瑞士瓦莱州Blatten高位远程崩滑碎屑流成灾特征与级联放大效应
李滨 , 高杨 , 庄宇 , 刘晓杰 , 张晗 , 秦林鹏 , 郭桢 , 殷跃平
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4950 -4969.
瑞士瓦莱州Blatten高位远程崩滑碎屑流成灾特征与级联放大效应
Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps
,
,
2025年5月28日瑞士瓦莱州布拉滕村(Blatten)上游发生高位远程冰岩崩事件,滑体体积为830万m³,运动距离为3 300 m,堆积面积为2.66 km2,滑坡堆积导致1人遇难,300名居民撤离,隆扎河堰塞断流.综合遥感调查、滑震信号解译和动力学数值模拟等方法,揭示了瑞士Blatten高位远程冰岩碎屑流动力成灾过程与级联放大效应.结果表明:(1)瑞士Blatten滑坡发生过程主要呈现为高位冰岩崩加载-冰川融化变形-高位远程碎屑流成灾3个地质演化阶段;(2)该滑坡具有强烈的级联放大效应,上部危岩体逐渐垮塌堆积于Birch冰川之上,随着冰川上覆堆积逐渐积累和冰川强度的逐渐弱化,最终发生整体失稳,造成了此次巨大规模成灾;(3)冰屑和融水显著降低了滑体运动阻力,促进碎屑流低摩阻远程致灾.综上研究,认为在高位远程滑坡调查、风险评估与早期预警中,应充分考虑多次小滑坡累积成大灾的级联放大效应,该级联放大效应将大幅提高灾害的破坏力和危害性.瑞士Blatten滑坡为我国西部山区城镇风险区划和重大工程建设中面临的高位远程地质灾害风险提供了重要警示作用.
On 28 May 2025, a large rock-ice avalanche occurred at the Blatten village in Valais, Switzerland. The failure mobilized approximately 8.3 million m³ of material, traveled 3 300 m, and deposited over an area of 2.66 km². The Blatten avalanche caused one fatality, buried the Blatten village and dammed the Lonza River. Integrating remote sensing analysis, seismic signal interpretation and numerical modeling, this study reconstructs the event and identifies its pronounced cascade amplification effects. The failure evolved through three distinct stages: high-altitude collapse, glacier melting and deformation, and transformation into a long-runout avalanche. Progressive debris accumulation and gradual glacier weakening were the key drivers of the large-scale hazard. In addition, low-friction ice and meltwater markedly reduced motion resistance, facilitating the long-runout movement. These findings highlight the need to account for the potential of multiple small-scale failures cascading into catastrophic events in avalanche risk assessments. The Blatten disaster offers important implications for hazard zoning and the planning of major infrastructure projects in high-mountain regions of western China.
瑞士Blatten滑坡 / 失稳启动 / 级联放大效应 / 动力学分析 / LPF3D / 工程地质.
Blatten avalanche / initiation process / cascade amplification / dynamic / LPF3D / engineering geology
| [1] |
Deng,Y.,Gao,Q.Y.,Wang,X.,et al.,2025.A Large⁃Scale Rock Avalanche⁃Debris Flow Cascading Hazard in the Sedongpu Catchment,Southeastern Tibetan Plateau.Landslides,22(1):109-120.https://doi.org/10.1007/s10346⁃024⁃02382⁃x |
| [2] |
Dong,Z.B.,Su,L.J.,Hu,B.L.,et al.,2024.Friction Behaviors and Flow Resistances of Rock⁃Ice Avalanches.Cold Regions Science and Technology,220:104130.https://doi.org/10.1016/j.coldregions.2024.104130 |
| [3] |
Duncan,J.M.,Wright,S.G.,Brandon,T.L.,2014.Soil Strength and Slope Stability.John Wiley & Sons,Hoboken,N.J.. |
| [4] |
Ekström,G.,Stark,C.P.,2013.Simple Scaling of Catastrophic Landslide Dynamics.Science,339(6126):1416-1419.https://doi.org/10.1126/science.1232887 |
| [5] |
Fan,X.M.,Feng,Z.T.,Ni,T.,et al.,2025.The Friction Behavior of Rock⁃Ice Avalanches in Relation to Rock⁃Ice Segregation:Insights from Flume Physical Experiments.Journal of Geophysical Research:Earth Surface,130:e2024JF007904.https://doi.org/10.1029/2024jf007904 |
| [6] |
Gao,H.Y.,Yin,Y.P.,Li,B.,et al.,2023a.Geomorphic Evolution of the Sedongpu Basin after Catastrophic Ice and Rock Avalanches Triggered by the 2017 Ms6.9 Milin Earthquake in the Yarlung Zangbo River Area,China.Landslides,20(11):2327-2341.https://doi.org/10.1007/s10346⁃023⁃02118⁃3 |
| [7] |
Gao,S.H.,Yin,Y.P.,Li,B.,et al.,2024.Dynamic Characteristics of the Rock⁃Ice Avalanche Disaster Chain in the Zelongnong Basin,Yarlung Zangbo River Canyon Region.Journal of Engineering Geology,32(3):996-1009 (in Chinese with English abstract). |
| [8] |
Gao,Y.,Li,B.,Gao,H.Y.,et al.,2023b.Risk Assessment of the Sedongpu High⁃Altitude and Ultra⁃Long⁃Runout Landslide in the Lower Yarlung Zangbo River,China.Bulletin of Engineering Geology and the Environment,82(9):360.https://doi.org/10.1007/s10064⁃023⁃03374⁃2 |
| [9] |
Gao,Y.,Li,B.,Zhang,H.,et al.,2024a.Numerical Modeling of Mixed Two⁃Phase in Long Runout Flow⁃Like Landslide Using LPF3D.Landslides,21(3):641-660.https://doi.org/10.1007/s10346⁃023⁃02159⁃8 |
| [10] |
Gao,Y.,Yin,Y.P.,Li,B.,et al.,2024b.Multistate Transition and Coupled Solid-Liquid Modeling of Motion Process of Long⁃Runout Landslide.Journal of Rock Mechanics and Geotechnical Engineering,16(7):2694-2714.https://doi.org/10.1016/j.jrmge.2023.12.001 |
| [11] |
Gruber,S.,Haeberli,W.,2007.Permafrost in Steep Bedrock Slopes and Its Temperature⁃Related Destabilization Following Climate Change.Journal of Geophysical Research:Earth Surface,112(F2):2006JF000547.https://doi.org/10.1029/2006jf000547 |
| [12] |
Hibert,C.,Ekström,G.,Stark,C.P.,2014.Dynamics of the Bingham Canyon Mine Landslides from Seismic Signal Analysis.Geophysical Research Letters,41(13):4535-4541.https://doi.org/10.1002/2014gl060592 |
| [13] |
Huggel,C.,Clague,J.J.,Korup,O.,2012.Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms,37(1):77-91.https://doi.org/10.1002/esp.2223 |
| [14] |
Kääb,A.,Leinss,S.,Gilbert,A.,et al.,2018.Massive Collapse of Two Glaciers in Western Xizang in 2016 after Surge⁃Like Instability.Nature Geoscience,11(2):114-120.https://doi.org/10.1038/s41561⁃017⁃0039⁃7 |
| [15] |
Li,Y.,Cui,Y.F.,Hu,X.,et al.,2024.Glacier Retreat in Eastern Himalaya Drives Catastrophic Glacier Hazard Chain.Geophysical Research Letters,51(8):e2024GL108202.https://doi.org/10.1029/2024gl108202 |
| [16] |
Liu,C.Z.,Lü,J.T.,Tong,L.Q.,et al.,2019.Research on Glacial/Rock Fall⁃Landslide⁃Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet.Geology in China,46(2):219-234 (in Chinese with English abstract). |
| [17] |
Marcer,M.,Cicoira,A.,Cusicanqui,D.,et al.,2021.Rock Glaciers throughout the French Alps Accelerated and Destabilised since 1990 as Air Temperatures Increased.Communications Earth & Environment,2:81.https://doi.org/10.1038/s43247⁃021⁃00150⁃6 |
| [18] |
Mergili,M.,Jaboyedoff,M.,Pullarello,J.,et al.,2020.Back Calculation of the 2017 Piz Cengalo-Bondo Landslide Cascade with R.avaflow: We can do and What We can Learn.Natural Hazards and Earth System Sciences,20(2):505-520.https://doi.org/10.5194/nhess⁃20⁃505⁃2020 |
| [19] |
Munch,J.,Zhuang,Y.,Dash,R.K.,et al.,2024.Dynamic Thermomechanical Modeling of Rock⁃Ice Avalanches:Understanding Flow Transitions,Water Dynamics,and Uncertainties.Journal of Geophysical Research:Earth Surface,129(10):e2024JF007805.https://doi.org/10.1029/2024jf007805 |
| [20] |
Nian,T.K.,Zhao,R.D.,Zheng,D.F.,et al.,2024.Advances in the Study of Ice⁃Rock Avalanche Disaster Chains in Yarlung Zangbo River Basin in Southeast Tibet.Journal of Hydraulic Engineering,55(10):1146-1162 (in Chinese with English abstract). |
| [21] |
Petley,D.,2025a.The 28 May 2025 Update on the Landslide Threatening Blatten in Switzerland.Available Online:https://eos.org/thelandslideblog/blatten⁃4 |
| [22] |
Petley,D.,2025b.The Incipient Major Rock Slope Failure at Blatten in Switzerland.Available Online:https://eos.org/thelandslideblog/blatten⁃1 |
| [23] |
Peng,J.B.,Zhang,Y.S.,Huang,D.,et al.,2023.Interaction Disaster Effects of the Tectonic Deformation Sphere,Rock Mass Loosening Sphere,Surface Freeze⁃Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau.Earth Science,48(8):3099-3114 (in Chinese with English abstract). |
| [24] |
Pfluger,F.,Weber,S.,Steinhauser,J.,et al.,2025.Massive Permafrost Rock Slide under a Warming Polythermal Glacier Deciphered through Mechanical Modeling (Bliggspitze,Austria).Earth Surface Dynamics,13(1):41-70.https://doi.org/10.5194/esurf⁃13⁃41⁃2025 |
| [25] |
Roe,G.H.,Baker,M.B.,Herla,F.,2017.Centennial Glacier Retreat as Categorical Evidence of Regional Climate Change.Nature Geoscience,10(2):95-99.https://doi.org/10.1038/ngeo2863 |
| [26] |
Schneider,D.,Huggel,C.,Haeberli,W.,et al.,2011.Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility.Earth Surface Processes and Landforms,36(14):1948-1966.https://doi.org/10.1002/esp.2218 |
| [27] |
Shen,Y.J.,Chen,S.W.,Zhang,L.,et al.,2022.High⁃Altitude Initiation,Dynamic Collapse and Phase Transformation of Mountain Snow⁃Ice Melt Geological Disaster Chain.Journal of Glaciology and Geocryology,44(2):643-656 (in Chinese with English abstract). |
| [28] |
Shugar,D.H.,Jacquemart,M.,Shean,D.,et al.,2021.A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli,Indian Himalaya.Science,373(6552):300-306.https://doi.org/10.1126/science.abh4455 |
| [29] |
SwissInfo,2025.Blatten Glacier Fractures Increase Sharply.Available Online:https://www.swissinfo.ch/eng/various/blatten⁃vs⁃glacier⁃fractures⁃increase⁃sharply/89418301 |
| [30] |
Yang,Q.Q.,Su,Z.M.,Chen,L.Z.,et al.,2015.Flume Tests on Influence of Ice to Mobility of Rock⁃Ice Avalanches.Journal of Engineering Geology,23(6):1117-1126 (in Chinese with English abstract). |
| [31] |
Yin,Y.P.,2000.Study on Characteristics and Disaster Reduction of Giant Landslides on Yigong Expressway in Bomi,Xizang. Hydrogeology and Engineering Geology,27(4):8-11 (in Chinese with English abstract). |
| [32] |
Yin,Y.P.,Li,B.,Zhang,T.T.,et al.,2021a.The February 7 of 2021 Glacier⁃Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli,India.The Chinese Journal of Geological Hazard and Control,32(3):1-8(in Chinese with English abstract). |
| [33] |
Yin,Y.P.,Zhu,S.N.,Li,B.,et al.,2021b.High Altitude Remote Geological Hazards on the Qinghai Tibet Plateau.Science Press,Beijing(in Chinese). |
| [34] |
Yin,Y.P.,Xing,A.G.,2012.Aerodynamic Modeling of the Yigong Gigantic Rock Slide⁃Debris Avalanche,Tibet,China.Bulletin of Engineering Geology and the Environment,71(1):149-160.https://doi.org/10.1007/s10064⁃011⁃0348⁃9 |
| [35] |
Yin,Y.P.,Zhang,S.L.,Huo,Z.H.,et al.,2025.Study on the May 28 Birch High⁃Altitude and Long⁃Runout Ice⁃Rock Avalanche in the Swiss Alps.The Chinese Journal of Geological Hazard and Control,36(4):1-14 (in Chinese with English abstract). |
| [36] |
Zhang,T.T.,Yin,Y.P.,Li,B.,et al.,2022.Characteristics and Dynamic Analysis of the October 2018 Long⁃Runout Disaster Chains in the Yarlung Zangbo River Downstream,Tibet,China.Natural Hazards,113(3):1563-1582.https://doi.org/10.1007/s11069⁃022⁃05358⁃z |
| [37] |
Zhang,Z.Y.,Liu,D.R.,Fan,G.,et al.,2025.Movement Characteristics of Rock⁃Ice Avalanches:Insights from Flume Tests.Cold Regions Science and Technology,237:104538.https://doi.org/10.1016/j.coldregions.2025.104538 |
| [38] |
Zhuang,Y.,Dash,R.K.,Bühler,Y.,et al.,2025.Fluidization and Snow Cover Effects in Rock⁃IcerSnow Avalanches:Lessons from Piz Cengalo,Fluchthorn,and Piz Scerscen Events.Computers and Geotechnics,186:107456.https://doi.org/10.1016/j.compgeo.2025.107456 |
| [39] |
Zhuang,Y.,Yin,Y.P.,Xing,A.G.,et al.,2020.Combined Numerical Investigation of the Yigong Rock Slide⁃Debris Avalanche and Subsequent Dam⁃Break Flood Propagation in Tibet,China.Landslides,17(9):2217-2229.https://doi.org/10.1007/s10346⁃020⁃01449⁃9 |
国家重点研发计划项目课题(2024YF1700302)
国家自然科学基金(42177172)
/
| 〈 |
|
〉 |