青藏高原高速远程滑坡研究:从地质现象到动力学机理

王玉峰 ,  程谦恭 ,  林棋文 ,  李坤 ,  史安文 ,  李天话 ,  明杰 ,  宋章 ,  牛富俊 ,  李传宝

地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 4071 -4095.

PDF (26931KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 4071 -4095. DOI: 10.3799/dqkx.2025.207

青藏高原高速远程滑坡研究:从地质现象到动力学机理

作者信息 +

Research on Rock Avalanches in Tibetan Plateau:From Field Observations to Dynamic Mechanisms

Author information +
文章历史 +
PDF (27577K)

摘要

青藏高原是地球圈层作用最活跃、内外动力耦合作用最强烈、全球气候变化最敏感、地质灾害活动最剧烈的地区,区内构造-气候-地质灾害协同演化过程显著,是国际上高速远程滑坡动力学机理研究的天然实验室.为探秘高速远程滑坡的超常运动特性,研究团队一直致力于青藏高原及其邻区高速远程滑坡工程地质调查和动力学机理研究.基于前期研究成果,阐明了高速远程滑坡的术语由来及其基本特征,重点概述了研究团队在高速远程滑坡动力学研究领域的新发现、新认识、新观点,亦即:揭示高速远程滑坡体积效应呈现本质;提出高速远程滑坡是破碎流的新观点;提出自激振动悬浮减阻新机理;提出高速远程滑坡停积就位新模式等,这些成果体现了从野外地质现象到科学理论建立的滑坡动力学研究范式.最后,对未来青藏高原高速远程滑坡研究进行了深入思考和展望,以期为推动活跃造山带高速远程滑坡动力学机理研究和制定风险防控策略提供参考.

Abstract

The Tibetan Plateau is the area with the most active interlayer interactions, the strongest coupling effect of internal and external forces, the most sensitive to global climate change, and the most intense geological hazard activity, which is characterized by significant synergism of tectonic-climatic-geohazards and globally recognized as a natural laboratory for studying rock avalanche dynamics. To explore the extremely high mobility of rock avalanches, our team has been dedicated to the geological investigation and dynamic analysis of rock avalanches in the Tibetan Plateau and its adjacent areas for many years. Based on the previous study, it first elucidates the terminological origin and the main characteristics of rock avalanches. Subsequently, the new discoveries, understandings and perspectives reached by the team based on more than two decades of systematic research on rock avalanches across the Tibetan Plateau is introduced, i.e., revealing the essence of rock avalanche volume effect, proposing the new viewpoints that rock avalanche should be a cataclastic flow, proposing the self-excited vibration effect, and building the emplacement models of rock avalanches under varying conditions. The finding and proposition of these achievements systematically exhibit the research paradigm from field geological observations to theoretical framework establishment for rock avalanche dynamics. Finally, it summarizes critical insights for rock avalanche study based on previous work, hoping to provide scientific references for advancing rock avalanche research and formulating corresponding risk mitigation strategies.

Graphical abstract

关键词

青藏高原 / 高速远程滑坡 / 动力学 / 研究进展 / 工程地质学.

Key words

Tibetan Plateau / rock avalanche / dynamics / review / engineering geology

引用本文

引用格式 ▾
王玉峰,程谦恭,林棋文,李坤,史安文,李天话,明杰,宋章,牛富俊,李传宝. 青藏高原高速远程滑坡研究:从地质现象到动力学机理[J]. 地球科学, 2025, 50(10): 4071-4095 DOI:10.3799/dqkx.2025.207

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

青藏高原是地球上海拔最高、面积最大、时代最新并仍在持续性隆升的高原,以其最年轻的隆升年龄、最复杂的形成机制、最活跃的构造运动、最显著的环境效应成为全球地球科学领域研究的热点区域.青藏高原不仅是认识地球岩石圈形成演化过程和动力学的理想区域,也是探索构造活动与气候变化作用下地表圈层相互作用的天然实验室,是“打开地球动力学大门的金钥匙”(钟大赉和丁林, 1996; 李吉均和方小敏, 1998;潘桂棠等, 2013;陈德亮等, 2015;许志琴等, 2022;梁晓峰等, 2023).青藏高原作为印度板块与欧亚板块强烈挤压的产物,新生代以来经历了广泛的地壳水平缩短和垂向加厚作用,造就了全球平均海拔最高、变形最为强烈且规模巨大的陆内活动造山系统——喜马拉雅-青藏高原造山带,该活动造山带发育了高密度的复杂活动断裂体系,是喜马拉雅-地中海地震带上陆内强震活动强度及频度最高的区域之一(李廷栋, 1995; 王成善和丁学林, 1998; 许志琴等, 2006, 2022, 2024; 王国灿等, 2011; 侯增谦等,2020; 吴中海, 2024).

青藏高原快速隆升与变形过程中造就的系列雄伟山脉形成一道天然屏障,将来自印度洋、大西洋、地中海等地的水汽冻结于高山之巅,形成除两极之外地球上超级冰川发育最密集的区域,享有地球第三极之称,致使青藏高原长期受到高寒雪域的冰川剥蚀作用和冰雪冻融循环作用,斜坡岩体物理风化作用极为强烈(滕吉文等, 1997;姚檀栋等, 2017, 2019; 邹强等, 2021).

这些强烈的地震活动与冰川作用,在青藏高原先后诱发了数以万计的巨大体积崩塌、滑坡、泥石流等重大地质灾害,使其成为全球地质灾害最为严重的区域之一(崔鹏等, 2014; Strom,2018Dubey et al., 2023Pei et al.,2023Wang et al., 2023,2025Zhao et al., 2023).

青藏高原作为地球圈层作用最活跃、内外动力耦合作用最强烈、全球气候变化最敏感、地质灾害活动最剧烈的地区(中国科学院青藏高原综合科学考察队, 2000; 彭建兵等, 2004, 2020;邓起东等, 2014;张永双等, 2021),近年来,随着全球气候变暖的不断加剧,冰川退缩严重;加之,该区强震活动的不断增加,导致青藏高原的构造-气候-灾害协同演化效应显著(姚檀栋等, 2019; Azam et al., 2021Hugonnet et al., 2021).在这些活跃的地壳内外动力地质作用下,青藏高原高山峡谷区诱发的高速远程滑坡,不仅具有类型齐全、分布密度大、爆发频率高的特点,而且活动规模之大、危害程度之高、影响范围之广,为国内外具有类似地质环境特征的其他地区所罕见,造成了巨大的人员伤亡和财产损失(袁道阳等, 2020;Dubey et al., 2023Zhang et al., 2023Stanley et al., 2024).例如,2021年2月7日发生于青藏高原南缘印度北阿坎德邦的Chamoli高速远程滑坡,约27×106 m3的冰岩混合体从海拔6 063 m的朗蒂峰北坡快速失稳,随后与下方山体和沟谷发生强烈撞击形成碎屑流,平均速度达60 m/s,运动距离达10 km之远,堵塞下游河道,形成堰塞湖;随后堰塞湖溃决形成泥石流/洪水灾害链,摧毁下游两座在建水电站,造成200多人死亡或失踪(Shugar et al., 2021).又如,2025年2月8日发生于四川省筠连县的金坪滑坡,0.37×106 m3的层状砂岩和泥岩岩体从海拔1 100 m的高陡斜坡失稳,进而转化为岩屑流沿沟道快速运动,形成长约1.5 km的碎屑堆积体,摧毁沿途10户民房,导致29人遇难(Zhao et al.,2025).

高速远程滑坡(Rock avalanche; Sturzstrom)作为青藏高原的主要地质灾害类型之一,呈现出多样的孕灾背景与时空分布规律、巨大的发育规模、超常的运动距离和复杂的演化过程;在高速远程滑坡的运动过程中,常常与沿途地表物质相互作用,裹挟可侵蚀的下伏层,改变滑坡物质成分,影响滑坡流动性(Iverson and George, 2016Aaron and McDougall, 2019Pudasaini et al., 2021; 韩旭东等, 2024);受运动路径复杂地形的影响,还可见滑体发生偏转、绕流、分流、翻山越岭等现象,形成复杂多变的堆积形态(Corominas, 1996Hewitt, 2002,2006; 李郎平和兰恒星, 2022);特别是在青藏高原的高山峡谷区,极易形成体积巨大的滑坡坝,演化为溃坝洪水/泥石流灾害链,形成多介质-多过程复合叠加、多灾种链生演进的巨型复合灾害体(Fan et al., 2019; 殷跃平等, 2021; Zhong et al., 2024).从高速远程滑坡孕育的内外动力地质背景而言,这种特殊的地质作用,从本质上深刻反映了现今全球构造最活跃地带的孕灾动力学机制、全球地表隆升最快地区的成灾动力学机制、全球气候变化最敏感地区的链灾动力学机制和全球地形地貌差异最大地区的工程灾变动力学机制(彭建兵等, 2004, 2020),因此,其动力学过程和机制具有极为重要的地球动力学与灾害动力学研究意义.

聚焦高速远程滑坡的超常运动特性,自瑞士著名地质学家Heim(1932)开创性地进行阿尔卑斯山脉高速远程滑坡研究以来,国际上已有百余年的研究历史.然而,由于其源区具有高隐蔽性、事件发生具有突发性和巨大危害性,高速远程滑坡低摩阻远程运动的超高流动性动力学机理至今仍是国际地球科学领域极具争议的前沿热点科学问题,亟需系统地开展深入且持续的研究(王玉峰等, 2021; Hermanns et al., 2022; 李坤等, 2022; 唐辉明等, 2022; 冯止依等, 2023).聚焦高速远程滑坡动力学,西南交通大学“青藏高原高速远程滑坡研究”科研团队(程谦恭等, 1999, 2007, 2024)一直致力于青藏高原高速远程滑坡及其动力学机理的研究,通过翔实的野外地质调查、室内系列物理模型实验、精细数值模拟、深入理论分析等综合研究手段,重点探索了高速远程滑坡体积效应的内在机理(Wang et al., 2017,2018a)、破碎相依能量转换机理(Lin et al., 2020,20212022; 林棋文等, 2023;Shi et al., 2024a)、自激振动悬浮减阻机理(Wang et al., 2015Li et al., 2021,2022, 2024,, 2025; 李天话等, 2022)以及路径相依流态转化与停积就位机制(Wang et al., 2018b,2019a, 2019b,, 2020; Shi et al., 2023,2024b; 史安文等, 2024; 何可等, 2024),并取得系列标志性成果,极大地丰富了高速远程滑坡动力学理论.基于前期研究成果,本文论述了高速远程滑坡的术语由来及其基本特征;从高速远程滑坡体积效应、动力剪切破碎流动机理、自激振动悬浮减阻机理和流态转化停积就位机制4个方面,概述了研究团队在青藏高原高速远程滑坡研究领域的贡献,提出青藏高原高速远程滑坡研究的深化思考,助推滑坡动力学学科发展,以期为活跃造山带制定灾害风险防控策略提供科学依据.

1 高速远程滑坡的定义及基本特征

1.1 高速远程滑坡的定义及术语由来

在中文文献中,高速远程滑坡这一概念来源于国际术语Rock avalanche,特指一类高陡岩质斜坡的基岩岩体以岩崩(Rockfall)或岩滑(Rockslide)等形式大规模失稳后,在后续运动中经历剧烈的解体破碎过程,逐渐转化为碎屑粒径跨越十几个数量级的岩屑集合体,并以似流体状态高速度、长距离、大范围运移的滑坡类型(程谦恭等, 2007; 王玉峰等, 2021).此类滑坡是一种大规模、多相变、跨尺度的地表固体颗粒物质的迁移现象,有别于由基岩覆盖层失稳形成的高速碎屑流(Debris avalanche)、各类松散土层失稳形成的滑坡(Flow slide)以及黄土滑坡(Loess flow).

关于高速远程滑坡的研究最早可追溯至1881年9月11日瑞士Canton Glarus州Elm镇发生的一起采矿诱发的岩滑-碎屑流事件(图1),在该事件中源区约11×106 m3板岩从高陡斜坡快速失稳,此后经历了崩塌(Bergsturz)、跃移(Luftsprung)和爬高(Flachstrom;Brandung)等运动过程,不断解体破碎形成岩屑流,沿运动路径高速冲向下游村庄,造成115人死亡(Heim, 1932).该灾难性事件发生后,地质学家Heim受瑞士政府国土机构委托对其进行了详细的现场地质调查工作;并在其后的数十年间持续性地开展了大量这种类型滑坡的翔实调查与研究,于1932年系统性梳理了包括Elm滑坡在内的众多欧洲阿尔卑斯山区高速远程滑坡的运动学和动力学特征,形成了世界上第一部关于高速远程滑坡的著作—Bergsturz und Menschenleben.在此书中,Heim使用德语“Sturzstrom”一词用来描述此类滑坡,其中“Strom”有“流动”之意(Hsü, 1975).

然而,该德文著作出版后,高速远程滑坡在以英语为科学交流媒介的欧美科学家群体中,并没有引起高度关注,直到近半个世纪后,美籍华人科学家许靖华1967年在其任职瑞士苏黎世联邦理工学院的就职演讲中将其作为演讲主题,系统性地阐述了这种类型滑坡所呈现出的诸多“令人惊异”和“迷惑不解”的地质现象,引起了国际学者的广泛关注(Hsü, 1975).在许靖华的演讲中,将德语“Sturzstrom”一词翻译为“岩屑流(Debris Stream)”.此后,Skermer将Heim(1932)的著作翻译为英文版—Landslides & Human Lives,并将“Sturzstrom”一词翻译为“Rock avalanche”,这一英文术语受到国际学者的普遍认可和广泛使用(Hewitt et al., 2008Hungr et al., 2014Hermanns et al., 2022).美国地球科学研究所在2011年最新修订出版的第5版《地质学大辞典》(Glossary of Geology)(Neuendorf et al., 2011),将“Sturzstrom”一词解释为“岩屑流”(Rock-fragment flow).由此可见,本文中所论述的高速远程滑坡(Rock avalanche; Sturzstrom),实际上就是指大规模长距离运动的岩屑流.

1.2 高速远程滑坡超高流动性与体积效应

高速远程滑坡具有体积巨大(一般在百万m3以上,甚至可达十几亿m3至数十几亿m3)、运动速度极高(平均速度超过20 m/s,最大速度可达100 m/s)、运动距离超远(滑程可达几千米、几十千米以上)、流态化运动特征显著等特点(程谦恭等, 2007; Hungr et al., 2014;Hermanns et al., 2022).为量化高速远程滑坡的超常运动特性,Heim(1932)提出Fahrböschung(运动角)的概念,即滑坡源区后壁顶点与堆积体前缘最低点连线与水平面的夹角(图2a);此后,一些学者把该夹角的正切值定义为表观摩擦系数(Apparent friction coefficient),即滑体垂向最大落差Hmax与最远水平运动距离Lmax之比(Shreve, 1968aHsü, 1975),并对不同类型滑坡的表观摩擦系数进行了统计分析,发现对于体积小于百万m3的一般滑坡而言,其表观摩擦系数约等于静力学中滑带土的库伦摩擦系数(0.62);但当滑体体积超过百万m3以后,其表观摩擦系数会发生骤降,通常小于0.33,并随着滑坡体积的增加呈现出明显的衰减规律,国际学者将其称之为高速远程滑坡的体积效应现象(图2b)(Heim, 1932Hermanns et al., 2022).

值得注意的是,表观摩擦系数虽然能表征高速远程滑坡的超高流动性,但其值并没有严格的物理意义;因此,一部分学者进一步提出等效摩擦系数(Effective coefficient of friction; Equivalent coefficient of friction)的概念,即滑坡失稳体与堆积体质心之间的垂向落差H与水平距离L之比(图2a),认为该值能真实反映滑坡运动前后的能量变化特征(Legros, 2002).然而,由于滑坡失稳体的质心需要通过重建滑前三维地形模型确定;且滑坡运动距离非常远,运动路径受地形的控制极为复杂,运动后停积的滑坡物质随运动路径分布极不均匀,滑坡堆积体的质心通常也很难直接确定.因此,在滑坡实例研究和理论分析时,等效摩擦系数反而不如表观摩擦系数便捷实用;但是在室内滑坡碎屑流物理模型实验观察和数值模拟分析中,它却是一个较好的表征指标(De Blasio, 2011Li et al., 2021).

2 高速远程滑坡动力学机理

2.1 前人提出的动力学机理概述

自1881年Elm滑坡发生以来,高速远程滑坡的高流动性机理一直是国际地球科学领域极具争议的前沿热点科学问题.聚焦高速远程滑坡的超高流动性与体积效应现象,百余年来,国内外学者开展了丰富的现场调查与室内研究工作,从不同角度提出多种机理假说用以解释高速远程滑坡所呈现出来的各种令人迷惑不解的地质现象.根据各种机理假说中动力学效应的不同,本文研究团队将其归纳为6种类型:摩擦生热减阻、滑带液化减阻、动力破碎减阻、底部裹挟减阻、剪切振动减阻、动量传递远程(表1)(王玉峰等, 2021).然而,由于缺乏有效的地质证据支撑,各种假说仍存在巨大争议,至今未能形成一个普适性的理论(Hsü, 1975Strom,1994Legros,2002Hewitt et al., 2008; 王玉峰等, 2021; Hermanns et al., 2022).正如美国地质调查局著名地质灾害学家Iverson所言:“很少有一种地球物理现象如同高速远程滑坡这般拥有众多机理假说,但却植根于猜想,而非自然事实”(Iverson, 2016).

2.2 本团队关于高速远程滑坡动力学机理研究的贡献

为破解高速远程滑坡的超常动力学机理之谜,本团队聚焦青藏高原及其邻区,开展了巨型岩质滑坡(Mega-Rockslide)、岩屑流(Rock avalanche)、冰-岩崩碎屑流(Rock-Ice avalanche)等高速远程滑坡的遥感解译与野外地质调查工作,共识别出体积在百万m3以上的滑坡事件3 000余处(图3),探讨了喜马拉雅造山带重大滑坡的空间分布规律,厘清了重大滑坡的内外动力孕灾地质特征;进而,选取典型高速远程滑坡实例,开展了16个典型实例的滑坡全运动路径几何学与运动学特征调查(图4),收集了丰富的野外第一手地质证据,分析了滑坡堆积体的地貌学及沉积学等宏观和微观特征;设计并开展了系列室内物理模型实验研究,揭示了高速远程滑坡的运动学过程及其远程运动的动力学机理.从而,使我国学者在国际工程地质学科高速远程滑坡动力学(Rock avalanche dynamics)研究领域,占有很重要的地位.本团队的主要学术贡献如下.

2.2.1 揭示高速远程滑坡体积效应呈现本质

国际著名学者Staron and Lajeunesse(2009)指出,高速远程滑坡体积效应问题自Heim(1932)提出后,是一个长期悬而未决的挑战性科学难题.基底层作为高速远程滑坡运动的强烈剪切带,被认为是揭示高速远程滑坡低摩阻远程运动奥秘的关键所在,对高速远程滑坡体积效应和超常运动机理的研究具有重要科学价值(Melosh, 1979Foda, 1994Davies et al., 1999Hewitt et al., 2008Dufresne and Davies, 2009).然而,由于高速远程滑坡的各种动力学过程和现象是随着滑坡的运动而产生、停积而消失,如何根据滑坡堆积体中所保留的基底层物质组成与结构特征反演滑坡动力学过程?如何量化其动力学机理?一直是国际学者关注的热点和重大前沿科学难题.

瞄准高速远程滑坡“体积效应”这一长期悬而未决的挑战性科学难题,本文研究团队聚焦滑坡基底层动力学特性,以易贡高速远程滑坡基底层物质为研究对象,自行设计并开展了系列滑坡真实应力状态下基底层物质的动态旋剪实验(即剪切速率>0.1 m/s和剪切位移>1 m的高速率、大位移剪切实验)(图5a~5c),通过数学力学计算分析,阐明了滑坡基底层物质抗剪强度、含水率、温度等物理力学参数随剪切速率的演化规律,厘清了试样剪切组构与剪切速率、摩擦温度等参数之间的对应关系(图5d);构建了基底层物质动态剪切过程中温度和表观摩擦系数随剪切速率变化的数学公式,率先在实验条件下发现高剪切速率下超孔隙气压力的产生,创新性地提出滑坡高速剪切过程中摩擦生热所引起的热孔压效应与热润滑效应的共同作用是导致其动态抗剪强度发生明显弱化的重要原因,揭示了高速远程滑坡“速率相依摩阻弱化机理”(Wang et al., 2017).

进而,研究了滑坡基底层物质渗流特性、抗剪强度、剪切组构等随应力的演化规律(图5a),克服了动态旋剪实验中无法实时监测试样内部超孔隙气压力的难题,建立了超孔隙气压力与滑坡基底层物质水力扩散系数、温度扩散系数、渗透系数等参数之间的定量化计算方程,率先提出高速远程滑坡热孔压理论计算公式(图5d);阐明了动态剪切过程中试样内部超孔隙气压力演化规律(图5e),构建了滑坡动态摩擦系数演化的摩擦热减阻模型,在国际上创新性提出:滑体基底层摩擦生热所引起的热孔压效应与基底层渗透性随正应力而降低的协同作用是导致高速远程滑坡呈现“体积效应”的重要原因,率先揭示了高速远程滑坡“体积效应”的产生机理(Wang et al., 2018a).

2.2.2 提出高速远程滑坡是破碎流的新观点

高速远程滑坡运动过程中,持续的渐进性破碎是滑坡内部发生的非常普遍且十分重要的过程(Davies and McSaveney, 1999,2009; 林棋文等, 2023).伴随滑坡远程运动,自源区失稳的巨型岩体沿运动路径发生连续渐进性解体破碎,岩屑块体粒径不断减小,流态化程度逐渐增加,同时形成高速远程滑坡特殊的沉积相.在青藏高原高速远程滑坡剖面调查中,发现其堆积体内部发育有多层次、多尺度、多样化的剪切带(图6),每一层剪切带内部均由多个不同级别(不同尺度cm-m)的次级剪切带组成,可见里德尔剪切、S型剪切、不对称褶皱、剪切透镜体、书斜式构造、布丁状构造以及弥散性剪切带网络等多种样式的剪切组构.在这些剪切组构普遍性发育的同时,又很好地保留了滑坡源区失稳体内部的原有地层层序和空间叠置关系,并可见大量低扰动性拼贴构造的分布.这些地质证据强有力地表明高速远程滑坡硬壳层以下的主滑体经历了强烈的以剪切破碎为主的动力学过程,持续的剪切作用通过剪裂、磨蚀等破碎方式促使运动中的滑体物质,在失稳后,从靠近源区的大块石集合体向着滑坡前缘方向细颗粒不断增加的岩石碎屑集合体演化,在其强烈的剪切运动过程中滑体内部的竖向扰动很小,没有颗粒间的分选作用,主体上是一种以低扰动层状运动为主的破碎流(稳定流)(Shi et al., 2023,2024a).

由于滑坡源区失稳岩体岩性和结构的不同,以及滑坡运动过程中上覆应力的不断调整、剪切速率大小等因素作用的影响,滑坡内部的剪切破碎过程极不均匀,最终形成包含破裂结构、拼贴结构、混杂结构、细颗粒剪切带等多种破碎结构共存的非均质堆积体(Pollet and Schneider, 2004Roverato et al., 2015Dufresne and Dunning, 2017).滑坡运动路径上不同部位差异性剪切组构的分布表征了滑坡运动演化过程中早期剪切面发展、中期细颗粒强剪切带贯通、后期弥漫性剪切网络形成等渐进性演化的不同阶段(图7)(Shi et al., 2024a,2024b):

(1)第1阶段:为滑坡失稳阶段,源区岩体整体性失稳后,由于不同层位岩体重力势能的不同,使得滑体内部存在初始的速度差异,导致失稳岩体内部剪切滑动面开始发育.这一阶段的剪切面主要沿着岩体内部软弱结构面发生,不同层位的速率差可能导致岩体发生脆性破裂,剪切破裂以脆性Riedel剪切的形式从主剪切错动面扩展到周围岩块,形成一个被Riedel剪切破裂分割的变形程度较低的初始剪切网络体系.此阶段滑坡破碎程度极低,滑体为巨型岩块组成,整体运动形式为固态相,主要见于流通区后部.

(2)第2阶段:主要发生于流通区中后部,滑体内部巨型岩块之间的差异性剪切错动将导致块石的进一步破碎,形成较窄的剪切破碎带,分隔结构相对完整的低破碎区域.随着位移增加,主剪切破碎带进一步演化为一个延伸较好、厚度较厚的主滑移带;主滑移带之外的低破碎区域则由早期的Riedel脆性剪切体系逐渐贯通、归并,形成韧脆性的不连续网络,被网络分割的大块石在剪切作用下产生新生的平行或斜交于块石初始结构面的破裂,形成破碎程度不同的剪切结构.此阶段滑坡破碎程度较低,滑体应处于半固态相.

(3)第3阶段:随着运动距离增加,滑坡整体破碎程度进一步增高,早期形成的主剪切破碎带内的碎屑因发生长时间的剪切破碎和磨蚀,成为类似于断层泥的强剪切物质.Riedel剪切网络因碎屑持续的破碎而逐渐变厚,其他方向剪切面逐渐归并成Y方向的主剪切带.此外,前期未破碎的块石,一方面进一步产生破裂和微裂纹,形成新的破裂结构或拼贴结构,前期的破裂结构和拼贴结构演化为镶嵌结构、角砾结构等;另一方面则发生相对平移、滑动、错位和旋转,导致块石集合体的结构逐渐混乱无序.一些破裂的块石连续错位,形成书斜式、剪切条带式的错位分布,长条形的块石倾向于产生平行剪切方向的定向排列.此阶段滑坡破碎程度较高,整体运动形式演化为半流态相,主要见于流通区和堆积区后部.

(4)第4阶段:随着运动距离进一步增加,可见不同细颗粒集中的剪切带之间通过拓展和归并相互连接,最终演变成复杂的弥漫性剪切带网络,滑坡破碎程度高,主要由无序的角砾状、粉末状碎屑组成,局部分布破碎程度不同且小尺度的拼贴结构、镶嵌结构、角砾结构等.由于剪切作用,这些结构多呈透镜状、鸟眼状,边缘被细粒集中的剪切网络包裹.该阶段,滑坡运动形式表现为流态相,并在地表形成一系列流态化堆积地貌,主要分布于流通区前部和堆积区.

基于以上这些野外新发现的地质证据,本团队在国际上提出高速远程滑坡是破碎流的新认识、新观点,颠覆了国际上普遍认为高速远程滑坡是颗粒流的看法(Savage and Hutter, 1989Campbell et al., 1995Legros, 2002Johnson et al., 2016Delannay et al., 2017).

2.2.3 提出自激振动悬浮减阻新机理

高速远程滑坡运动过程中,滑体并不是一个孤立系统,而是与下伏地层存在强烈的物质和能量的交换过程,形成复杂多变的互动互馈系统.当滑体与下伏运动路径强烈相互作用时,滑体与下伏层之间的挤压、碰撞、剪切以及滑体碎屑之间的碰撞、剪切等作用过程,可能在滑体底部形成独特的高频波动应力(Wang et al., 2015Hu et al., 2022Li et al., 2025),学者们将其命名为声波(Melosh,1979Collins and Melosh, 2003)、基底应力波(Foda, 1994)、自激振动波(Wang et al., 2015)等,由于关注的视角不同其术语的表征略有差异,但均认为滑坡运动期间其底部存在高频应力波,而这种高频应力波有助于抵消部分上覆荷载,降低有效应力,促进滑体的高流动性.早在1979年,Melosh就提出声波流态化机理,认为滑体底部颗粒间的动态剪切将产生声波,其本质上是一种高频应力波,该瞬时强大的声波场可使颗粒体产生低于上覆荷载的弥散应力,实现滑体的低摩阻远程运动.但是,该理论因缺乏地质证据和实验数据支持而备受质疑.

近年来,随着微震监测系统的不断完善,高速远程滑坡运动过程中所产生的强烈地震波(Landquake)引起了国际学者的高度关注,本团队将“Landquake”这个术语翻译为“滑震”.国际上众多学者先后运用滑震信号来定量表征高速远程滑坡的运动学与动力学行为(Ekström and Stark, 2013Petley, 2013Allstadt et al., 2018Bahavar et al., 2019Cook and Dietze, 2022),并取得长足进展.然而,一些更深层次的问题在于:滑震的产生与演化究竟反映了高速远程滑坡的哪些动力学过程?它们如何定量化表征滑体的超常运动特性?滑坡动态剪切过程中振动波场以何种机制产生并影响其运动?这些都是高速远程滑坡动力学机理研究中亟待解决的关键性科学问题.

以汶川地震所触发的数起高速远程滑坡为研究对象,Wang et al.(2015)发现了滑坡运动过程中主剪切带内部新生的贝壳状断口、阶梯状断口等微观脆性破裂结构(图8a),从滑震信号分析出发(图8b),探讨了不同破裂结构的力学成因机制,提出滑坡运动过程中波动应力的存在;建立了滑震作用下的滑坡基底层颗粒间剪切作用模式,提出“自激振动悬浮减阻机理”(图8c),认为:高速运动的滑体与下伏不平顺运动路径间的强烈碰撞,可引发大量滑体势能和动能向振动能转化,出现振动波强度明显增加的现象;伴随着振动波强度的增加,距离下伏运动路径最近的基底层内颗粒将吸收大量振动能,使颗粒波动性增加,粒间间距增大,颗粒密度明显减小,呈现出极大波动性和颗粒弥散现象,造成滑面附近上方颗粒物质出现悬浮现象,从而产生类似于流体力学中的莱顿弗罗斯特效应(Granular Leidenfrost effect),促进滑体低摩阻远程运动.随后,在宏观地质现象上,Wang et al.(2020)Shi et al.(2024)发现了青藏高原高速远程滑坡下伏层中定向破裂卵砾石的普遍分布,这些砾石由花岗岩、片麻岩、大理岩等较坚硬岩体组成,导致其发生剪切破裂需要较高的应力条件,从而进一步证实在滑体高速运动过程中应存在远高于上覆荷载的动荷载,导致下伏层中卵砾石的定向破裂.

为验证自激振动悬浮减阻观点的合理性,本团队近年来设计并开展了系列室内物理模型实验研究工作,获取了滑坡碎屑流流态化运动过程中的速度场、剪切速率、Savage数等关键流变参数以及堆积体质心运动距离、等效摩擦系数等运动参数(图9a),实现了高速远程滑坡颗粒流运动过程中底部应力的有效提取,发现了颗粒流运动过程中波动应力的存在,首次在实验条件下建立了波动应力与等效摩擦系数的负相关性关系,创新性地发现(Li et al., 2022):颗粒流运动过程中底部波动应力明显受控于颗粒流粒径组成,波动应力的演化是控制颗粒流流动性的重要因素(图9b).Li et al.(2025)通过颗粒流运动过程中应力场、速度场、微震场等的定量化监测,实现了颗粒流运动过程中底部稀疏化现象和作用的定量化计算,建立了波动应力与稀疏化的函数关系,为滑坡自激振动悬浮减阻模型的合理性提供了有力的实验数据支撑实现了“自激振动悬浮减阻机理”的定量化表征(图9c).从而拓展了高速远程滑坡动力学理论,为基于滑震信号的高速远程滑坡风险评估提供了重要的理论依据.

2.2.4 提出高速远程滑坡停积就位新模式

丰富的高速远程滑坡典型实例地质现象调查表明:高速远程滑坡具有典型流态化堆积地貌,沿其运动路径上,可见纵向脊/横向脊、雁列状脊、堆积丘、侧缘堤、舌状前缘等各种流态化地貌的规律性分布,表现出典型的平面分区特征;在其堆积剖面上,可见差异性碎屑化、基底剪切带、底辟构造、火焰构造、液化砂脉等系列剪切组构的分布,表现出明显的竖向分带特征(王玉峰等, 2021).这些特殊的表层地貌和剖面结构特征被视为鉴定高速远程滑坡堆积体的重要标志,并被认为是滑坡动力学过程的直接反映.那么,这些表层流态化堆积地貌和剖面“滑坡-构造”形态有着何种成因?反映了滑坡的哪些物理力学过程?如何揭示滑坡的运动过程与停积机制?解决这些前沿科学问题,是近二十年来国内外高速远程滑坡研究中的重要方向(Legros, 2002Hutchinson, 2006Delannay et al., 2017).

青藏高原自东向西、由南至北,地质构造背景和气候环境迥异,不同孕灾环境孕育的高速远程滑坡具有不同的运动路径条件、流态化堆积特征和剖面剪切组构,这一系列沉积学特征的呈现为研究高速远程滑坡的运动学过程提供了良好的地质证据.聚焦高速远程滑坡的流态化运动过程与停积就位机制,以青藏高原高山峡谷区典型高速远程滑坡为研究对象,通过翔实的地质调查、系列物理模型实验和深入理论分析,本团队开展了滑坡全运动路径流态化堆积地貌和内部堆积特征的系统性研究(Wang et al., 2018b,2019a2020Shi et al., 2023,2024a2024b; 田浩然, 2023; Lin et al., 2024),解析了高速远程滑坡全运动路径几何学和运动学特征,发现在不同下伏层的物质条件控制下滑坡沉积学特征具有明显差异性,并将滑坡下伏层物质概化为2种类型:第1类是以富水的河流相堆积物为代表的相对软弱下伏层,例如,乱石包滑坡(Zeng et al., 2019)和尼续村滑坡(Wang et al., 2019b);第2类是由干燥的卵砾石、漂石等山前冲洪积物质组成的较坚硬下伏层,例如塔合曼滑坡(Wang et al., 2020)和依买克滑坡(Shi et al., 2023).

在此基础上,研究团队精细刻画了不同下伏层条件下滑坡运动路径上纵向脊/横向脊、共轭脊、堆积丘等表面堆积形态以及层序保留、反粒序特征、火焰状构造、拼贴构造等剖面沉积构造的共性与差异性;解析了滑坡全运动路径不同沉积学特征与下伏层物质类型之间的空间分布关系,探讨了各种表面流态化堆积地貌和剖面剪切组构的成因机制.从而率先提出运动路径的物质条件是控制滑坡运动过程中流态转化的关键因素,受运动路径物质条件控制,滑体或以快速扩离式稳定流运动为主,或呈现快速停积式稳定流运动,提出不同下伏层控制下高速远程滑坡的流态转化停积就位模型(图10).主要体现在:

(1)下伏层控制并塑造了平面撒开型高速远程滑坡的整体形状,坚硬下伏层摩阻力相对较高,会限制滑体的侧向扩离,滑体的长宽比较高;软弱下伏层摩阻力相对较低,在滑体推挤剪切作用下容易发生剪切变形甚至液化,有助于滑坡的侧向扩离,形成扇形或煎饼形的堆积体,滑体的长宽比相对较小(Strom, 2018Strom et al., 2019Shi et al., 2024b).

(2)下伏层特性影响着平面撒开型滑坡表面流态化地貌的形成与演化,软弱下伏层控制下的高速远程滑坡地貌单元常呈现纵向脊、横向脊、菱形脊、堆积丘依次排布的组合形态(图10a)(Wang et al., 2018a,2019a),且堆积厚度自后向前逐渐变薄,并在堆积体前缘逐渐与周边地形平缓过渡;坚硬下伏层控制下的滑坡常呈现纵向脊、堆积丘、横向脊和高陡的终端脊等地貌形态依次排布的组合形态(图10b)(Wang et al., 2020Shi et al., 2023),使滑坡堆积体与周围地形明显区分.

(3)下伏层对高速远程滑坡停积就位行为的影响也表现在沉积结构上,最显著的表现形式就是滑坡-下伏层相互作用特征,软弱下伏层控制下滑坡-下伏层间剪切变形尤为强烈,裹挟程度较高,容易形成底辟构造、各种类型的褶皱、前缘推挤构造等挤压变形特征,滑体与下伏层间接触面多呈波状起伏形态(图10c);坚硬下伏层控制下滑坡-下伏层间相对变形较弱,容易形成急剧过渡、平直延续的分界面(图10d).

与此同时,研究团队在青藏高原典型滑坡剖面中,首次发现高速远程滑坡侧缘堤形成的地质证据——由内向外翻卷的火焰状结构,揭示了侧向犁铲运动在侧缘堤形成过程中的控制性作用;发现了下伏层局部液化现象与滑体剪切构造之间的相互关系,揭示了下伏层的局部液化并不是高速远程滑坡远程运动的主要原因,只是滑坡与下伏层在最终停积阶段强烈相互作用的产物(Shi et al., 2024a,2024b).并通过自行研制实验装置,开展了系列滑坡碎屑流的流态化运动与堆积过程的物理模型实验,再现了滑坡碎屑流的流态化运动特征,厘清了滑坡碎屑流流态化运动过程中从密集流向惯性流转化的临界转化条件,阐明了滑体不同流态与堆积特征之间的相互关系,提出相应剪切流动模式;再现了高速远程滑坡反粒序形成过程,提出滑体运动过程中垂向差异性动力破碎是反粒序形成的主要控制作用,构建了高速远程滑坡“流态转化停积就位模式”.

3 青藏高原高速远程滑坡研究的思考

聚焦于高速远程滑坡的超常动力学机理这一全球前沿热点科学问题,国内外学者已经在高速远程滑坡几何学、运动学、动力学特征及机理方面开展了丰富的研究工作.近年来,随着越来越多地质证据的发现,学者们对高速远程滑坡运动过程的认识有了新的突破,对具体问题的探索愈加细致和深入,高速远程滑坡动力学机理的研究正朝着“宏观更宏,微观更微”的趋势繁荣发展,这些具有重要意义的科学成果不仅发展了地质灾害科学的理论,而且为重大地质灾害的防灾减灾提供了科学依据(程谦恭等, 2024; Qi et al., 2025Zhu et al., 2025).然而,高速远程滑坡低摩阻远程运动的动力学机理依旧是令人迷惑不解的未解之谜,尚需进一步的深入研究.随着大数据和人工智能时代的降临,基于遥感大数据、人工智能、数值模拟等研究方法的高速远程滑坡动力学机理探索受到国内外学者的青睐,学者们足不出户就能开展高速远程滑坡运动学和动力学过程的研究,相应迅速地获得了一些研究成果.但令人担忧的是,一些研究成果仅仅基于数值模拟分析和小尺度的室内物理模型实验得出,所得结论严重脱离野外地质体的原型观察.大家应该认识到并且坚持这种信仰:高速远程滑坡(Rock avalanche)是一种巨型地表过程,是地质体的演化过程.任何高速远程滑坡动力学机理的提出都应以野外地质证据为重要前提和依据,野外地质现象是揭秘滑坡动力学机理“不解之谜”的重要源泉(Iverson,2016; 唐辉明等,2022, 2025).同时,也应不囿于书本,不迷信权威.因此,未来应该从以下两个方面加强青藏高原高速远程滑坡动力学机理的研究.

3.1 野外地质调查是产生新发现的重要源头

在高速远程滑坡的研究中,开展深入细致的野外地质调查,并基于地质证据建立正确的滑坡工程地质模型,是研究高速远程滑坡超高流动性的重要途径.以高速远程滑坡运动路径上广泛分布的流态化堆积特征为地质原型,通过室内物理模型实验和数值模拟分析再现滑坡一定尺度下一些地貌现象和堆积特征的形成过程和作用机制成为高速远程滑坡研究的重要方法(Shea and Van Wyk de Vries, 2008; Longchamp et al., 2016).然而,由于几何尺寸效应的影响和当前室内物理实验应力梯度的限制,以及数值模拟技术在实现千万级甚至达到亿级的颗粒集合体运动过程分析中存在的瓶颈问题,通过物理模型实验和数值模拟所获取的滑坡运动演化过程信息有时并无法合理表征真实滑坡的动力学过程(Forterre and Pouliquen, 2008Denlinger, 2014Iverson 2015Delannay et al., 2017;Jerolmackand Daniels, 2019; Cagnoli, 2023Li et al., 2023Tahmasebi, 2023Voigtländer et al., 2024).例如,在室内滑坡颗粒流实验中,颗粒流内部常常会产生强烈的扰动和分选现象,在运动的滑坡颗粒流两侧边缘形成以粗颗粒为主的隆起侧缘堤,并在堆积体内部形成反粒序堆积现象(Kokelaar et al., 2014Rocha et al., 2019).然而,大量野外地质证据表明(Shi et al., 2023,2024a2024b),滑坡是渐进性破碎流而非颗粒流;高速远程滑坡堆积体,从后部的滑坡平台到中部的流通区,再到前部的堆积区,分布有一系列众多的低扰动堆积特征,主滑体与侧缘堤中均很好地保留了岩体失稳前的内部层序空间叠置关系,破碎的颗粒之间没有出现前人所提出和推崇的颗粒分选作用(Savage and Lun, 1988Gray, 2018).这些有力地质证据的发现为揭示滑坡的运动演化过程与侧缘堤的形成机制提供了新的认识,否定了筛分机制(Félix and Thomas, 2004Deboeuf et al., 2006Johnson et al., 2012Kokelaar et al., 2014Edwards et al., 2023)主导滑坡运动过程的观点.因此,开展高速远程滑坡流态化运动机理研究,破解高速远程滑坡低摩阻远程运动的奥秘,必须以翔实的野外地质证据调查为基础和前提,从野外地质原型中汲取新发现,弥补认识层面的不足.

3.2 敢于冲破桎梏是提出新观点的必然历程

提出普适性的高速远程滑坡低摩阻远程运动的动力学机理是高速远程滑坡研究的终极目标,自1881年Elm高速远程滑坡发生以来,国内外学者先后提出多种机理假说解释高速远程滑坡的超高流动性这一令人迷惑不解的现象.研究早期,以美国Sherman滑坡和Blackhawk滑坡为研究对象,Shreve(1966,1968a1968b)提出气垫层效应假说用以解释高速远程滑坡的超常运动特性,认为高速运动的巨型滑体在滑动过程中,其底部与滑床之间会形成一层被压缩的密闭空气层(即“气垫层”),这一气垫层能将滑体托起,显著减少滑体与下伏运动路径之间的摩擦力,促进滑体的高速远程运动.这一假说最初萌芽于Shreve(1959)在加州理工学院完成的博士学位论文,后来经过不断完善,在20世纪70~80年代是一个非常流行的重要机理,在国际上影响深远(Shreve,1987).然而,在这一理论提出之后,就一直存在着争论.1973年Faust 和Voight两位学者在开展对Blackhawk滑坡的实地勘查后得出这样的结论:对于Blackhawk滑坡而言,气垫层这一机制显得不够令人信服;同时他们认为,涉及到存在水的机制似乎更有可能发生.后者最显著可见的地质证据在于:在滑坡堆积物的剖面上,可见大量的砂质泥岩碎屑物质脉体(sandy mudstone clastic dike)等流体侵入结构(Fluid-like intrusion structure),从尚未出露的滑坡下伏层向上贯入到其上覆的大理石角砾岩层中(Johnson, 1978).另一方面,随着深空探测计划的不断推进,学者们发现在无空气存在的月球和空气稀薄的火星表面也广泛分布有大量高速远程滑坡,气垫效应假说受到普遍质疑,因此在21世纪开始后被逐渐摒弃(Legros, 2002).

Davies et al.(1999)McSaveney and Davies(2009)基于高速远程滑坡普遍存在的破碎现象提出“破碎-扩离(Fragmentation-spreading)”模型,并进一步完善为“动力破碎(Dynamic fragmentation)”假说,即滑坡高速运动过程中,滑体碎屑在巨大的应力作用下发生剧烈破碎,快速释放弹性应变能,在滑体内部产生各向同性的弥散应力,抵消部分上覆荷载,促进滑体的远程运动.经过二十余年的发展,动力破碎理论从最初的现象描述和概化模型,不断朝着精确定量化和研究尺度上微观更微的方向发展,并受到越来越多学者的关注;然而从滑坡物质传输和能量转化的机制来看,滑坡岩体的动力破碎是一个渐进性耗能过程,既然是一个耗能过程,其如何有效促进滑坡的运动过程仍然存在着较大争议(Davies et al., 2019,2020).

从气垫层减阻机理和动力学破碎减阻机理的提出和兴衰发展历程可以看出,随着科学技术的发展和研究认识的深入,一些旧假说被证伪,新的假说不断被提出并得到深入研究,冲破陈旧理论的桎梏是提出新观点的必然历程.高速远程滑坡动力机理虽然得到长期深入研究并形成多种不同的理论假说,然而,由于地质环境的多样性和滑坡内部动力学过程的复杂性,目前仍无法形成大一统的理论体系.高速远程滑坡动力学机理的研究任重而道远,需要持之以恒地进行具有坚实积累、开阔视野和科学思维的研究工作,做出以坚实的地质证据为基础、经得起时间淘洗、实践检验的原创性成果.

4 结论

高速远程滑坡低摩阻远程运动的超高流动性动力学机理至今仍是国际地球科学领域极具争议的前沿热点科学问题,在其百余年的研究历程中,国内外学者虽然提出了各种机理假说,但是由于缺乏有力地质证据的支撑,诸多机理假说仍存在较大争议,尚未能形成普适性的统一理论.青藏高原及其邻区作为高速远程滑坡的频发区域,是研究高速远程滑坡动力学机理的天然实验室.本文基于研究团队二十余年来在青藏高原高速远程滑坡研究工作上的长期积累,从揭示高速远程滑坡体积效应呈现本质、提出高速远程滑坡是破碎流的新观点、提出自激振动悬浮减阻新机理、提出高速远程滑坡停积就位新模式4个方面,系统性地总结了在青藏高原高速远程滑坡动力学研究上的最新进展,并对未来青藏高原高速远程滑坡研究进行了深入思考和展望.

越来越多的地质证据表明,高速远程滑坡的运动过程是一种以低扰动、渐进性剪切破碎为主的动力学过程,目前,国内外高速远程滑坡动力学研究领域,特别是在研究范式的物理模型实验和数值模拟研究中,仍将高速远程滑坡当作密集颗粒流来处理,这在一定程度上无法反映滑体真实的动力破碎过程对滑坡运动全过程的作用机制;在未来研究中,一个重要的关键科学问题在于充分考虑滑体渐进性剪切破碎作用和过程,对高速远程滑坡从固态相转变为流态相的影响机制,从而得以从更新的研究范式全面地理解高速远程滑坡的动力学行为.此外,工程地质翔实调查是开展物理模型实验、数值模拟和理论分析等研究工作的重要前提,学者们应加强工程地质调查工作,为更好地揭示高速远程滑坡的运动过程提供有力地质证据支撑.

参考文献

[1]

Aaron, J., McDougall, S., 2019. Rock Avalanche Mobility: The Role of Path Material. Engineering Geology, 257: 105126. https://doi.org/10.1016/j.enggeo.2019.05.003

[2]

Abele, G. 1974. Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte, Deutscher Alpenverein.

[3]

Allstadt, K. E., Matoza, R. S., Lockhart, A. B., et al., 2018. Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes. Journal of Volcanology and Geothermal Research, 364: 76-106. https://doi.org/10.1016/j.jvolgeores.2018.09.007

[4]

Azam, M. F., Kargel, J. S., Shea, J. M., et al., 2021. Glaciohydrology of the Himalaya-Karakoram. Science, 373(6557): eabf3668. https://doi.org/10.1126/science.abf3668

[5]

Bahavar, M., Allstadt, K. E., Van Fossen, M., et al., 2019. Exotic Seismic Events Catalog (ESEC) Data Product. Seismological Research Letters, 90(3): 1355-1363. https://doi.org/10.1785/0220180402

[6]

Cagnoli, B., 2023. Slope-Break Collisions: Comment on “Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests” by K. Li et al. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024799. https://doi.org/10.1029/2022JB024799

[7]

Campbell, C. S., Cleary, P. W., Hopkins, M., 1995. Large-Scale Landslide Simulations: Global Deformation, Velocities and Basal Friction. Journal of Geophysical Research: Solid Earth, 100(B5): 8267-8283. https://doi.org/10.1029/94JB00937

[8]

Chen, D. L., Xu, B. Q., Yao, T. D., et al., 2015. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chinese Science Bulletin, 60(32): 3025-3035, 1-2(in Chinese).

[9]

Cheng, Q. G., Peng, J. B., Hu, G. T., 1999. Dynamics of High-Speed Rock Landslide. Southwest Jiaotong University Press, Chengdu(in Chinese).

[10]

Cheng, Q. G., Wang, Y. F., Lin, Q. W., et al., 2024. Consideration on Dynamics of Rock Avalanches in the Himalayan Orogenic Belt. Acta Geologica Sinica, 98(11): 3238-3254 (in Chinese with English abstract).

[11]

Cheng, Q. G., Zhang, Z. Y., Huang, R.Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract).

[12]

Collins, G. S., Melosh, H. J., 2003. Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms. Journal of Geophysical Research: Solid Earth, 108(B10): 2003JB002465. https://doi.org/10.1029/2003JB002465

[13]

Cook, K. L., Dietze, M., 2022. Seismic Advances in Process Geomorphology. Annual Review of Earth and Planetary Sciences, 50: 183-204. https://doi.org/10.1146/annurev-earth-032320-085133

[14]

Corominas, J., 1996. The Angle of Reach as a Mobility Index for Small and Large Landslides. Canadian Geotechnical Journal, 33(2): 260-271. https://doi.org/10.1139/t96-005

[15]

Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones DE Mutatione Climatis, 10(2): 103-109 (in Chinese with English abstract).

[16]

Davies, T. R. H., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/BF01239474

[17]

Davies, T. R. H., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/cgj-36-6-1096

[18]

Davies, T. R. H., McSaveney, M. J., Reznichenko, N. V., 2019. What Happens to Fracture Energy in Brittle Fracture? Revisiting the Griffith Assumption. Solid Earth, 10(4): 1385-1395. https://doi.org/10.5194/se-10-1385-2019

[19]

Davies, T. R. H., Reznichenko, N. V., McSaveney, M. J., 2020. Energy Budget for a Rock Avalanche: Fate of Fracture-Surface Energy. Landslides, 17(1): 3-13. https://doi.org/10.1007/s10346-019-01224-5

[20]

Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79. https://doi.org/10.1016/j.enggeo.2008.11.004

[21]

De Blasio, F. V., 2011. Granular Flows and Rock Avalanches. In: De Blasio, F. V., ed., Introduction to the Physics of Landslides. Springer Netherlands, Dordrecht, 159-222. https://doi.org/10.1007/978-94-007-1122-8_6

[22]

De Blasio, F. V., 2014. Friction and Dynamics of Rock Avalanches Travelling on Glaciers. Geomorphology, 213:88-98. https://doi.org/10.1016/j.geomorph.2014.01.001

[23]

Deboeuf, S., Lajeunesse, E., Dauchot, O., et al., 2006. Flow Rule, Self-Channelization and Levees in Unconfined Granular Flows. Physical Review Letters, 97(15): 158303. https://doi.org/10.1103/PhysRevLett.97.158303

[24]

Delannay, R., Valance, A., Mangeney, A., et al., 2017. Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations. Journal of Physics D: Applied Physics, 50(5): 053001. https://doi.org/10.1088/1361-6463/50/5/053001

[25]

Deng, Q. D., Cheng, S. P., Ma, J., et al., 2014. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(7): 2025-2042 (in Chinese with English abstract).

[26]

Denlinger, R. P., 2014. Simulation of Initiation, Transport, and Deposition of Granular Avalanches: Current Progress and Future Challenges. Procedia IUTAM, 10: 363-371. https://doi.org/10.1016/j.piutam.2014.01.031

[27]

Dubey, S., Sattar, A., Goyal, M. K., et al., 2023. Mass Movement Hazard and Exposure in the Himalaya. Earth’s Future, 11(9): e2022EF003253. https://doi.org/10.1029/2022EF003253

[28]

Dufresne, A., Davies, T. R. H., 2009. Longitudinal Ridges in Mass Movement Deposits. Geomorphology, 105(3-4): 171-181. https://doi.org/10.1016/j.geomorph.2008.09.009

[29]

Dufresne, A., Dunning, S. A., 2017. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides, 14(5): 1555-1563. https://doi.org/10.1007/s10346-017-0806-y

[30]

Edwards, A. N., Rocha, F. M., Kokelaar, B. P., et al., 2023. Particle-Size Segregation in Self-Channelized Granular Flows. Journal of Fluid Mechanics, 955: A38. https://doi.org/10.1017/jfm.2022.1089

[31]

Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. https://doi.org/10.1139/t79-032

[32]

Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419. https://doi.org/10.1126/science.1232887

[33]

Engineering Geology Research Office, Chengdu College of Geology, 1989. Study on the Major Engineering Problems in Longyang Gorge Hydropower Station. Press of Chengdu University of Science and Technology, Chengdu, 52-116(in Chinese).

[34]

Erismann, T. H., 1979. Mechanisms of Large Landslides. Rock Mechanics, 12(1): 15-46. https://doi.org/10.1007/BF01241087

[35]

Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018RG000626

[36]

Félix, G., Thomas, N., 2004. Relation between Dry Granular Flow Regimes and Morphology of Deposits: Formation of Levées in Pyroclastic Deposits. Earth and Planetary Science Letters, 221(1-4): 197-213. https://doi.org/10.1016/S0012-821X(04)00111-6

[37]

Feng, Z. Y., Cheng, Q. G., Wang, Y. F., et al., 2023. The state-of-Art and Future Developmnet of Friction Heating Inducded Weakening Mechanisms of Rock Avalanches. Journal of Engineering Geology, 31(3): 999-1017 (in Chinese with English abstract).

[38]

Foda, M. A., 1994. Landslides Riding on Basal Pressure Waves. Continuum Mechanics and Thermodynamics, 6(1): 61-79. https://doi.org/10.1007/BF01138307

[39]

Forterre, Y., Pouliquen, O., 2008. Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40: 1-24. https://doi.org/10.1146/annurev.fluid.40.111406.102142

[40]

Gray, J. M. N. T., 2018. Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50: 407-433. https://doi.org/10.1146/annurev-fluid-122316-045201

[41]

Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197. https://doi.org/10.1007/BF01246865

[42]

Han, X. D., Yang, X. Y., Sun, X. J., et al., 2024. Quantitative Prediction Model of Dynamic Erosion Process for Long Run-out Accumulation Landslides. Rock and Soil Mechanics, 45(4): 1190-1200 (in Chinese with English abstract).

[43]

He, K., Wang, Y. F., Cheng, Q. G., et al., 2024. Research on the Substrate Entrainment Dynamics of Rock Avalanches: State-of-the-Art. Journal of Engineering Geology, 32(3): 904-917 (in Chinese with English abstract).

[44]

Heim, A., 1932.Bergsturz und Menschenleben. Zütich, Naturforschenden Gesellschaft. Translated by Skermer, N. S., 1989. Landslides and Human Lives. B C. Bitech Publishers, Vancouver.

[45]

Hermanns, R. L., Penna, I. M., Oppikofer, T., et al., 2022. Rock Avalanche. In: Shroder, J. J. F., ed., Treatise on Geomorphology. Elsevier, Amsterdam, 85-105. https://doi.org/10.1016/b978-0-12-818234-5.00183-8

[46]

Hewitt, K., 2002. Styles of Rock-Avalanche Depositional Complexes Conditioned by Very Rugged Terrain, Karakoram Himalaya, Pakistan. In: Evans, S.G., DeGraff, J.V., eds., Catastrophic Landslides: Effects, Occurrence and Mechanisms. The Geological Society of America. Press, USA, 345-378.

[47]

Hewitt, K., 2006. Rock Avalanches with Complex Run out and Emplacement, Karakoram Himalaya, Inner Asia.Landslides from Massive Rock Slope Failure. In: Evans, S.G., Scarascia, M.G., Strom, A., et al., eds., Nato Science Series IV. Springer, Dordrecht, 521-550.

[48]

Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002

[49]

Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815 (in Chinese with English abstract).

[50]

Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

[51]

Hu, W., Huang, R. Q., McSaveney, M., et al., 2018. Mineral Changes Quantify Frictional Heating during a Large Low-Friction Landslide. Geology, 46(3): 223-226. https://doi.org/10.1130/g39662.1

[52]

Hu, W., Xu, Q., McSaveney, M., et al., 2022. Fluid-Like Behavior of Crushed Rock Flows. Journal of Geophysical Research: Earth Surface, 127(10): e2021JF006523. https://doi.org/10.1029/2021JF006523

[53]

Hugonnet, R., McNabb, R., Berthier, E., et al., 2021. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature, 592(7856): 726-731. https://doi.org/10.1038/s41586-021-03436-z

[54]

Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y

[55]

Hutchinson, J. N., 2006. Massive Rock Slope Failure: Perspectives and Retrospectives on State-of-the-Art. In: Evans, S.G., Mugnozza, G.S., Strom, A., et al., eds., Landslides from Massive Rock Slope Failure. Springer Netherlands, Dordrecht, 619-662. https://doi.org/10.1007/978-1-4020-4037-5_32

[56]

Hutchinson, J. N., Bhandari, R. K., 1971. Undrained Loading, a Fundamental Mechanism of Mudflows and Other Mass Movements. Géotechnique, 21(4): 353-358. https://doi.org/10.1680/geot.1971.21.4.353

[57]

Iverson, R. M., 2012. Elementary Theory of Bed-Sediment Entrainment by Debris Flows and Avalanches. Journal of Geophysical Research: Earth Surface, 117(F3): F03006. https://doi.org/10.1029/2011JF002189

[58]

Iverson, R. M., 2015. Scaling and Design of Landslide and Debris-Flow Experiments. Geomorphology, 244: 9-20. https://doi.org/10.1016/j.geomorph.2015.02.033

[59]

Iverson, R. M., 2016. Comment on “The Reduction of Friction in Long-Runout Landslides as an Emergent Phenomenon” by Brandon C. Johnson et al. Journal of Geophysical Research: Earth Surface, 121(11): 2238-2242. https://doi.org/10.1002/2016JF003979

[60]

Iverson, R. M., George, D. L., 2016. Modelling Landslide Liquefaction, Mobility Bifurcation and the Dynamics of the 2014 Oso Disaster. Géotechnique, 66(3): 175-187. https://doi.org/10.1680/jgeot.15.lm.004

[61]

Iverson, R. M., Reid, M. E., Logan, M., et al., 2011. Positive Feedback and Momentum Growth during Debris-Flow Entrainment of Wet Bed Sediment. Nature Geoscience, 4(2): 116-121. https://doi.org/10.1038/ngeo1040

[62]

Jerolmack, D. J., Daniels, K. E., 2019. Viewing Earth’s Surface as a Soft-Matter Landscape. Nature Reviews Physics, 1(12): 716-730. https://doi.org/10.1038/s42254-019-0111-x

[63]

Johnson, B. C., Campbell, C. S., Melosh, H. J., 2016. The Reduction of Friction in Long Runout Landslides as an Emergent Phenomenon. Journal of Geophysical Research: Earth Surface, 121(5): 881-889. https://doi.org/10.1002/2015JF003751

[64]

Johnson, B., 1978. Blackhawk Landslide, California, U.S.A. In: Voight, B., ed., Rockslides and Avalanches, 1- Natural Phenomena. Elsevier, Amsterdam, 481-504. https://doi.org/10.1016/b978-0-444-41507-3.50022-2

[65]

Johnson, C. G., Kokelaar, B. P., Iverson, R. M., et al., 2012. Grain-Size Segregation and Levee Formation in Geophysical Mass Flows. Journal of Geophysical Research: Earth Surface, 117(F1): F01032. https://doi.org/10.1029/2011JF002185

[66]

Kobayashi, Y., 1994. Effect of Basal Guided Waves on Landslides. Pure and Applied Geophysics, 142(2): 329-346. https://doi.org/10.1007/BF00879308

[67]

Kokelaar, B. P., Graham, R. L., Gray, J. M. N. T., et al., 2014. Fine-Grained Linings of Leveed Channels Facilitate Runout of Granular Flows. Earth and Planetary Science Letters, 385: 172-180. https://doi.org/10.1016/j.epsl.2013.10.043

[68]

Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331. https://doi.org/10.1016/S0013-7952(01)00090-4

[69]

Li, J. J., Fang, X. M., 1998. Study on Uplift of Qinghai-Tibet Plateau and Environmental Change. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese).

[70]

Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract).

[71]

Li, K., Wang, Y. F., Cheng, Q. G., et al., 2022. Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB022905. https://doi.org/10.1029/2021JB022905

[72]

Li, K., Wang, Y. F., Cheng, Q. G., et al., 2023. Basal Stress Fluctuation: Reply to Comment by Cagnoli on “Slope-Break Collisions: Comment on ‘Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests’ by K. Li et al.”. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025804. https://doi.org/10.1029/2022JB025804

[73]

Li, K., Wang, Y. F., Lin, Q. W., et al., 2021. Experiments on Granular Flow Behavior and Deposit Characteristics: Implications for Rock Avalanche Kinematics. Landslides, 18(5): 1779-1799. https://doi.org/10.1007/s10346-020-01607-z

[74]

Li, L. P., Lan, H. X., 2022. Complexities of Landslide Moving Path: A Review and Perspective. Earth Science, 47(12): 4663-4680 (in Chinese with English abstract).

[75]

Li, T. D., 1995. The Uplifting Process and Mechanism of the Qinhai-Tibet Plateau. Acta Geoscientica Sinica, 16(1): 1-9 (in Chinese with English abstract).

[76]

Li, T. H., Cheng, Q. G., Wang, Y. F., et al., 2022. Review on Landquakes Related to Rock Avalanche Kinematics. Journal of Engineering Geology, 30(6): 1929-1946 (in Chinese with English abstract).

[77]

Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2024. Experiments on Landquakes Generated by Free-Falling Granular Masses: Implications for Rockfall Impact Dynamics. Earth and Space Science, 11(6): e2023EA003402. https://doi.org/10.1029/2023EA003402

[78]

Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2025. Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF008015. https://doi.org/10.1029/2024JF008015

[79]

Liang, X.F, Chen, L., Tian, X.B., et al., 2023. Uplifting Mechanism of the Tibetan Plateau Inferred from the Characteristics of Crustal Structures. Scientia Sinica (Terrae), 53(12): 2808-2829 (in Chinese).

[80]

Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019JB019296

[81]

Lin, Q. W., Cheng, Q. G., Li, K., et al., 2023. Review on Fragmentation-Related Dynamics of Rock Avalanches. Journal of Engineering Geology, 31(3): 815-829 (in Chinese with English abstract).

[82]

Lin, Q. W., Cheng, Q. G., Xie, Y., et al., 2021. Simulation of the Fragmentation and Propagation of Jointed Rock Masses in Rockslides: DEM Modeling and Physical Experimental Verification. Landslides, 18(3): 993-1009. https://doi.org/10.1007/s10346-020-01542-z

[83]

Lin, Q. W., Wang, Y. F., Cheng, Q. G., et al., 2024. The Alasu Rock Avalanche in the Tianshan Mountains, China: Fragmentation, Landforms, and Kinematics. Landslides, 21(3): 439-459. https://doi.org/10.1007/s10346-023-02167-8

[84]

Lin, Q. W., Wang, Y. F., Xie, Y., et al., 2022. Multiscale Effects Caused by the Fracturing and Fragmentation of Rock Blocks during Rock Mass Movement: Implications for Rock Avalanche Propagation. Natural Hazards and Earth System Sciences, 22(2): 639-657. https://doi.org/10.5194/nhess-22-639-2022

[85]

Longchamp, C., Abellan, A., Jaboyedoff, M., et al., 2016. 3-D Models and Structural Analysis of Rock Avalanches: The Study of the Deformation Process to Better Understand the Propagation Mechanism. Earth Surface Dynamics, 4(3): 743-755. https://doi.org/10.5194/esurf-4-743-2016

[86]

McSaveney, M. J., Davies, T. R. H., 2009. Surface Energy is not One of the Energy Losses in Rock Comminution. Engineering Geology, 109(1-2): 109-113. https://doi.org/10.1016/j.enggeo.2008.11.001

[87]

Melosh, H. J., 1979. Acoustic Fluidization: A New Geologic Process? Journal of Geophysical Research: Solid Earth, 84(B13): 7513-7520. https://doi.org/10.1029/JB084iB13p07513

[88]

Miao, T. D., Liu, Z. Y., Niu, Y. H., et al., 2001. A Sliding Block Model for the Runout Prediction of High-Speed Landslides. Canadian Geotechnical Journal, 38(2): 217-226. https://doi.org/10.1139/t00-092

[89]

Mitchell, T. M., Smith, S. A. F., Anders, M. H., et al., 2015. Catastrophic Emplacement of Giant Landslides Aided by Thermal Decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411: 199-207. https://doi.org/10.1016/j.epsl.2014.10.051

[90]

Neuendorf, K. K. E., Mehl Jr., J. P., Jackson, J. A., 2011.Glossary of Geology. American Geosciences Institute, Virginia.

[91]

Pan, G. T., Liu, Y. P., Zheng, L. L., et al., 2013. The Collison Tectonic and Effection on Qinghai-Tibet Plateau. Guangdong Science & Technology Press, Guangzhou(in Chinese).

[92]

Pei, Y. Q., Qiu, H. J., Zhu, Y. R., et al., 2023. Elevation Dependence of Landslide Activity Induced by Climate Change in the Eastern Pamirs. Landslides, 20(6): 1115-1133. https://doi.org/10.1007/s10346-023-02030-w

[93]

Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract).

[94]

Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466 (in Chinese with English abstract).

[95]

Petley, D. N., 2013. Characterizing Giant Landslides. Science, 339(6126): 1395-1396. https://doi.org/10.1126/science.1236165

[96]

Pollet, N., Schneider, J. L. M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448. https://doi.org/10.1016/S0012-821X(04)00071-8

[97]

Pudasaini, S. P., Krautblatter, M., 2021. The Mechanics of Landslide Mobility with Erosion. Nature Communications, 12: 6793. https://doi.org/10.1038/s41467-021-26959-5

[98]

Qi, T. J., Meng, X. M., Zhao, Y., et al., 2025. Ancient Very Large and Giant Landslides on the Eastern Margin of the Qinghai-Tibet Plateau, China. Engineering Geology, 346: 107889. https://doi.org/10.1016/j.enggeo.2024.107889

[99]

Rocha, F. M., Johnson, C. G., Gray, J. M. N. T., 2019. Self-Channelisation and Levee Formation in Monodisperse Granular Flows. Journal of Fluid Mechanics, 876: 591-641. https://doi.org/10.1017/jfm.2019.518

[100]

Roverato, M., Cronin, S., Procter, J., et al., 2015. Textural Features as Indicators of Debris Avalanche Transport and Emplacement, Taranaki Volcano. Geological Society of America Bulletin, 127(1-2): 3-18. https://doi.org/10.1130/b30946.1

[101]

Sassa, K., 1988. Geotechnical Model for the Motion of Landslides. In: Proceedings of the 5th International Symposium on Landsides. Balkema, Rotterdam, 37-56.

[102]

Savage, S. B., Hutter, K., 1989. The Motion of a Finite Mass of Granular Material down a Rough Incline. Journal of Fluid Mechanics, 199: 177-215. https://doi.org/10.1017/S0022112089000340

[103]

Savage, S. B., Lun, C. K. K., 1988. Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids. Journal of Fluid Mechanics, 189: 311-335. https://doi.org/10.1017/S002211208800103X

[104]

Seed, H. B., 1968. The Fourth Terzaghi Lecture: Landslides during Earthquakes Due to Liquefaction. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. https://doi.org/10.1061/jsfeaq.0001182

[105]

Shea, T., van Wyk de Vries, B., 2008. Structural Analysis and Analogue Modeling of the Kinematics and Dynamics of Rockslide Avalanches. Geosphere, 4(4): 657-686. https://doi.org/10.1130/GES00131.1

[106]

Shi, A. W., Cheng, Q. G., Wang, Y. F., et al., 2024. State of the Art on Fluidized Geomorphology of Rock Avalanche. Journal of Engineering Geology, 32(3): 978-995 (in Chinese with English abstract).

[107]

Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2023. The Largest Rock Avalanche in China at Iymek, Eastern Pamir, and Its Spectacular Emplacement Landscape. Geomorphology, 421: 108521. https://doi.org/10.1016/j.geomorph.2022.108521

[108]

Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024a. Distinctive Shear Zones Demonstrate Pervasive Laminar Cataclastic Flow Throughout the Gigantic Iymek Rock Avalanche. Geomorphology, 452: 109109. https://doi.org/10.1016/j.geomorph.2024.109109

[109]

Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024b. Observations of Avalanche-Substrate Interactions in the Iymek Rock Avalanche deposit: A Possible Causative Mechanism. Engineering Geology, 341: 107710. https://doi.org/10.1016/j.enggeo.2024.107710

[110]

Shreve, R. L., 1959. Geology and Mechanics of the Blackhawk Rockslide, Lucerne Valley, California (Dissertation). California Institute of Technology, California.

[111]

Shreve, R. L., 1966. Sherman Landslide, Alaska. Science, 154(3757): 1639-1643. https://doi.org/10.1126/science.154.3757.1639

[112]

Shreve, R.L., 1968a. The Blackhawk Landslide. Geological Society of America Bulletin, Special Paper, 108:1-47.

[113]

Shreve, R. L., 1968b. Leakage and Fluidization in Air-Layer Lubricated Avalanches. Geological Society of America Bulletin, 79(5): 653-658. https://doi.org/10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2

[114]

Shreve, R.L., 1987. Blackhawk Landslide, Southwestern San Bernardino County, California. In: Mason, L. H., ed., Cordilleran Section of the Geological Society of America. Geological Society of America, California, 109-114. https://doi.org/10.1130/0-8137-5401-1

[115]

Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455

[116]

Stanley, T. A., Soobitsky, R. B., Amatya, P. M., et al., 2024. Landslide Hazard is Projected to Increase across High Mountain Asia. Earth’s Future, 12(10): e2023EF004325. https://doi.org/10.1029/2023EF004325

[117]

Staron, L., Lajeunesse, E., 2009. Understanding How Volume Affects the Mobility of Dry Debris Flows. Geophysical Research Letters, 36(12): L12402. https://doi.org/10.1029/2009GL038229

[118]

Strom, A., Li, L., Lan, H. X., 2019. Rock Avalanche Mobility: Optimal Characterization and the Effects of Confinement. Landslides, 16(8): 1437-1452. https://doi.org/10.1007/s10346-019-01181-z

[119]

Strom, A.L., 1994. Mechanisms of Stratification and Abnormal Crushing of Rockslide Deposits. In: Oliveira, R., ed., 7th International Association for Engineering Geology and the Environment (IAEG) Congress. Balkema, Lisbon, Portugal, 1287-1295.

[120]

Strom, A.L., 2018. Rockslides and Rock Avalanches of Central Asia. Elsevier, Amsterdam.

[121]

Tahmasebi, P., 2023. A State-of-the-Art Review of Experimental and Computational Studies of Granular Materials: Properties, Advances, Challenges, and Future Directions. Progress in Materials Science, 138: 101157. https://doi.org/10.1016/j.pmatsci.2023.101157

[122]

Tang, H. M., 2025. Mechanism of the Coevolution of Landslides and River Valleys in the Three Gorges Reservoir Area. Chinese Science Bulletin, 70(21): 3505-3515 (in Chinese with English abstract).

[123]

Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608 (in Chinese with English abstract).

[124]

Teng, J. W., Zhang, Z. J., Zhang, B. M., et al., 1997. Environmental Change and the Uplift of Tibetan Plateau. Earth Science Frontiers, 4(S1): 247-254(in Chinese with English abstract).

[125]

The Second Tibetan Plateau Scientific Expedition and Research, 2000. Geological Evolution of Karakorum Mountain-Kunlun Mountain Area. Science Press, Beijing(in Chinese).

[126]

Tian, H. R., 2023. Study on Accumulation Characteristics of High-Speed Remote Landslide Based on UAV Photogrammetry (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract).

[127]

Voigtländer, A., Houssais, M., Bacik, K. A., et al., 2024. Soft Matter Physics of the Ground beneath Our Feet. Soft Matter, 20(30): 5859-5888. https://doi.org/10.1039/D4SM00391H

[128]

Wang, C. S., Ding, X. L., 1998. The New Researching Progress of Tibet Plateau Uplift. Advances in Earth Science, 13(6): 526-532 (in Chinese with English abstract).

[129]

Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Temporal and Spatial Pattern of Cenozoic Tectonic Uplift in Qinghai-Tibet Plateau. Scientia Sinica (Terrae), 41(3): 332-349 (in Chinese).

[130]

Wang, Y. F., Chen, P. H., Qian, J. Z., et al., 2025. Geomorphic and Geologic Controls on Large-Scale Landslides in the Himalayan Region of China. Landslides, 22(5): 1725-1741. https://doi.org/10.1007/s10346-024-02447-x

[131]

Wang, Y. F., Dong, J. J., Cheng, Q. G., 2018a. Normal Stress-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for the Rock Avalanche Volume Effect. Journal of Geophysical Research: Solid Earth, 123(4): 3270-3282. https://doi.org/10.1002/2018JB015602

[132]

Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018b. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025

[133]

Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., et al., eds., Progress in Landslide Research and Technology, Volume 2 Issue 2, 2023. Cham: Springer Nature Switzerland: 55-111. https://doi.org/10.1007/978-3-031-44296-4_2

[134]

Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019a. Characteristics and Transport Mechanism of the Nyixoi Chongco Rock Avalanche on the Tibetan Plateau, China. Geomorphology, 343: 92-105. https://doi.org/10.1016/j.geomorph.2019.07.002

[135]

Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019b. Sedimentary Deformation Structures in the Nyixoi Chongco Rock Avalanche: Implications on Rock Avalanche Transport Mechanisms. Landslides, 16(3): 523-532. https://doi.org/10.1007/s10346-018-1117-7

[136]

Wang, Y. F., Cheng, Q. G., Yuan, Y. Q., et al., 2020. Emplacement Mechanisms of the Tagarma Rock Avalanche on the Pamir-Western Himalayan Syntaxis of the Tibetan Plateau, China. Landslides, 17(3): 527-542. https://doi.org/10.1007/s10346-019-01298-1

[137]

Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284

[138]

Wang, Y. F., Dong, J. J., Cheng, Q. G., 2017. Velocity-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for Rock Avalanche Hypermobility? Journal of Geophysical Research: Solid Earth, 122(3): 1648-1676. https://doi.org/10.1002/2016JB013624

[139]

Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181 (in Chinese with English abstract).

[140]

Wu, Z. H., 2024. The Earthquake-Controlling Process of Continental Collision-Extrusion Active Tectonic System around the Qinghai-Tibet Plateau: A Case Study of Strong Earthquakes since 1990. Journal of Geomechanics, 30(2): 189-205 (in Chinese with English abstract).

[141]

Xu, Z. Q., Li, G. W., Zhang, Z. M., et al., 2022. Review Ten Key Geological Issues of the Tibetan Plateau—Commemoration of the Centennial Anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65-94 (in Chinese with English abstract).

[142]

Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau—The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17 (in Chinese with English abstract).

[143]

Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2024. Himalayan Orogeny Dynamics. Geological Publishing House, Beijing (in Chinese).

[144]

Yao, T. D., Piao, S. L., Shen, M. G., et al., 2017. Chained Impacts on Modern Environment of Interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 32(9): 976-984 (in Chinese with English abstract).

[145]

Yao, T. D., Yu, W. S., Wu, G. J., et al., 2019. Glacier Anomalies and Relevant Disaster Risks on the Tibetan Plateau and Surroundings. Chinese Science Bulletin, 64(27): 2770-2782 (in Chinese).

[146]

Yin, Y. P., Zhu, S. N., Li, B., 2021. High-Level Remote Geological Disasters in Qinghai-Tibet Plateau. Science Press, Beijing (in Chinese).

[147]

Yuan, D. Y., Feng, J. G., Zheng, W. J., et al., 2020. Migration of Large Earthquakes in Tibetan Block Area and Disscussion on Major Active Region in the Future. Seismology and Geology, 42(2): 297-315 (in Chinese with English abstract).

[148]

Zeng, Q. L., Zhang, L. Q., Davies, T., et al., 2019. Morphology and Inner Structure of Luanshibao Rock Avalanche in Litang, China and Its Implications for Long-Runout Mechanisms. Engineering Geology, 260: 105216. https://doi.org/10.1016/j.enggeo.2019.105216

[149]

Zhang, T. G., Wang, W. C., An, B. S., et al., 2023. Enhanced Glacial Lake Activity Threatens Numerous Communities and Infrastructure in the Third Pole. Nature Communications, 14: 8250. https://doi.org/10.1038/s41467-023-44123-z

[150]

Zhang, Y. S., Du, G. L., Guo, C. B., et al., 2021. Research on Typical Geomechanical Model of High-Position Landslides on the Sichuan-Tibet Traffic Corridor. Acta Geologica Sinica, 95(3): 605-617 (in Chinese with English abstract).

[151]

Zhao, B., Su, L. J., Wang, Y. S., et al., 2023. Insights into Some Large-Scale Landslides in Southeastern Margin of Qinghai-Tibet Plateau. Journal of Rock Mechanics and Geotechnical Engineering, 15(8): 1960-1985. https://doi.org/10.1016/j.jrmge.2022.09.005

[152]

Zhao, B., Zhang, Q., Wang, L. J., et al., 2025. Preliminary Analysis of Failure Characteristics of the 2025 Junlian Rock Avalanche, China. Landslides, 22(8): 2593-2605. https://doi.org/10.1007/s10346-025-02556-1

[153]

Zhong, D. L., Ding, L., 1996. Discussion on Uplift Process and Mechanism of Qinghai-Tibet Plateau. Science in China (Ser. D), 26(4): 289-295 (in Chinese).

[154]

Zhong, Y., Allen, S. K., Zheng, G. X., et al., 2024. Large Rock and Ice Avalanches Frequently Produce Cascading Processes in High Mountain Asia. Geomorphology, 449: 109048. https://doi.org/10.1016/j.geomorph.2023.109048

[155]

Zhu, L., Tang, X., He, S. M., et al., 2025. Geomorphology and Sedimentology of the Nyixoi Chongco Rock Avalanche and Implications for Emplacement Mechanisms. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF007666. https://doi.org/10.1029/2024JF007666

[156]

Zou, Q., Guo, X. J., Luo, Y., et al., 2021. Spatial Pattern and Response of Landslide and Debris Flow Risks in China-Pakistan Economic Corridor. Bulletin of Chinese Academy of Sciences, 36(2): 160-169 (in Chinese with English abstract).

基金资助

国家自然科学基金资助项目(42322702)

国家自然科学基金资助项目(U2244229)

国家自然科学基金资助项目(42207203)

新型交叉学科培育基金项目(2682025ZD002)

AI Summary AI Mindmap
PDF (26931KB)

36

访问

0

被引

详细

导航
相关文章

AI思维导图

/