青藏高原高速远程滑坡研究:从地质现象到动力学机理
王玉峰 , 程谦恭 , 林棋文 , 李坤 , 史安文 , 李天话 , 明杰 , 宋章 , 牛富俊 , 李传宝
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 4071 -4095.
青藏高原高速远程滑坡研究:从地质现象到动力学机理
Research on Rock Avalanches in Tibetan Plateau:From Field Observations to Dynamic Mechanisms
青藏高原是地球圈层作用最活跃、内外动力耦合作用最强烈、全球气候变化最敏感、地质灾害活动最剧烈的地区,区内构造-气候-地质灾害协同演化过程显著,是国际上高速远程滑坡动力学机理研究的天然实验室.为探秘高速远程滑坡的超常运动特性,研究团队一直致力于青藏高原及其邻区高速远程滑坡工程地质调查和动力学机理研究.基于前期研究成果,阐明了高速远程滑坡的术语由来及其基本特征,重点概述了研究团队在高速远程滑坡动力学研究领域的新发现、新认识、新观点,亦即:揭示高速远程滑坡体积效应呈现本质;提出高速远程滑坡是破碎流的新观点;提出自激振动悬浮减阻新机理;提出高速远程滑坡停积就位新模式等,这些成果体现了从野外地质现象到科学理论建立的滑坡动力学研究范式.最后,对未来青藏高原高速远程滑坡研究进行了深入思考和展望,以期为推动活跃造山带高速远程滑坡动力学机理研究和制定风险防控策略提供参考.
The Tibetan Plateau is the area with the most active interlayer interactions, the strongest coupling effect of internal and external forces, the most sensitive to global climate change, and the most intense geological hazard activity, which is characterized by significant synergism of tectonic-climatic-geohazards and globally recognized as a natural laboratory for studying rock avalanche dynamics. To explore the extremely high mobility of rock avalanches, our team has been dedicated to the geological investigation and dynamic analysis of rock avalanches in the Tibetan Plateau and its adjacent areas for many years. Based on the previous study, it first elucidates the terminological origin and the main characteristics of rock avalanches. Subsequently, the new discoveries, understandings and perspectives reached by the team based on more than two decades of systematic research on rock avalanches across the Tibetan Plateau is introduced, i.e., revealing the essence of rock avalanche volume effect, proposing the new viewpoints that rock avalanche should be a cataclastic flow, proposing the self-excited vibration effect, and building the emplacement models of rock avalanches under varying conditions. The finding and proposition of these achievements systematically exhibit the research paradigm from field geological observations to theoretical framework establishment for rock avalanche dynamics. Finally, it summarizes critical insights for rock avalanche study based on previous work, hoping to provide scientific references for advancing rock avalanche research and formulating corresponding risk mitigation strategies.
青藏高原 / 高速远程滑坡 / 动力学 / 研究进展 / 工程地质学.
Tibetan Plateau / rock avalanche / dynamics / review / engineering geology
| [1] |
Aaron, J., McDougall, S., 2019. Rock Avalanche Mobility: The Role of Path Material. Engineering Geology, 257: 105126. https://doi.org/10.1016/j.enggeo.2019.05.003 |
| [2] |
Abele, G. 1974. Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte, Deutscher Alpenverein. |
| [3] |
Allstadt, K. E., Matoza, R. S., Lockhart, A. B., et al., 2018. Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes. Journal of Volcanology and Geothermal Research, 364: 76-106. https://doi.org/10.1016/j.jvolgeores.2018.09.007 |
| [4] |
Azam, M. F., Kargel, J. S., Shea, J. M., et al., 2021. Glaciohydrology of the Himalaya-Karakoram. Science, 373(6557): eabf3668. https://doi.org/10.1126/science.abf3668 |
| [5] |
Bahavar, M., Allstadt, K. E., Van Fossen, M., et al., 2019. Exotic Seismic Events Catalog (ESEC) Data Product. Seismological Research Letters, 90(3): 1355-1363. https://doi.org/10.1785/0220180402 |
| [6] |
Cagnoli, B., 2023. Slope-Break Collisions: Comment on “Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests” by K. Li et al. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024799. https://doi.org/10.1029/2022JB024799 |
| [7] |
Campbell, C. S., Cleary, P. W., Hopkins, M., 1995. Large-Scale Landslide Simulations: Global Deformation, Velocities and Basal Friction. Journal of Geophysical Research: Solid Earth, 100(B5): 8267-8283. https://doi.org/10.1029/94JB00937 |
| [8] |
Chen, D. L., Xu, B. Q., Yao, T. D., et al., 2015. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chinese Science Bulletin, 60(32): 3025-3035, 1-2(in Chinese). |
| [9] |
Cheng, Q. G., Peng, J. B., Hu, G. T., 1999. Dynamics of High-Speed Rock Landslide. Southwest Jiaotong University Press, Chengdu(in Chinese). |
| [10] |
Cheng, Q. G., Wang, Y. F., Lin, Q. W., et al., 2024. Consideration on Dynamics of Rock Avalanches in the Himalayan Orogenic Belt. Acta Geologica Sinica, 98(11): 3238-3254 (in Chinese with English abstract). |
| [11] |
Cheng, Q. G., Zhang, Z. Y., Huang, R.Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract). |
| [12] |
Collins, G. S., Melosh, H. J., 2003. Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms. Journal of Geophysical Research: Solid Earth, 108(B10): 2003JB002465. https://doi.org/10.1029/2003JB002465 |
| [13] |
Cook, K. L., Dietze, M., 2022. Seismic Advances in Process Geomorphology. Annual Review of Earth and Planetary Sciences, 50: 183-204. https://doi.org/10.1146/annurev-earth-032320-085133 |
| [14] |
Corominas, J., 1996. The Angle of Reach as a Mobility Index for Small and Large Landslides. Canadian Geotechnical Journal, 33(2): 260-271. https://doi.org/10.1139/t96-005 |
| [15] |
Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones DE Mutatione Climatis, 10(2): 103-109 (in Chinese with English abstract). |
| [16] |
Davies, T. R. H., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/BF01239474 |
| [17] |
Davies, T. R. H., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/cgj-36-6-1096 |
| [18] |
Davies, T. R. H., McSaveney, M. J., Reznichenko, N. V., 2019. What Happens to Fracture Energy in Brittle Fracture? Revisiting the Griffith Assumption. Solid Earth, 10(4): 1385-1395. https://doi.org/10.5194/se-10-1385-2019 |
| [19] |
Davies, T. R. H., Reznichenko, N. V., McSaveney, M. J., 2020. Energy Budget for a Rock Avalanche: Fate of Fracture-Surface Energy. Landslides, 17(1): 3-13. https://doi.org/10.1007/s10346-019-01224-5 |
| [20] |
Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79. https://doi.org/10.1016/j.enggeo.2008.11.004 |
| [21] |
De Blasio, F. V., 2011. Granular Flows and Rock Avalanches. In: De Blasio, F. V., ed., Introduction to the Physics of Landslides. Springer Netherlands, Dordrecht, 159-222. https://doi.org/10.1007/978-94-007-1122-8_6 |
| [22] |
De Blasio, F. V., 2014. Friction and Dynamics of Rock Avalanches Travelling on Glaciers. Geomorphology, 213:88-98. https://doi.org/10.1016/j.geomorph.2014.01.001 |
| [23] |
Deboeuf, S., Lajeunesse, E., Dauchot, O., et al., 2006. Flow Rule, Self-Channelization and Levees in Unconfined Granular Flows. Physical Review Letters, 97(15): 158303. https://doi.org/10.1103/PhysRevLett.97.158303 |
| [24] |
Delannay, R., Valance, A., Mangeney, A., et al., 2017. Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations. Journal of Physics D: Applied Physics, 50(5): 053001. https://doi.org/10.1088/1361-6463/50/5/053001 |
| [25] |
Deng, Q. D., Cheng, S. P., Ma, J., et al., 2014. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(7): 2025-2042 (in Chinese with English abstract). |
| [26] |
Denlinger, R. P., 2014. Simulation of Initiation, Transport, and Deposition of Granular Avalanches: Current Progress and Future Challenges. Procedia IUTAM, 10: 363-371. https://doi.org/10.1016/j.piutam.2014.01.031 |
| [27] |
Dubey, S., Sattar, A., Goyal, M. K., et al., 2023. Mass Movement Hazard and Exposure in the Himalaya. Earth’s Future, 11(9): e2022EF003253. https://doi.org/10.1029/2022EF003253 |
| [28] |
Dufresne, A., Davies, T. R. H., 2009. Longitudinal Ridges in Mass Movement Deposits. Geomorphology, 105(3-4): 171-181. https://doi.org/10.1016/j.geomorph.2008.09.009 |
| [29] |
Dufresne, A., Dunning, S. A., 2017. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides, 14(5): 1555-1563. https://doi.org/10.1007/s10346-017-0806-y |
| [30] |
Edwards, A. N., Rocha, F. M., Kokelaar, B. P., et al., 2023. Particle-Size Segregation in Self-Channelized Granular Flows. Journal of Fluid Mechanics, 955: A38. https://doi.org/10.1017/jfm.2022.1089 |
| [31] |
Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. https://doi.org/10.1139/t79-032 |
| [32] |
Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419. https://doi.org/10.1126/science.1232887 |
| [33] |
Engineering Geology Research Office, Chengdu College of Geology, 1989. Study on the Major Engineering Problems in Longyang Gorge Hydropower Station. Press of Chengdu University of Science and Technology, Chengdu, 52-116(in Chinese). |
| [34] |
Erismann, T. H., 1979. Mechanisms of Large Landslides. Rock Mechanics, 12(1): 15-46. https://doi.org/10.1007/BF01241087 |
| [35] |
Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018RG000626 |
| [36] |
Félix, G., Thomas, N., 2004. Relation between Dry Granular Flow Regimes and Morphology of Deposits: Formation of Levées in Pyroclastic Deposits. Earth and Planetary Science Letters, 221(1-4): 197-213. https://doi.org/10.1016/S0012-821X(04)00111-6 |
| [37] |
Feng, Z. Y., Cheng, Q. G., Wang, Y. F., et al., 2023. The state-of-Art and Future Developmnet of Friction Heating Inducded Weakening Mechanisms of Rock Avalanches. Journal of Engineering Geology, 31(3): 999-1017 (in Chinese with English abstract). |
| [38] |
Foda, M. A., 1994. Landslides Riding on Basal Pressure Waves. Continuum Mechanics and Thermodynamics, 6(1): 61-79. https://doi.org/10.1007/BF01138307 |
| [39] |
Forterre, Y., Pouliquen, O., 2008. Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40: 1-24. https://doi.org/10.1146/annurev.fluid.40.111406.102142 |
| [40] |
Gray, J. M. N. T., 2018. Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50: 407-433. https://doi.org/10.1146/annurev-fluid-122316-045201 |
| [41] |
Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197. https://doi.org/10.1007/BF01246865 |
| [42] |
Han, X. D., Yang, X. Y., Sun, X. J., et al., 2024. Quantitative Prediction Model of Dynamic Erosion Process for Long Run-out Accumulation Landslides. Rock and Soil Mechanics, 45(4): 1190-1200 (in Chinese with English abstract). |
| [43] |
He, K., Wang, Y. F., Cheng, Q. G., et al., 2024. Research on the Substrate Entrainment Dynamics of Rock Avalanches: State-of-the-Art. Journal of Engineering Geology, 32(3): 904-917 (in Chinese with English abstract). |
| [44] |
Heim, A., 1932.Bergsturz und Menschenleben. Zütich, Naturforschenden Gesellschaft. Translated by Skermer, N. S., 1989. Landslides and Human Lives. B C. Bitech Publishers, Vancouver. |
| [45] |
Hermanns, R. L., Penna, I. M., Oppikofer, T., et al., 2022. Rock Avalanche. In: Shroder, J. J. F., ed., Treatise on Geomorphology. Elsevier, Amsterdam, 85-105. https://doi.org/10.1016/b978-0-12-818234-5.00183-8 |
| [46] |
Hewitt, K., 2002. Styles of Rock-Avalanche Depositional Complexes Conditioned by Very Rugged Terrain, Karakoram Himalaya, Pakistan. In: Evans, S.G., DeGraff, J.V., eds., Catastrophic Landslides: Effects, Occurrence and Mechanisms. The Geological Society of America. Press, USA, 345-378. |
| [47] |
Hewitt, K., 2006. Rock Avalanches with Complex Run out and Emplacement, Karakoram Himalaya, Inner Asia.Landslides from Massive Rock Slope Failure. In: Evans, S.G., Scarascia, M.G., Strom, A., et al., eds., Nato Science Series IV. Springer, Dordrecht, 521-550. |
| [48] |
Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002 |
| [49] |
Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815 (in Chinese with English abstract). |
| [50] |
Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 |
| [51] |
Hu, W., Huang, R. Q., McSaveney, M., et al., 2018. Mineral Changes Quantify Frictional Heating during a Large Low-Friction Landslide. Geology, 46(3): 223-226. https://doi.org/10.1130/g39662.1 |
| [52] |
Hu, W., Xu, Q., McSaveney, M., et al., 2022. Fluid-Like Behavior of Crushed Rock Flows. Journal of Geophysical Research: Earth Surface, 127(10): e2021JF006523. https://doi.org/10.1029/2021JF006523 |
| [53] |
Hugonnet, R., McNabb, R., Berthier, E., et al., 2021. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature, 592(7856): 726-731. https://doi.org/10.1038/s41586-021-03436-z |
| [54] |
Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y |
| [55] |
Hutchinson, J. N., 2006. Massive Rock Slope Failure: Perspectives and Retrospectives on State-of-the-Art. In: Evans, S.G., Mugnozza, G.S., Strom, A., et al., eds., Landslides from Massive Rock Slope Failure. Springer Netherlands, Dordrecht, 619-662. https://doi.org/10.1007/978-1-4020-4037-5_32 |
| [56] |
Hutchinson, J. N., Bhandari, R. K., 1971. Undrained Loading, a Fundamental Mechanism of Mudflows and Other Mass Movements. Géotechnique, 21(4): 353-358. https://doi.org/10.1680/geot.1971.21.4.353 |
| [57] |
Iverson, R. M., 2012. Elementary Theory of Bed-Sediment Entrainment by Debris Flows and Avalanches. Journal of Geophysical Research: Earth Surface, 117(F3): F03006. https://doi.org/10.1029/2011JF002189 |
| [58] |
Iverson, R. M., 2015. Scaling and Design of Landslide and Debris-Flow Experiments. Geomorphology, 244: 9-20. https://doi.org/10.1016/j.geomorph.2015.02.033 |
| [59] |
Iverson, R. M., 2016. Comment on “The Reduction of Friction in Long-Runout Landslides as an Emergent Phenomenon” by Brandon C. Johnson et al. Journal of Geophysical Research: Earth Surface, 121(11): 2238-2242. https://doi.org/10.1002/2016JF003979 |
| [60] |
Iverson, R. M., George, D. L., 2016. Modelling Landslide Liquefaction, Mobility Bifurcation and the Dynamics of the 2014 Oso Disaster. Géotechnique, 66(3): 175-187. https://doi.org/10.1680/jgeot.15.lm.004 |
| [61] |
Iverson, R. M., Reid, M. E., Logan, M., et al., 2011. Positive Feedback and Momentum Growth during Debris-Flow Entrainment of Wet Bed Sediment. Nature Geoscience, 4(2): 116-121. https://doi.org/10.1038/ngeo1040 |
| [62] |
Jerolmack, D. J., Daniels, K. E., 2019. Viewing Earth’s Surface as a Soft-Matter Landscape. Nature Reviews Physics, 1(12): 716-730. https://doi.org/10.1038/s42254-019-0111-x |
| [63] |
Johnson, B. C., Campbell, C. S., Melosh, H. J., 2016. The Reduction of Friction in Long Runout Landslides as an Emergent Phenomenon. Journal of Geophysical Research: Earth Surface, 121(5): 881-889. https://doi.org/10.1002/2015JF003751 |
| [64] |
Johnson, B., 1978. Blackhawk Landslide, California, U.S.A. In: Voight, B., ed., Rockslides and Avalanches, 1- Natural Phenomena. Elsevier, Amsterdam, 481-504. https://doi.org/10.1016/b978-0-444-41507-3.50022-2 |
| [65] |
Johnson, C. G., Kokelaar, B. P., Iverson, R. M., et al., 2012. Grain-Size Segregation and Levee Formation in Geophysical Mass Flows. Journal of Geophysical Research: Earth Surface, 117(F1): F01032. https://doi.org/10.1029/2011JF002185 |
| [66] |
Kobayashi, Y., 1994. Effect of Basal Guided Waves on Landslides. Pure and Applied Geophysics, 142(2): 329-346. https://doi.org/10.1007/BF00879308 |
| [67] |
Kokelaar, B. P., Graham, R. L., Gray, J. M. N. T., et al., 2014. Fine-Grained Linings of Leveed Channels Facilitate Runout of Granular Flows. Earth and Planetary Science Letters, 385: 172-180. https://doi.org/10.1016/j.epsl.2013.10.043 |
| [68] |
Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331. https://doi.org/10.1016/S0013-7952(01)00090-4 |
| [69] |
Li, J. J., Fang, X. M., 1998. Study on Uplift of Qinghai-Tibet Plateau and Environmental Change. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese). |
| [70] |
Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract). |
| [71] |
Li, K., Wang, Y. F., Cheng, Q. G., et al., 2022. Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB022905. https://doi.org/10.1029/2021JB022905 |
| [72] |
Li, K., Wang, Y. F., Cheng, Q. G., et al., 2023. Basal Stress Fluctuation: Reply to Comment by Cagnoli on “Slope-Break Collisions: Comment on ‘Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests’ by K. Li et al.”. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025804. https://doi.org/10.1029/2022JB025804 |
| [73] |
Li, K., Wang, Y. F., Lin, Q. W., et al., 2021. Experiments on Granular Flow Behavior and Deposit Characteristics: Implications for Rock Avalanche Kinematics. Landslides, 18(5): 1779-1799. https://doi.org/10.1007/s10346-020-01607-z |
| [74] |
Li, L. P., Lan, H. X., 2022. Complexities of Landslide Moving Path: A Review and Perspective. Earth Science, 47(12): 4663-4680 (in Chinese with English abstract). |
| [75] |
Li, T. D., 1995. The Uplifting Process and Mechanism of the Qinhai-Tibet Plateau. Acta Geoscientica Sinica, 16(1): 1-9 (in Chinese with English abstract). |
| [76] |
Li, T. H., Cheng, Q. G., Wang, Y. F., et al., 2022. Review on Landquakes Related to Rock Avalanche Kinematics. Journal of Engineering Geology, 30(6): 1929-1946 (in Chinese with English abstract). |
| [77] |
Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2024. Experiments on Landquakes Generated by Free-Falling Granular Masses: Implications for Rockfall Impact Dynamics. Earth and Space Science, 11(6): e2023EA003402. https://doi.org/10.1029/2023EA003402 |
| [78] |
Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2025. Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF008015. https://doi.org/10.1029/2024JF008015 |
| [79] |
Liang, X.F, Chen, L., Tian, X.B., et al., 2023. Uplifting Mechanism of the Tibetan Plateau Inferred from the Characteristics of Crustal Structures. Scientia Sinica (Terrae), 53(12): 2808-2829 (in Chinese). |
| [80] |
Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019JB019296 |
| [81] |
Lin, Q. W., Cheng, Q. G., Li, K., et al., 2023. Review on Fragmentation-Related Dynamics of Rock Avalanches. Journal of Engineering Geology, 31(3): 815-829 (in Chinese with English abstract). |
| [82] |
Lin, Q. W., Cheng, Q. G., Xie, Y., et al., 2021. Simulation of the Fragmentation and Propagation of Jointed Rock Masses in Rockslides: DEM Modeling and Physical Experimental Verification. Landslides, 18(3): 993-1009. https://doi.org/10.1007/s10346-020-01542-z |
| [83] |
Lin, Q. W., Wang, Y. F., Cheng, Q. G., et al., 2024. The Alasu Rock Avalanche in the Tianshan Mountains, China: Fragmentation, Landforms, and Kinematics. Landslides, 21(3): 439-459. https://doi.org/10.1007/s10346-023-02167-8 |
| [84] |
Lin, Q. W., Wang, Y. F., Xie, Y., et al., 2022. Multiscale Effects Caused by the Fracturing and Fragmentation of Rock Blocks during Rock Mass Movement: Implications for Rock Avalanche Propagation. Natural Hazards and Earth System Sciences, 22(2): 639-657. https://doi.org/10.5194/nhess-22-639-2022 |
| [85] |
Longchamp, C., Abellan, A., Jaboyedoff, M., et al., 2016. 3-D Models and Structural Analysis of Rock Avalanches: The Study of the Deformation Process to Better Understand the Propagation Mechanism. Earth Surface Dynamics, 4(3): 743-755. https://doi.org/10.5194/esurf-4-743-2016 |
| [86] |
McSaveney, M. J., Davies, T. R. H., 2009. Surface Energy is not One of the Energy Losses in Rock Comminution. Engineering Geology, 109(1-2): 109-113. https://doi.org/10.1016/j.enggeo.2008.11.001 |
| [87] |
Melosh, H. J., 1979. Acoustic Fluidization: A New Geologic Process? Journal of Geophysical Research: Solid Earth, 84(B13): 7513-7520. https://doi.org/10.1029/JB084iB13p07513 |
| [88] |
Miao, T. D., Liu, Z. Y., Niu, Y. H., et al., 2001. A Sliding Block Model for the Runout Prediction of High-Speed Landslides. Canadian Geotechnical Journal, 38(2): 217-226. https://doi.org/10.1139/t00-092 |
| [89] |
Mitchell, T. M., Smith, S. A. F., Anders, M. H., et al., 2015. Catastrophic Emplacement of Giant Landslides Aided by Thermal Decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411: 199-207. https://doi.org/10.1016/j.epsl.2014.10.051 |
| [90] |
Neuendorf, K. K. E., Mehl Jr., J. P., Jackson, J. A., 2011.Glossary of Geology. American Geosciences Institute, Virginia. |
| [91] |
Pan, G. T., Liu, Y. P., Zheng, L. L., et al., 2013. The Collison Tectonic and Effection on Qinghai-Tibet Plateau. Guangdong Science & Technology Press, Guangzhou(in Chinese). |
| [92] |
Pei, Y. Q., Qiu, H. J., Zhu, Y. R., et al., 2023. Elevation Dependence of Landslide Activity Induced by Climate Change in the Eastern Pamirs. Landslides, 20(6): 1115-1133. https://doi.org/10.1007/s10346-023-02030-w |
| [93] |
Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract). |
| [94] |
Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466 (in Chinese with English abstract). |
| [95] |
Petley, D. N., 2013. Characterizing Giant Landslides. Science, 339(6126): 1395-1396. https://doi.org/10.1126/science.1236165 |
| [96] |
Pollet, N., Schneider, J. L. M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448. https://doi.org/10.1016/S0012-821X(04)00071-8 |
| [97] |
Pudasaini, S. P., Krautblatter, M., 2021. The Mechanics of Landslide Mobility with Erosion. Nature Communications, 12: 6793. https://doi.org/10.1038/s41467-021-26959-5 |
| [98] |
Qi, T. J., Meng, X. M., Zhao, Y., et al., 2025. Ancient Very Large and Giant Landslides on the Eastern Margin of the Qinghai-Tibet Plateau, China. Engineering Geology, 346: 107889. https://doi.org/10.1016/j.enggeo.2024.107889 |
| [99] |
Rocha, F. M., Johnson, C. G., Gray, J. M. N. T., 2019. Self-Channelisation and Levee Formation in Monodisperse Granular Flows. Journal of Fluid Mechanics, 876: 591-641. https://doi.org/10.1017/jfm.2019.518 |
| [100] |
Roverato, M., Cronin, S., Procter, J., et al., 2015. Textural Features as Indicators of Debris Avalanche Transport and Emplacement, Taranaki Volcano. Geological Society of America Bulletin, 127(1-2): 3-18. https://doi.org/10.1130/b30946.1 |
| [101] |
Sassa, K., 1988. Geotechnical Model for the Motion of Landslides. In: Proceedings of the 5th International Symposium on Landsides. Balkema, Rotterdam, 37-56. |
| [102] |
Savage, S. B., Hutter, K., 1989. The Motion of a Finite Mass of Granular Material down a Rough Incline. Journal of Fluid Mechanics, 199: 177-215. https://doi.org/10.1017/S0022112089000340 |
| [103] |
Savage, S. B., Lun, C. K. K., 1988. Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids. Journal of Fluid Mechanics, 189: 311-335. https://doi.org/10.1017/S002211208800103X |
| [104] |
Seed, H. B., 1968. The Fourth Terzaghi Lecture: Landslides during Earthquakes Due to Liquefaction. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. https://doi.org/10.1061/jsfeaq.0001182 |
| [105] |
Shea, T., van Wyk de Vries, B., 2008. Structural Analysis and Analogue Modeling of the Kinematics and Dynamics of Rockslide Avalanches. Geosphere, 4(4): 657-686. https://doi.org/10.1130/GES00131.1 |
| [106] |
Shi, A. W., Cheng, Q. G., Wang, Y. F., et al., 2024. State of the Art on Fluidized Geomorphology of Rock Avalanche. Journal of Engineering Geology, 32(3): 978-995 (in Chinese with English abstract). |
| [107] |
Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2023. The Largest Rock Avalanche in China at Iymek, Eastern Pamir, and Its Spectacular Emplacement Landscape. Geomorphology, 421: 108521. https://doi.org/10.1016/j.geomorph.2022.108521 |
| [108] |
Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024a. Distinctive Shear Zones Demonstrate Pervasive Laminar Cataclastic Flow Throughout the Gigantic Iymek Rock Avalanche. Geomorphology, 452: 109109. https://doi.org/10.1016/j.geomorph.2024.109109 |
| [109] |
Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024b. Observations of Avalanche-Substrate Interactions in the Iymek Rock Avalanche deposit: A Possible Causative Mechanism. Engineering Geology, 341: 107710. https://doi.org/10.1016/j.enggeo.2024.107710 |
| [110] |
Shreve, R. L., 1959. Geology and Mechanics of the Blackhawk Rockslide, Lucerne Valley, California (Dissertation). California Institute of Technology, California. |
| [111] |
Shreve, R. L., 1966. Sherman Landslide, Alaska. Science, 154(3757): 1639-1643. https://doi.org/10.1126/science.154.3757.1639 |
| [112] |
Shreve, R.L., 1968a. The Blackhawk Landslide. Geological Society of America Bulletin, Special Paper, 108:1-47. |
| [113] |
Shreve, R. L., 1968b. Leakage and Fluidization in Air-Layer Lubricated Avalanches. Geological Society of America Bulletin, 79(5): 653-658. https://doi.org/10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2 |
| [114] |
Shreve, R.L., 1987. Blackhawk Landslide, Southwestern San Bernardino County, California. In: Mason, L. H., ed., Cordilleran Section of the Geological Society of America. Geological Society of America, California, 109-114. https://doi.org/10.1130/0-8137-5401-1 |
| [115] |
Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455 |
| [116] |
Stanley, T. A., Soobitsky, R. B., Amatya, P. M., et al., 2024. Landslide Hazard is Projected to Increase across High Mountain Asia. Earth’s Future, 12(10): e2023EF004325. https://doi.org/10.1029/2023EF004325 |
| [117] |
Staron, L., Lajeunesse, E., 2009. Understanding How Volume Affects the Mobility of Dry Debris Flows. Geophysical Research Letters, 36(12): L12402. https://doi.org/10.1029/2009GL038229 |
| [118] |
Strom, A., Li, L., Lan, H. X., 2019. Rock Avalanche Mobility: Optimal Characterization and the Effects of Confinement. Landslides, 16(8): 1437-1452. https://doi.org/10.1007/s10346-019-01181-z |
| [119] |
Strom, A.L., 1994. Mechanisms of Stratification and Abnormal Crushing of Rockslide Deposits. In: Oliveira, R., ed., 7th International Association for Engineering Geology and the Environment (IAEG) Congress. Balkema, Lisbon, Portugal, 1287-1295. |
| [120] |
Strom, A.L., 2018. Rockslides and Rock Avalanches of Central Asia. Elsevier, Amsterdam. |
| [121] |
Tahmasebi, P., 2023. A State-of-the-Art Review of Experimental and Computational Studies of Granular Materials: Properties, Advances, Challenges, and Future Directions. Progress in Materials Science, 138: 101157. https://doi.org/10.1016/j.pmatsci.2023.101157 |
| [122] |
Tang, H. M., 2025. Mechanism of the Coevolution of Landslides and River Valleys in the Three Gorges Reservoir Area. Chinese Science Bulletin, 70(21): 3505-3515 (in Chinese with English abstract). |
| [123] |
Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608 (in Chinese with English abstract). |
| [124] |
Teng, J. W., Zhang, Z. J., Zhang, B. M., et al., 1997. Environmental Change and the Uplift of Tibetan Plateau. Earth Science Frontiers, 4(S1): 247-254(in Chinese with English abstract). |
| [125] |
The Second Tibetan Plateau Scientific Expedition and Research, 2000. Geological Evolution of Karakorum Mountain-Kunlun Mountain Area. Science Press, Beijing(in Chinese). |
| [126] |
Tian, H. R., 2023. Study on Accumulation Characteristics of High-Speed Remote Landslide Based on UAV Photogrammetry (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract). |
| [127] |
Voigtländer, A., Houssais, M., Bacik, K. A., et al., 2024. Soft Matter Physics of the Ground beneath Our Feet. Soft Matter, 20(30): 5859-5888. https://doi.org/10.1039/D4SM00391H |
| [128] |
Wang, C. S., Ding, X. L., 1998. The New Researching Progress of Tibet Plateau Uplift. Advances in Earth Science, 13(6): 526-532 (in Chinese with English abstract). |
| [129] |
Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Temporal and Spatial Pattern of Cenozoic Tectonic Uplift in Qinghai-Tibet Plateau. Scientia Sinica (Terrae), 41(3): 332-349 (in Chinese). |
| [130] |
Wang, Y. F., Chen, P. H., Qian, J. Z., et al., 2025. Geomorphic and Geologic Controls on Large-Scale Landslides in the Himalayan Region of China. Landslides, 22(5): 1725-1741. https://doi.org/10.1007/s10346-024-02447-x |
| [131] |
Wang, Y. F., Dong, J. J., Cheng, Q. G., 2018a. Normal Stress-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for the Rock Avalanche Volume Effect. Journal of Geophysical Research: Solid Earth, 123(4): 3270-3282. https://doi.org/10.1002/2018JB015602 |
| [132] |
Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018b. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025 |
| [133] |
Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., et al., eds., Progress in Landslide Research and Technology, Volume 2 Issue 2, 2023. Cham: Springer Nature Switzerland: 55-111. https://doi.org/10.1007/978-3-031-44296-4_2 |
| [134] |
Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019a. Characteristics and Transport Mechanism of the Nyixoi Chongco Rock Avalanche on the Tibetan Plateau, China. Geomorphology, 343: 92-105. https://doi.org/10.1016/j.geomorph.2019.07.002 |
| [135] |
Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019b. Sedimentary Deformation Structures in the Nyixoi Chongco Rock Avalanche: Implications on Rock Avalanche Transport Mechanisms. Landslides, 16(3): 523-532. https://doi.org/10.1007/s10346-018-1117-7 |
| [136] |
Wang, Y. F., Cheng, Q. G., Yuan, Y. Q., et al., 2020. Emplacement Mechanisms of the Tagarma Rock Avalanche on the Pamir-Western Himalayan Syntaxis of the Tibetan Plateau, China. Landslides, 17(3): 527-542. https://doi.org/10.1007/s10346-019-01298-1 |
| [137] |
Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284 |
| [138] |
Wang, Y. F., Dong, J. J., Cheng, Q. G., 2017. Velocity-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for Rock Avalanche Hypermobility? Journal of Geophysical Research: Solid Earth, 122(3): 1648-1676. https://doi.org/10.1002/2016JB013624 |
| [139] |
Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181 (in Chinese with English abstract). |
| [140] |
Wu, Z. H., 2024. The Earthquake-Controlling Process of Continental Collision-Extrusion Active Tectonic System around the Qinghai-Tibet Plateau: A Case Study of Strong Earthquakes since 1990. Journal of Geomechanics, 30(2): 189-205 (in Chinese with English abstract). |
| [141] |
Xu, Z. Q., Li, G. W., Zhang, Z. M., et al., 2022. Review Ten Key Geological Issues of the Tibetan Plateau—Commemoration of the Centennial Anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65-94 (in Chinese with English abstract). |
| [142] |
Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau—The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17 (in Chinese with English abstract). |
| [143] |
Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2024. Himalayan Orogeny Dynamics. Geological Publishing House, Beijing (in Chinese). |
| [144] |
Yao, T. D., Piao, S. L., Shen, M. G., et al., 2017. Chained Impacts on Modern Environment of Interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 32(9): 976-984 (in Chinese with English abstract). |
| [145] |
Yao, T. D., Yu, W. S., Wu, G. J., et al., 2019. Glacier Anomalies and Relevant Disaster Risks on the Tibetan Plateau and Surroundings. Chinese Science Bulletin, 64(27): 2770-2782 (in Chinese). |
| [146] |
Yin, Y. P., Zhu, S. N., Li, B., 2021. High-Level Remote Geological Disasters in Qinghai-Tibet Plateau. Science Press, Beijing (in Chinese). |
| [147] |
Yuan, D. Y., Feng, J. G., Zheng, W. J., et al., 2020. Migration of Large Earthquakes in Tibetan Block Area and Disscussion on Major Active Region in the Future. Seismology and Geology, 42(2): 297-315 (in Chinese with English abstract). |
| [148] |
Zeng, Q. L., Zhang, L. Q., Davies, T., et al., 2019. Morphology and Inner Structure of Luanshibao Rock Avalanche in Litang, China and Its Implications for Long-Runout Mechanisms. Engineering Geology, 260: 105216. https://doi.org/10.1016/j.enggeo.2019.105216 |
| [149] |
Zhang, T. G., Wang, W. C., An, B. S., et al., 2023. Enhanced Glacial Lake Activity Threatens Numerous Communities and Infrastructure in the Third Pole. Nature Communications, 14: 8250. https://doi.org/10.1038/s41467-023-44123-z |
| [150] |
Zhang, Y. S., Du, G. L., Guo, C. B., et al., 2021. Research on Typical Geomechanical Model of High-Position Landslides on the Sichuan-Tibet Traffic Corridor. Acta Geologica Sinica, 95(3): 605-617 (in Chinese with English abstract). |
| [151] |
Zhao, B., Su, L. J., Wang, Y. S., et al., 2023. Insights into Some Large-Scale Landslides in Southeastern Margin of Qinghai-Tibet Plateau. Journal of Rock Mechanics and Geotechnical Engineering, 15(8): 1960-1985. https://doi.org/10.1016/j.jrmge.2022.09.005 |
| [152] |
Zhao, B., Zhang, Q., Wang, L. J., et al., 2025. Preliminary Analysis of Failure Characteristics of the 2025 Junlian Rock Avalanche, China. Landslides, 22(8): 2593-2605. https://doi.org/10.1007/s10346-025-02556-1 |
| [153] |
Zhong, D. L., Ding, L., 1996. Discussion on Uplift Process and Mechanism of Qinghai-Tibet Plateau. Science in China (Ser. D), 26(4): 289-295 (in Chinese). |
| [154] |
Zhong, Y., Allen, S. K., Zheng, G. X., et al., 2024. Large Rock and Ice Avalanches Frequently Produce Cascading Processes in High Mountain Asia. Geomorphology, 449: 109048. https://doi.org/10.1016/j.geomorph.2023.109048 |
| [155] |
Zhu, L., Tang, X., He, S. M., et al., 2025. Geomorphology and Sedimentology of the Nyixoi Chongco Rock Avalanche and Implications for Emplacement Mechanisms. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF007666. https://doi.org/10.1029/2024JF007666 |
| [156] |
Zou, Q., Guo, X. J., Luo, Y., et al., 2021. Spatial Pattern and Response of Landslide and Debris Flow Risks in China-Pakistan Economic Corridor. Bulletin of Chinese Academy of Sciences, 36(2): 160-169 (in Chinese with English abstract). |
国家自然科学基金资助项目(42322702)
国家自然科学基金资助项目(U2244229)
国家自然科学基金资助项目(42207203)
新型交叉学科培育基金项目(2682025ZD002)
/
| 〈 |
|
〉 |