四川盆地新元古代构造属性及其油气地质意义

陈友智 , 杨晓 , 吴建学 , 巫芙蓉 , 梁虹 , 吴育林 , 郭海洋 , 赵振伟 , 李晨睿 , 陈颖 , 王晓阳 , 于宁 , 王鹏 , 应倩 , 张帅 , 单宝玺

地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2058 -2070.

PDF (19789KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2058 -2070. DOI: 10.3799/dqkx.2023.111

四川盆地新元古代构造属性及其油气地质意义

作者信息 +

Neoproterozoic Tectonic Attributes and Their Petroleum Geological Significance in Sichuan Basin

Author information +
文章历史 +
PDF (20263K)

摘要

前人利用四川盆地周缘及内部新元古代火成岩地球化学信息分析其构造背景,存在伸展和挤压两种截然不同的认识.地球物理资料显示盆地深部裂陷广布,而至陡山沱组沉积时期盆地中-西部存在明显的隆升剥蚀,两者之间的构造转换过程不清.针对这些问题,通过对四川盆地地震反射剖面构造解释,结合岩石地球化学、钻井数据与盆缘露头沉积层序分析,探索四川盆地新元古代构造演化过程与油气有利区.结果表明罗迪尼亚超大陆裂解至冈瓦纳汇聚阶段洋-陆俯冲是导致川西-川中裂谷向隆升剥蚀转化的原因,而川东新元古代中后期(820~551 Ma)始终处于构造沉降.川西-川中新元古界可能仅存在乌叶组同期的有机质岩,川中隆升区与川东沉降区之间发育碎屑岩储集体.

关键词

四川盆地 / 新元古代 / 构造属性 / 罗迪尼亚超大陆 / 澄江运动 / 石油地质.

Key words

Sichuan basin / Neoproterozoic / structure attribute / Rodinia supercontinent / Chengjiang movement / petroleum geology

引用本文

引用格式 ▾
陈友智,杨晓,吴建学,巫芙蓉,梁虹,吴育林,郭海洋,赵振伟,李晨睿,陈颖,王晓阳,于宁,王鹏,应倩,张帅,单宝玺. 四川盆地新元古代构造属性及其油气地质意义[J]. 地球科学, 2024, 49(06): 2058-2070 DOI:10.3799/dqkx.2023.111

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

罗迪尼亚超大陆解体至冈瓦纳古陆拼合的演化过程,一直是地质学界的关注焦点(Hoffman,1991Li and Powell,2001Cocks and Torsvik,2013Wang et al.,2018).新元古代伴随古太平洋的开启,扬子作为微陆块漂浮于劳伦与东冈瓦纳之间(Li,1998),对其具体的演化历史研究较少.一部分学者认为华南位于的劳伦古大陆和澳大利亚大陆之间,火成岩地球化学性质反映新元古代发育裂谷甚至是地幔柱相关构造(李献华等,2008).加之,扬子地块东南缘湘黔桂裂谷,从青白口系至震旦系陡山沱组沉积较为连续,地层表现为整合或平行不整合接触(陈建书等,2016),未发现明显构造变动的迹象.地球物理资料显示四川盆地深部广泛发育裂陷槽(谷志东和汪泽成,2014;李路顺等,2022),由此推测四川盆地新元古代一直处于构造伸展.但是,另外一些学者则认为新元古代扬子与澳大利亚和印度板块相邻,扬子地块西缘与中部新元古代的岩浆与洋陆俯冲有关(罗志立,1986; Zhou et al.,2002Lai et al.,2015),四川盆地处于岛弧或弧后盆地的构造位置.上述两派观点缺少通过对岩浆岩地球化学性质与盆地构造-充填的整体分析来理解四川盆地新元古代构造背景的考量.

全球存在多个巨型的中新元古代含油气系统,如西伯利亚东部Lena-Tunguska地区和中西部Riphean地区(Kontorovich et al.,1991Frolov et al.,2015),以及阿曼地区(Almarjeby and Nash,1986).四川盆地新元古代存在裂陷沉积(谷志东和汪泽成,2014;李路顺等,2022),且盆地周缘发育同期富有机质岩(谢增业等,2017;王文之等,2019),通过周缘类推盆内可能存在新元古代原生油气藏,但对原型盆地认识不足.Li et al.(2021)认为我国前寒武纪油气勘探研究首先应该恢复原型盆地.Yang et al.(2020)通过对中上扬子少量的区域地震剖面及岩石露头分析,恢复扬子地块新元古界原型盆地,试图探索华南新元古代油气有利勘探区.但该研究成果缺少对四川盆地内部新元古代构造与地层序列的详细分析.

本文通过对四川盆地三维、二维地震反射剖面构造解释,结合岩石地球化学、钻井资料与周缘露头沉积层序分析,来研究四川盆地新元古代构造-沉积演化过程,丰富了罗迪尼亚超大陆裂解与冈瓦纳古陆的拼合构造演化模式,也为四川盆地新元古代原型盆地恢复和新元古代中后期(820~551 Ma)油气勘探提供了理论依据.

1 区域地质背景

新元古代四川盆地西缘发育南北向康滇裂谷(卓皆文等,2013),北缘发育近东西向南秦岭裂谷(刘航,2019),东南缘发育北东向鄂西海槽与湘黔桂裂谷(谷昊东等,2021;汪正江,2008).盆地内部发育主体构造走向北东的前震旦纪裂谷(汪泽成等,2014;李路顺等,2022)(图1).

钻井资料揭示盆内陡山沱组沉积层序特征.川东南地区宁2井钻遇307 m的震旦系陡山沱组地层,上部为以砂岩为主,下部以泥岩为主.川中地区LL1、WT28、PT1、NJ井陡山沱组地层厚度较薄多介于9.0~22.8 m,岩性为泥岩、砂岩、白云岩与泥质白云岩等.且陡山沱组多下伏火成岩,火成岩年龄701~790 Ma,地球化学性质反映岛弧和非造山伸展两种不同的构造背景(罗志立,1986;谷志东等,2015).川东北地区WT1井钻遇陡山沱组地层468 m,下部陡山沱组一段发育低位体系域重力流沉积,砂泥岩互层为主要特征;二段发育海侵体系域浅水陆棚,以泥岩为主;三段为高位体系域缓坡或碳酸盐岩台地,以白云岩夹砂岩为主要特征;四段发育海侵体系域陆棚,岩性为粉砂质泥岩、泥质粉砂岩与砂岩(图2).WT1井陡山沱组地层层序可与秦岭海槽城口明月乡露头层序相对比,而川西-川中地区缺少陡山沱组一段沉积,陡山沱组二、三段才开始发育混积陆棚(汪泽成等,2019).

裂谷作用减弱,会逐渐向凹陷转换,如四川盆地震旦纪灯影期德阳-安岳裂陷槽,在寒武系沧浪铺组下段沉积时期已转变为台洼(马石玉等,2021).从新元古代早期北东向裂谷沉积,至陡山沱组一段沉积时期盆地隆升,盆地中-西部普遍缺失沉积,两者之间的转换过程没有得到很好的解释.

2 地震解释层位标定

此次地震解释方案中,基底反射界面以较为连续的强波峰与下伏杂乱反射相区分.裂谷作用常常能被划分为多个阶段,早期裂谷与晚期裂谷之间常以热沉降期相隔,热沉降期比早期裂谷沉积水体更深,面积更广,沉积陆棚相或三角洲相细粒碎屑岩(Dam and Sønderholm,2021),与早期裂谷沉积的侵蚀谷粗粒碎屑岩相比,波阻抗相差较大,在地震剖面上显示为连续强波峰反射.因此,此次研究将新元古界裂陷内出现的反射强、连续性好的波峰作为不同时期裂陷的分界面.裂陷作用结束进入拗陷阶段,特别是构造挤压抬升造成水体迅速变浅,岩石粒度向上变粗,会形成连续强波谷反射(图5图6).

此外,地震勘探区还标定出陡山沱期混积陆棚相区的灯影组底界和筇竹寺组,如PT1井.灯影组底界由先弱后强两个相位组成,前相位波谷为标层相位.筇竹寺组底界表现为一单强波峰,其后常呈弱复波,单强波峰为标层相位.陡山沱期裂陷沉积区的灯影组底界和筇竹寺组,如WT1井.灯影组底界位于两弱波峰之间的波谷底界附近,波谷为标层相位.筇竹寺组底界表现为一单强波峰,单强波峰为标层相位(图3).

3 地震资料解释

四川盆地东北部北西向过WT1井地震剖面①显示,西部汉南古陆附近主要发育小型地堑,中部地堑规模稍大,能观察到半地堑结构.东部WT1井附近虽受川东高陡构造影响,但能明显观察到基底反射界面和较厚的南华系地层(图4).整体上剖面由西向东裂陷规模有逐渐增大的趋势,且裂陷一直持续到陡山沱组沉积时期,灯影期则表现为拗陷沉积.

四川盆地中部北西向过NJ井地震剖面②显示,川中地区发育大型半地堑,东侧主控断层沟通基底岩浆,通过近直立的分支断层形成超基性-中性浅成岩煌斑岩.新元古代早期裂谷常独立发育(李路顺等,2022),地震剖面上地层连续性较差,热沉降期相对海平面上升,出现较为连续的反射层,该现象与Yang et al.(2020)所观察到的地震反射现象相似,以此为依据来划分裂陷期次.依据地层连续性与断层活动强度,前震旦纪划分出2期裂陷与1期拗陷期,与北部过WT1井剖面相比,裂陷期次更明显,拗陷期提前(图5).

四川盆地中部北西向过PT1井地震剖面③显示,川中地区发育大型半地堑,东侧主控断层断入基底发育规模较大,向上明显被连续性地层截断,之后转变为小型阶梯状断层,最后断陷停止发育转入拗陷沉积.灯影组之下构造三期活动特征明显.基底岩浆物质通过半地堑主控断层运移,沿分支断层在PT1井处喷出形成安山岩(图6).安山岩的出现可能代表类似于环太平洋活动大陆边缘岛弧构造环境.

四川盆地南部北西向过W28井地震剖面④显示,川中地区向南西延伸的半地堑规模依然较大,半地堑西侧存在花岗岩侵入,航磁资料显示侵入规模大(谷志东等,2013),东侧构造样式为地堑-地垒(图7).川中地区普遍钻遇前寒武纪火成岩,反映该时期构造-热事件较为活跃.

4 讨论

4.1 盆地内部新元古代洋-陆俯冲相关构造存在与否

为了讨论四川盆地新元古代洋-陆俯冲是否存在构造作用时限及范围,以及对古地貌和油气地质要素的影响,需要将挤压构造前后的伸展构造一并讨论.地震剖面显示盆地深部发育一系列北东向裂谷(汪泽成等,2014;李路顺等,2021),构造样式为地堑、半地堑(图5~8),似乎并没有挤压相关的构造存在.然而,川中威远地区陡山沱组沉积岩直接与南华纪794 Ma花岗岩相接触(汪泽成等,2019),由于花岗岩为侵入岩,岩体之上应有厚度为3~5 km的新元古代地层被剥蚀(Pitcher,1997).假设冰期岩石平均剥蚀速率为27.1±10.2 mm/ka(许刘兵和周尚哲,2009),剥蚀3 km厚地层需要110 Ma左右,表明川中地区新元古代遭受长时间剥蚀.而通常裂谷作用引起的隆升仅持续数百万年(Dam and Sønderholm,2021).该构造运动影响的范围面积大(图2),隆升剥蚀时间长,难以用伸展背景下裂谷肩部均衡翘升和软流圈上涌引起的岩石圈去顶作用来解释.间接说明新元古代超大陆裂解之后的某段时间内,至少四川盆地西部与中部处于挤压环境.

该挤压作用并不十分强烈,川中地震剖面显示出类似于阿尔卑斯造山带特征,仍保留了早期裂谷构造形态(Jourdon et al.,2019).加上川西及川中地区岩浆岩地球化学显示出岛弧岩浆性质(罗志立,1986;Lai et al.,2015; 赖绍聪和朱韧之,2017; 汪泽成等,2019),洋-陆俯冲应是盆地中西部地层抬升剥蚀的原因.

4.2 盆地内部新元古代洋-陆俯冲相关构造作用时限与范围

四川盆地周缘发育新元古代裂陷槽(汪正江等,2015),同期火成岩同位素年龄限定构造作用时间.川西地区走向北东与南北的基性岩墙群年龄分别约为800 Ma与780 Ma(资金平,2017).黔东南下江群基性火山岩年龄为814±13 Ma(王剑等,2006).盆地内部川中威远地区W117井存在794±11 Ma的A2型花岗岩(谷志东等,2015).由此可见,盆地范围内强烈拉伸期应该在800~780 Ma.

伸展运动之后,扬子西缘受澄江运动的影响,云南中东部南华系冰碛岩与下伏澄江组砂岩之间微角度不整合(孙家骢,1985),运动时间在725 Ma至635 Ma之间(崔晓庄等,2013),从地层接触关系来看,构造作用较弱.川西-川中地区普遍出现陡山沱组二段覆盖在青白口纪-南华纪火成岩之上(汪泽成等,2019),该区岛弧岩浆年龄约为770 Ma、750~740 Ma与701 Ma(罗志立,1986; Lai et al.,2015;赖绍聪和朱韧之,2017),表明盆地中西部也受到了该构造运动的影响,且该构造运动结束时间为盆地陡山沱组一段沉积期末.

川东北WT1井灯影组之下钻遇大套的泥岩、粉砂岩以及白云岩,早先归为南华系,但是该套地层中碎屑岩粒度小,缺少以砾石沉积为主要特征的冰碛岩.此外该套地层层序可与城口明月乡陡山沱组剖面对比,陡山沱组发育完全,表现为裂谷充填序列(图2).

川东石柱地区线束三维地震资料显示深部发育半地堑,切穿基底和灯影组,构造走向北东(图1剖面⑤、图8).前已述及青白口纪-南华纪裂谷以北东向为主,主要为地堑与半地堑构造样式,伸展量大.而灯影期构造伸展微弱(Liu et al.,2021),断层发育规模小,整体构造走向南北.因此,笔者认为该裂谷初始形成于青白口纪-南华纪,灯影期继承了早期的构造格局.综上所述,澄江运动主要影响川西-川中,表现为大规模的隆升剥蚀,川东未受澄江期洋-陆俯冲的影响,或属弧后伸展区,仍为裂陷沉积(图9图10).

陡山沱组二段沉积期-灯影期扬子地块位于冈瓦纳超大陆的北缘,虽紧邻但并未发生拼合,受超大陆内部块体碰撞的远程效应影响,仅川西南局部地区出现隆升、剥蚀(Yao et al.,2022).该时期构造活动整体较弱(汪泽成等,2019),青白口纪-南华纪形成的北东向正断层停止活动,仅在德阳-安岳裂陷槽东侧边缘高石梯-磨溪地区发育近南北向的小型正断层(谢武仁等,2021).川东裂谷地貌控制灯影组早期的岩相古地理,而川西-川中青白口纪-南华纪裂谷系统关闭,已转换为隆起,陡山沱组二段开始进入造山后伸展,先前的隆起区转变为混积陆棚(汪泽成等,2019;图10).

4.3 新元古代洋-陆俯冲相关构造对盆地内部油气地质要素分布的影响

盆山体系与构造作用控制油气地质要素发育与分布.罗迪尼亚超大陆裂解阶段,四川盆地东南部湘黔桂裂谷内青白口系下江群乌叶组上部发育碳质千枚岩,显微镜下见有机质(图11),乌叶组年龄在800 Ma左右(陈建书等,2016).同时代四川盆地内部裂陷广布,川中地区发育大型裂谷,裂谷宽约80 km(图6),快速拉张易于形成缺氧的沉积环境,裂谷足够的宽度保证了有机质泥岩免受重力流沉积与河流沉积的影响,这都利于有机质岩的发育.

澄江期川中-川西地区隆升剥蚀,虽遭受挤压抬升,但构造变形强度不大,可能造成与乌叶组同期的有机质岩停止生烃,后期可能存在二次生烃.川东地区仍然为裂陷沉积,剥蚀区向沉降区转化带发育冲积扇与河流-三角洲沉积体系,可能发育相关的储集体(图10).湘黔桂裂谷内发育南华系大塘坡组富有机质岩系(谢增业等,2017),地层年龄在662 Ma左右(尹崇玉等,2006).此时川东裂陷槽内水体仍然较深(图10),存在发育大塘坡组烃源岩的沉积条件.

冈瓦纳超大陆汇聚远程效应影响时期,陡山沱组基本继承了之前的地貌格局,盆地东北缘城口明月乡陡山沱组烃源岩发育(王文之等,2019),川东地区沉积环境与之相似,沉降中心存在烃源岩的可能性较大.

5 结论

新元古代中后期(820~551 Ma)四川盆地是否存在洋-陆俯冲一直存在争议,通过对深部地震剖面构造解释,结合盆地内钻井及周边岩石露头层序资料,对比区域已有的研究成果,笔者对该构造作用获得如下认识.

(1) 罗迪尼亚超大陆裂解之后,四川盆地中-西部长时间、大范围的地层抬升剥蚀是洋陆俯冲的结果,与云南中东部澄江运动相似,构造活动较弱,仍然保留有早期裂谷构造形态.

(2) 洋-陆俯冲相关的挤压构造主要作用于川西-川中,而川东属于弧后伸展区或未受挤压构造影响,俯冲构造开始于约770 Ma,持续到陡山沱组一段沉积期末.

(3) 川中地区新元古代裂陷规模大,利于形成与乌叶组同期的黑色岩系;洋-陆俯冲引起抬升有利于其二次生烃,川中隆升区与川东沉降过渡带可能发育碎屑岩储层,川东沉降区存在发育大塘坡组富有机质岩系的沉积环境;陡山沱组沉积古地貌与澄江运动期相似,川东存在发育陡山沱组烃源岩的可能.

参考文献

[1]

Almarjeby,A.,Nash,D.,1986.A Summary of the Geology and Oil Habitat of the Eastern Flank Hydrocarbon Province of South Oman.Marine and Petroleum Geology,3 (4):306-314.https://doi.org/10.1016/0264-8172(86)90035-8

[2]

Chen,J.S.,Dai,C.G.,Peng,C.L.,et al.,2016.The Filling Sequence and Stratigraphic Framework of Rift Basin during the Neoproterozoic 820-635 Ma in Hunan,Guizhou and Guangxi.Geology in China,43(3):899-920 (in Chinese with English abstract).

[3]

Cocks,L.R.M.,Torsvik,T.H.,2013.The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia.Earth-Science Reviews,117:40-79.https://doi.org/10.1016/j.earscirev.2012.12.001

[4]

Condon,D.,Zhu,M.,Bowring,S.,et al.,2005.U-Pb Ages from the Neoproterozoic Doushantuo Formation,China.Science,308(5718):95-102.https://doi.org/10.1126/science.1107765

[5]

Cui,X.Z.,Jiang,X.S.,Wang,J.,et al.,2013.Zircon U-Pb Geochronology for the Stratotype Section of the Neoproterozoic Chengjiang Formation in Central Yunnan and Its Geological Significance.Geoscience,27(3):547-556 (in Chinese with English abstract).

[6]

Dam,G.,Sønderholm,M.,2021.Tectonostratigraphic Evolution,Palaeogeography and Main Petroleum Plays of the Nuussuaq Basin: An Outcrop Analogue for the Cretaceous-Palaeogene Rift Basins Offshore West Greenland.Marine and Petroleum Geology,129:105047.https://doi.org/10.1016/j.marpetgeo.2021.105047

[7]

Frolov,S.V.,Akhmanov,G.G.,Bakay,E.A.,et al.,2015.Meso-Neoproterozoic Petroleum Systems of the Eastern Siberian Sedimentary Basins.Precambrian Research,259:95-113.https://doi.org/10.1016/j.precamres.2014.11.018

[8]

Gu,H.D.,Hu,J.,An,Z.H.,et al.,2021.Sedimentary Characteristics of Doushantuo Formation in Shennongjia Area:Implications for “West Hubei Trough”.Earth Science,46(8):2958-2972 (in Chinese with English abstract).

[9]

Gu,Z.D.,Wang,Z.C.,2014.The Discovery of Neoproterozoic Extensional Structures and Its Significance for Gas Exploration in the Central Sichuan Block,Sichuan Basin,South China.Science China:Earth Sciences,57(11):2758-2768 (in Chinese).

[10]

Gu,Z.D.,Zhai,X.F.,Jiang,X.F.,et al.,2013.Geochemical Characteristics and Tectonic Environment of Granite in Weiyuan Structural Basement,Sichuan Basin.Earth Science,38(Suppl.1):31-42 (in Chinese with English abstract).

[11]

Gu,Z.D.,Zhai X.F.,Yuan,M.,2015.Zircon U-Pb Dating,Geochemical Characteristics and Tectonic Environment of Basement Granite in Sichuan Basin.Acta Geologica Sinica,89(Suppl.1):296 (in Chinese).

[12]

Hoffman,P.F.,1991.Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science,252(5011):1409-1412.https://doi.org/10.1126/science.252.5011.1409

[13]

Jourdon,A.,Le Pourhiet,L.,Mouthereau,F.,et al.,2019.Role of Rift Maturity on the Architecture and Shortening Distribution in Mountain Belts.Earth and Planetary Science Letters,512:89-99.https://doi.org/10.1016/j.epsl.2019.01.057.

[14]

Kontorovich,A.E.,Maldenbaum,M.M.,Melinkov,N.V.,et al.,1991.Lena-Tunguska Proterozoic-Paleozoic Petroleum Province.AAPG Bulletin,75(8):1414.https://doi.org/10.1306/0c9b1be7-1710-11d7-8645000102c1865d

[15]

Lai,S.C.,Qin,J.F.,Zhu,R.Z.,et al.,2015.Neoproterozoic Quartz Monzodiorite-Granodiorite Association from the Luding-Kangding Area:Implications for the Interpretation of an Active Continental Margin along the Yangtze Block (South China Block).Precambrian Research,267:196-208.https://doi.org/10.1016/j.precamres.2015.06.016

[16]

Lai,S.C.,Zhu,R.Z.,2017.Geochemical Characteristics and Its Continental Dynamic Implication of Neoproterozoic Volcanic Rocks in Luding Area of Sichuan,China.Journal of Earth Sciences and Environment,39(4):459-475 (in Chinese with English abstract).

[17]

Li,L.S.,Wang,Z.C.,Xiao,A.C.,et al.,2021.Rift System in Northern Yangtze Block during Nanhua Period:Implications from Gravity Anomaly and Sedimentology.Earth Science,46(10):3496-3508 (in Chinese with English abstract).

[18]

Li,L.S.,Wang,Z.C.,Xiao,A.C.,et al.,2022.Tectonics of the Neoproterozoic Basin and Age of the Macaoyuan Group on the Northern Margin of the Yangtze Block.Earth Science Frontiers,29(6):291-304 (in Chinese with English abstract).

[19]

Li,S.Z.,Dong,Y.P.,Chen,H.L.,2021.Meso-Neoproterozoic Proto-Basins and Oil-Gas Resources in China:Preface.Precambrian Research,360:106221.https://doi.org/10.1016/j.precamres.2021.106221

[20]

Li,X.H.,Wang,X.C.,Li,W.X.,et al.,2008.Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China:From Orogenesis to Intracontinental Rifting.Geochimica,37(4):382-398 (in Chinese with English abstract).

[21]

Li,Z.X.,1998.Tectonic History of the Major East Asian Lithospheric Blocks since the Mid-Proterozoic:A Synthesis.Mantle Dynamics and Plate Interactions in East Asia.American Geophysical Union,Washington,D.C.,221-243.

[22]

Li,Z.X.,Powell,C.M.,2001.An Outline of the Palaeogeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic.Earth-Science Reviews,53(3-4):237-277.https://doi.org/10.1016/s0012-8252(00)00021-0

[23]

Liu,H.,2019.The Neoproterozoic Magmatism and Sedimentation of the South Qinling Belt and Its Tectonic Implications (Dissertation).China University of Geosciences,Wuhan,103-111 (in Chinese with English abstract).

[24]

Liu,S.G.,Yang,Y.,Deng,B.,et al.,2021.Tectonic Evolution of the Sichuan Basin,Southwest China.Earth-Science Reviews,213:103470.https://doi.org/10.1016/j.earscirev.2020.103470

[25]

Luo,Z.L.,1986.Is There a Paleocontinental Neucleus in Central Sichuan.Journal of Chengdu University of Technology (Science & Technology Edition),13(3):65-73 (in Chinese with English abstract).

[26]

Ma,S.Y.,Xie,W.R.,Yang,W.,et al.,2021.Lithofacies and Paleogeography of the Lower Canglangpu Formation of the Lower Cambrian in Sichuan Basin and Its Periphery.Natural Gas Geoscience,32(9):1324-1333 (in Chinese with English abstract).

[27]

Pitcher,W.S.,1997.The Nature and Origin of Granite (Second Edition).Chapman&Hall,London,183-225.https://doi.org/10.1007/978-94-011-5832-9_19

[28]

Schmitz,M.D.,2012.Appendix 2—Radiometric Ages Used in GTS2012.In:Gradstein,F.M.,Ogg,J.G.,Schmitz.,M.D.,et al.,eds.,The Geologic Time Scale.Elsevier,Boston,1045-1082.https://doi.org/10.1016/b978-0-444-59425-9.15002-4

[29]

Sun,J.C.,1985.Discovery of the Volcanic Rock Series in the Chengjiang Formation at Luoci Area and Discussion on the Age of the Basal Limit of the Sinian System,Yunnan.Chinese Journal of Geology,20(4):354-363 (in Chinese with English abstract).

[30]

Wang,J.,Zeng,Z.G.,Chen,W.X.,et al.,2006.The Neoproterozoic Rift Systems in Southern China:New Evidence for the Sedimentary Onlap and Its Initial Age.Sedimentary Geology and Tethyan Geology,26(4):1-7 (in Chinese with English abstract).

[31]

Wang,W.,Zeng,M.F.,Zhou,M.F.,et al.,2018.Age,Provenance and Tectonic Setting of Neoproterozoic to Early Paleozoic Sequences in Southeastern South China Block:Constraints on Its Linkage to Western Australia-East Antarctica.Precambrian Research,309:290-308.https://doi.org/10.1016/j.precamres.2017.03.002

[32]

Wang,W.Z.,Xiao,W.Y.,He,Y.,et al.,2019.Geochemical Characteristics of the Sinian Doushantuo Formation Source Rocks of the Sichuan Basin:Implications for the Organic Matter Accumulation.Geological Journal of China Universities,25(6):860-870 (in Chinese with English abstract).

[33]

Wang,Z.C.,Jiang,H.,Wang,T.S.,et al.,2014.Hydrocarbon Systems and Exploration Potentials of Neoproterozoic in the Upper Yangtze Region.Natural Gas Industry,34(4):27-36 (in Chinese with English abstract).

[34]

Wang,Z.C.,Liu,J.J.,Jiang,H.,et al.,2019.Lithofacies Paleogeography and Exploration Significance of Sinian Doushantuo Depositional Stage in the Middle-Upper Yangtze Region,Sichuan Basin,SW China.Petroleum Exploration and Development,46 1):39-51 (in Chinese

[35]

with English abstract.

[36]

Wang,Z.J.,2008.Neoproterozoic Rift Basin Evolution and Its Stratigraphic Division and Correlation in Eastern Guizhou (Dissertation).Chinese Academy of Geological Sciences,Beijing,32-62 (in Chinese with English abstract).

[37]

Wang,Z.J.,Wang,J.,Jiang,X.S.,et al.,2015.New Progress for the Stratigraphic Division and Correlation of Neoproterozoic in Yangtze Block,South China.Geological Review,61(1):1-22 (in Chinese with English abstract).

[38]

Xie,W.R.,Yang,W.,Wang,Z.C.,et al.,2021.Characteristics and Main Controlling Factors on the Development of a Platform Margin Belt and Its Effect on Hydrocarbon Accumulation:A Case Study of Dengying Formation in Sichuan Basin.Chinese Journal of Geology (Scientia Geologica Sinica),56(3):867-883 (in Chinese with English abstract).

[39]

Xie,Z.Y.,Wei,G.Q.,Zhang,J.,et al.,2017.Characteristics of Source Rocks of the Datangpo Fm,Nanhua System,at the Southeastern Margin of Sichuan Basin and Their Significance to Oil and Gas Exploration.Natural Gas Industry B,4:405-414.https://doi.org/10.1016/J.NGIB.2017.09.011

[40]

Xu,L.B.,Zhou,S.Z.,2009.Quantifying Erosion Rates in the Southeastern Tibetan Plateau since the Last Interglacial Using In-Situ Cosmogenic Radionuclide 10Be.Acta Geologica Sinica,83(4):487-495 (in Chinese with English abstract).

[41]

Yang,F.L.,Zhou,X.F.,Peng,Y.X.,et al.,2020.Evolution of Neoproterozoic Basins within the Yangtze Craton and Its Significance for Oil and Gas Exploration in South China:An Overview.Precambrian Research,337:105563.https://doi.org/10.1016/j.precamres.2019.105563

[42]

Yao,W.H.,Zhu,X.Y.,Wang,J.,et al.,2022.Position of South China and Indochina along Northern Gondwana Margin during the Ediacaran-Silurian Period.Precambrian Research,379:106809.https://doi.org/10.1016/j.precamres.2022.106809

[43]

Yin,C.Y.,Wang,Y.G.,Tang,F.,et al.,2006.SHRIMPⅡU-Pb Zircon Date from the Nanhuan Datangpo Formation in Songtao County,Guizhou Province.Acta Geologica Sinica,80(2):273-278 (in Chinese with English abstract).

[44]

Zhou,M.F.,Yan,D.P.,Kennedy,A.K.,et al.,2002.SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block,South China.Earth and Planetary Science Letters,196(1-2):51-67.https://doi.org/10.1016/s0012-821x(01)00595-7

[45]

Zhuo,J.W.,Jiang,X.S.,Wang,J.,et al.,2013.Opening Time and Filling Pattern of the Neoproterozoic Kangdian Rift Basin,Western Yangtze Continent,South China.Science China:Earth Sciences,43(12):1952-1963 (in Chinese).

[46]

Zi,J.P.,2017.Neoproterozoic Rift Effect of the Sichuan Basin and Three Dimensional Numerical Simulation of Extensional Rift (Dissertation).Nanjing University,Nanjing,18-36 (in Chinese with English abstract).

基金资助

国家科技重大专项(2017ZX05035003)

中国石油东方地球物理公司油气勘探新领域综合研究项目

四川盆地下古生界-震旦系重点勘探领域研究与目标优选项目

贵州省科技计划项目(黔科合JZ字[2015] 2005)

AI Summary AI Mindmap
PDF (19789KB)

199

访问

0

被引

详细

导航
相关文章

AI思维导图

/