,D.,Price,G.D.,2002.Evolution and Diversity of CO2 Concentrating Mechanisms in Cyanobacteria.Functional Plant Biology,29(3):161-173.https://doi.org/10.1071/PP01213

[2]

Bischoff,W.D.,Bishop,F.C.,Mackenzie,F.T.,1983.Biogenically Produced Magnesian Calcite;Inhomogeneities in Chemical and Physical Properties;Comparison with Synthetic Phases.American Mineralogist,68(11-12):1183-1188.

[3]

Bontognali,T.R.R.,McKenzie,J.A.,Warthmann,R.J.,et al.,2014.Microbially Influenced Formation of Mg⁃Calcite and Ca⁃Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate⁃Reducing Bacteria.Terra Nova,26(1):72-77.https://doi.org/10.1111/ter.12072

[4]

Bontognali,T.R.R.,Vasconcelos,C.,Warthmann,R.J.,et al.,2010.Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates).Sedimentology,57(3):824-844.https://doi.org/10.1111/j.1365⁃3091.2009.01121.x

[5]

Brauchli,M.,McKenzie,J.A.,Strohmenger,C.J.,et al.,2016.The Importance of Microbial Mats for Dolomite Formation in the Dohat Faishakh Sabkha,Qatar.Carbonates and Evaporites,31(3):339-345.https://doi.org/10.1007/s13146⁃015⁃0275⁃0

[6]

Chen,T.,Qiu,X.,Liu,D.,et al.,2024.Dissolved Silicon as a Beneficial Factor for Biomineralization of Disordered Dolomite by a Halophilic Cyanobacterium.Chemical Geology,670:122435.https://doi.org/10.1016/j.chemgeo.2024.122435

[7]

Deng,S.C.,Dong,H.L.,Lyu,G.,et al.,2010.Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria:Results from Qinghai Lake,Tibetan Plateau,NW China.Chemical Geology,278(3-4):151-159.https://doi.org/10.1016/j.chemgeo.2010.09.008

[8]

Dong,H.,Jaisi,D.P.,Kim,J.,et al.,2009.Microbe⁃Clay Mineral Interactions.American Mineralogist,94(11-12):1505-1519.https://doi.org/10.2138/am.2009.3246

[9]

Dong,H.L.,Zeng,Q.,Liu,D.,et al.,2024.Interactions between Clay Minerals and Microbes:Mechanisms and Applications in Environmental Remediation.Earth Science Frontiers,31(1):467-485 (in Chinese with English abstract).

[10]

Duan,Y.,Yao,Y.C.,Qiu,X.,et al.,2017.Dolomite Formation Facilitated by Three Halophilic Archaea.Earth Science,42(3):389-396 (in Chinese with English abstract).

[11]

Fan,Q.G.,Liu,D.,Papineau,D.,et al.,2023.Precipitation of High Mg⁃Calcite and Protodolomite Using Dead Biomass of Aerobic Halophilic Bacteria.Journal of Earth Science,34(2):456-466.https://doi.org/10.1007/s12583⁃020⁃1108⁃1

[12]

Fang,Y.H.,Hobbs,F.,Yang,Y.P.,et al.,2023.Dissolved Silica⁃Driven Dolomite Precipitation in the Great Salt Lake,Utah,and Its Implication for Dolomite Formation Environments.Sedimentology,70(4):1328-1347.https://doi.org/10.1111/sed.13081.

[13]

Görgen,S.,Benzerara,K.,Skouri⁃Panet,F.,et al.,2020.The Diversity of Molecular Mechanisms of Carbonate Biomineralization by Bacteria.Discover Materials,1(1):2.https://doi.org/10.1007/s43939⁃020⁃00001⁃9

[14]

Gregg,J.M.,Bish,D.L.,Kaczmarek,S.E.,et al.,2015.Mineralogy,Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment:a Review.Sedimentology,62(6):1749-1769.https://doi.org/10.1111/sed.12202

[15]

Gunasekaran,S.,Anbalagan,G.,Pandi,S.,2006.Raman and Infrared Spectra of Carbonates of Calcite Structure.Journal of Raman Spectroscopy,37(9):892-899.https://doi.org/10.1002/jrs.1518

[16]

Huang,Y.R.,Yao,Q.Z.,Li,H.,et al.,2019.Aerobically Incubated Bacterial Biomass⁃Promoted Formation of Disordered Dolomite and Implication for Dolomite Formation.Chemical Geology,523:19-30.https://doi.org/10.1016/j.chemgeo.2019.06.006

[17]

Kamennaya,N.A.,Ajo⁃Franklin,C.M.,Northen,T.,et al.,2012.Cyanobacteria as Biocatalysts for Carbonate Mineralization.Minerals,2(4):338-364.https://doi.org/10.3390/min2040338

[18]

Kenward,P.A.,Fowle,D.A.,Goldstein,R.H.,et al.,2013.Ordered Low⁃Temperature Dolomite Mediated by Carboxyl⁃Group Density of Microbial Cell Walls.AAPG Bulletin,97(11):2113-2125.https://doi.org/10.1306/05171312168

[19]

Kim,J.,Kimura,Y.,Puchala,B.,et al.,2023.Dissolution Enables Dolomite Crystal Growth near Ambient Conditions.Science,382(6673):915-920.https://doi.org/10.1126/science.adi3690

[20]

Krause,S.,Liebetrau,V.,Gorb,S.,et al.,2012.Microbial Nucleation of Mg⁃Rich Dolomite in Exopolymeric Substances under Anoxic Modern Seawater Salinity:New Insight into an Old Enigma.Geology,40(7):587-590.https://doi.org/10.1130/g32923.1

[21]

Land,L.S.,1998.Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000⁃Fold Oversaturation after 32 Years.Aquatic Geochemistry,4(3):361-368.https://doi.org/10.1023/A:1009688315854

[22]

Li,B.,Yan,J.X.,Liu,X.T.,et al.,2010.The Organogenic Dolomite Model:Mechanism,Progress and Significance.Journal of Palaeogeography,12(6):699-710 (in Chinese with English abstract).

[23]

Lippmann,F.,1973.Sedimentary Carbonate Minerals.Springer-Verlag Berlin,Heidelberg.https://doi.org/10.1007/978⁃3⁃642⁃65474⁃9

[24]

Liu,D.,Fan,Q.G.,Papineau,D.,et al.,2020a.Precipitation of Protodolomite Facilitated by Sulfate⁃Reducing Bacteria:The Role of Capsule Extracellular Polymeric Substances.Chemical Geology,533:119415.https://doi.org/10.1016/j.chemgeo.2019.119415.

[25]

Liu,D.,Xu,Y.Y.,Yu,Q.Q.,et al.,2020b.Catalytic Effect of Microbially⁃Derived Carboxylic Acids on the Precipitation of Mg⁃Calcite and Disordered Dolomite:Implications for Sedimentary Dolomite Formation.Journal of Asian Earth Sciences,193:104301.https://doi.org/10.1016/j.jseaes.2020.104301

[26]

Liu,D.,Yu,N.,Papineau,D.,et al.,2019a.The Catalytic Role of Planktonic Aerobic Heterotrophic Bacteria in Protodolomite Formation:Results from Lake Jibuhulangtu Nuur,Inner Mongolia,China.Geochimica et Cosmochimica Acta,263:31-49.https://doi.org/10.1016/j.gca.2019.07.056

[27]

Liu,D.,Xu,Y.Y.,Papineau,D.,et al.,2019b.Experimental Evidence for Abiotic Formation of Low⁃Temperature Proto⁃Dolomite Facilitated by Clay Minerals.Geochimica et Cosmochimica Acta,247:83-95.https://doi.org/10.1016/j.gca.2018.12.036.

[28]

McKenzie,J.A.,Vasconcelos,C.,2009.Dolomite Mountains and the Origin of the Dolomite Rock of which they Mainly Consist:Historical Developments and New Perspectives.Sedimentology,56(1):205-219.https://doi.org/10.1111/j.1365⁃3091.2008.01027.x

[29]

Meister,P.,Reyes,C.,Beaumont,W.,et al.,2011.Calcium and Magnesium⁃Limited Dolomite Precipitation at Deep Springs Lake,California.Sedimentology,58(7):1810-1830.https://doi.org/10.1111/j.1365⁃3091.2011.01240.x

[30]

Meng,R.R.,Han,Z.Z.,Gao,X.,et al.,2024.Dissolved Ammonia Catalyzes Proto⁃Dolomite Precipitation at Earth Surface Temperature.Earth and Planetary Science Letters,646:119012.https://doi.org/10.1016/j.epsl.2024.119012

[31]

Netto,P.R.A.,Pozo,M.,da Silva,M.D.,et al.,2022.Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin,Brazil).Minerals,12(2):200.https://doi.org/10.3390/min12020200

[32]

Obst,M.,Dittrich,M.,Kuehn,H.,2006.Calcium Adsorption and Changes of the Surface Microtopography of Cyanobacteria Studied by AFM,CFM,and TEM with Respect to Biogenic Calcite Nucleation.Geochemistry,Geophysics,Geosystems,7(6):2005GC001172.https://doi.org/10.1029/2005GC001172

[33]

Pérez,A.M.,Zarza,A.M.A.,La Iglesia,Á.,et al.,2015.Do Magnesian Clays Play a Role in Dolomite Formation in Alkaline Environments? An Example from Castañar Cave,Cáceres (Spain).Geogaceta,57:15⁃18.

[34]

Perri,E.,Tucker,M.,2007.Bacterial Fossils and Microbial Dolomite in Triassic Stromatolites.Geology,35(3):207.https://doi.org/10.1130/g23354a.1

[35]

Perri,E.,Tucker,M.E.,Mawson,M.,2013.Biotic and Abiotic Processes in the Formation and Diagenesis of Permian Dolomitic Stromatolites (Zechstein Group,NE England).Journal of Sedimentary Research,83(10):896-914.https://doi.org/10.2110/jsr.2013.65

[36]

Petrash,D.A.,Bialik,O.M.,Bontognali,T.R.R.,et al.,2017.Microbially Catalyzed Dolomite Formation:From Near⁃Surface to Burial.Earth⁃Science Reviews,171:558-582.https://doi.org/10.1016/j.earscirev.2017.06.015

[37]

Qiu,X.,Wang,H.M.,Liu,D.,et al.,2012.The Physiological Response of Synechococcus Elongatus to Salinity:A Potential Biomarker for Ancient Salinity in Evaporative Environments.Geomicrobiology Journal,29(5):477-483.https://doi.org/10.1080/01490451.2011.581331

[38]

Qiu,X.,Wang,H.M.,Yao,Y.C.,et al.,2017.High Salinity Facilitates Dolomite Precipitation Mediated by Haloferax volcanii DS52.Earth and Planetary Science Letters,472:197-205.https://doi.org/10.1016/j.epsl.2017.05.018

[39]

Qiu,X.,Yao,Y.C.,Wang,H.M.,et al.,2018.Live Microbial Cells Adsorb Mg2+ More Effectively than Lifeless Organic Matter.Frontiers of Earth Science,12(1):160-169.https://doi.org/10.1007/s11707⁃017⁃0626⁃3

[40]

Riding,R.,2006.Cyanobacterial Calcification,Carbon Dioxide Concentrating Mechanisms,and Proterozoic-Cambrian Changes in Atmospheric Composition.Geobiology,4(4):299-316.https://doi.org/10.1111/j.1472⁃4669.2006.00087.x

[41]

Ritz,M.,Vaculíková,L.,Kupková,J.,et al.,2016.Different Level of Fluorescence in Raman Spectra of Montmorillonites.Vibrational Spectroscopy,84:7-15.https://doi.org/10.1016/j.vibspec.2016.02.007

[42]

Roberts,J.A.,Bennett,P.C.,González,L.A.,et al.,2004.Microbial Precipitation of Dolomite in Methanogenic Groundwater.Geology,32(4):277.https://doi.org/10.1130/g20246.2

[43]

Rodriguez⁃Blanco,J.D.,Shaw,S.,Benning,L.G.,2015.A Route for the Direct Crystallization of Dolomite.American Mineralogist,100(5-6):1172-1181.https://doi.org/10.2138/am⁃2015⁃4963

[44]

Sánchez⁃Román,M.,Romanek,C.S.,Fernández⁃Remolar,D.C.,et al.,2011.Aerobic Biomineralization of Mg⁃Rich Carbonates:Implications for Natural Environments.Chemical Geology,281(3-4):143-150.https://doi.org/10.1016/j.chemgeo.2010.11.020

[45]

Sánchez⁃Román,M.,Vasconcelos,C.,Schmid,T.,et al.,2008.Aerobic Microbial Dolomite at the Nanometer Scale:Implications for the Geologic Record.Geology,36(11):879.https://doi.org/10.1130/g25013a.1

[46]

Sun,J.M.,Wu,Z.G.,Cheng,H.F.,et al.,2014.A Raman Spectroscopic Comparison of Calcite and Dolomite.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,117:158-162.https://doi.org/10.1016/j.saa.2013.08.014

[47]

Vasconcelos,C.,McKenzie,J.A.,Bernasconi,S.,et al.,1995.Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature,377:220-222.https://doi.org/10.1038/377220a0

[48]

Wanas,H.A.,Sallam,E.,2016.Abiotically⁃Formed,Primary Dolomite in the Mid⁃Eocene Lacustrine Succession at Gebel El⁃Goza El⁃Hamra,NE Egypt:An Approach to the Role of Smectitic Clays.Sedimentary Geology,343:132-140.https://doi.org/10.1016/j.sedgeo.2016.08.003

[49]

Wang,X.,Kong,X.X.,Liu,Q.,et al.,2023.Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium Synechococcus Sp. Microbiology Spectrum,11(3).https://doi.org/10.1128/spectrum.00363⁃23

[50]

Warren,J.,2000.Dolomite:Occurrence,Evolution and Economically Important Associations.Earth⁃Science Reviews,52(1-3):1-81.https://doi.org/10.1016/s0012⁃8252(00)00022⁃2

[51]

Xie,S.C.,Yin,H.F.,Liu,D.,et al.,2018.On Development from Paleontology to Geobiology:Overview of Innovation and Expansion of Application Fields.Earth Science,43(11):3823-3836 (in Chinese with English abstract).

[52]

Xu,Y.Y.,Liu,D.,Yu,N.,et al.,2018.Advance and Review on Microbial/Organogenic Dolomite Model.Earth Science,43(Suppl.1):63-70 (in Chinese with English abstract).

[53]

Yao,T.T.,Zhu,H.T.,Yang,X.H.,et al.,2020.Dolomite Origin of Shahejie Formation in Huanghekou Sag,Bohai Bay Basin.Earth Science,45(10):3567-3578 (in Chinese with English abstract).

[54]

Yao,Y.C.,Qiu,X.,Wang,H.M.,et al.,2018.Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres.Earth Science,43(2):449-458 (in Chinese with English abstract).

[55]

You,X.L.,Jia,W.Q.,Xu,F.,et al.,2018.Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins.Earth Science,43(11):4046-4055 (in Chinese with English abstract).

[56]

You,X.L.,Sun,S.,Zhu,J.Q.,et al.,2011.Progress in the Study of Microbial Dolomite Model.Earth Science Frontiers,18(4):52-64 (in Chinese with English abstract).

[57]

You,X.L.,Sun,S.,Zhu,J.Q.,et al.,2013.Microbially Mediated Dolomite in Cambrian Stromatolites from the Tarim Basin,North⁃West China:Implications for the Role of Organic Substrate on Dolomite Precipitation.Terra Nova,25(5):387-395.https://doi.org/10.1111/ter.12048

[58]

Yu,N.,Xu,Y.Y.,Liu,D.,et al.,2018.Catalytic Role of Anaerobic Bacteria in Dolomite Formation in Lake Jibuhulangtu Nuur,Inner Mongolia.Earth Science,43(Suppl.1):53-62(in Chinese with English abstract).

[59]

Zhang,F.F.,Xu,H.F.,Konishi,H.,et al.,2012.Dissolved Sulfide⁃Catalyzed Precipitation of Disordered Dolomite:Implications for the Formation Mechanism of Sedimentary Dolomite.Geochimica et Cosmochimica Acta,97:148-165.https://doi.org/10.1016/j.gca.2012.09.008

[60]

Zhang,F.,Xu,H.,Shelobolina,E.S.,et al.,2015.The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca⁃Mg Carbonate Precipitation:Implications for the “Dolomite Problem”.American Mineralogist,100(2/3):483-494.https://doi.org/10.2138/am⁃2015⁃4999

[61]

Zhao,S.B.,Liu,Y.C.,Yue,L.L.,et al.,2025.Types,Characteristics,and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super⁃Large Huize Pb⁃Zn Orefield.Earth Science,50(4):1353-1379 (in Chinese with English abstract).

[62]

Zhao,Y.Y.,Wei,X.Y.,Gao,X.,et al.,2024.Proto⁃Dolomite Spherulites with Heterogeneous Interior Precipitated in Brackish Water Cultivation of Freshwater Cyanobacterium Leptolyngbya boryana.Science of the Total Environment,906:167552.https://doi.org/10.1016/j.scitotenv.2023.167552

[63]

Zheng,W.L.,Liu,D.,Yang,S.S.,et al.,2021.Transformation of Protodolomite to Dolomite Proceeds under Dry⁃Heating Conditions.Earth and Planetary Science Letters,576:117249.https://doi.org/10.1016/j.epsl.2021.117249

基金资助

国家自然科学基金项目(42330201)

国家自然科学基金项目(42272046)

国家自然科学基金项目(42202035)

AI Summary AI Mindmap
PDF (4685KB)

56

访问

0

被引

详细

导航
相关文章

AI思维导图

/