大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义

陶丽蓉 , 曹淑云 , 李文元 , 程雪梅 , 王浩博 , 董彦龙

地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2001 -2023.

PDF (10688KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2001 -2023. DOI: 10.3799/dqkx.2024.007

大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义

作者信息 +

Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust

Author information +
文章历史 +
PDF (10944K)

摘要

深熔作用是链接地壳深部变质作用、构造变形以及岩浆活动的重要纽带,对大陆地壳演化及其流变学性质具有重要意义.根据是否有自由水的参与,深熔作用分为水致熔融和脱水熔融两种机制.脱水熔融主要通过云母、角闪石等含水矿物的分解来实现,其发生所需的温度一般大于650 ℃.在脱水熔融反应中会生成钾长石、石榴石等转熔矿物和部分熔体,该熔体呈水不饱和态,具有高Rb、高Rb/Sr比、高 87Sr/ 86Sr,低Sr、Ba和Ca的特点.其产生的熔体含量主要受温压条件和全岩水含量的影响,在麻粒岩相条件下才有可能产生大量熔体.水致熔融是在含水流体参与下所发生的熔融反应,其最显著的特点就是所需温度较低,在角闪岩相条件下可以生成大量熔体.生成的熔体可以是水饱和或水不饱和,在高温条件下生成的水不饱和熔体具有向上迁移的能力.水致熔融生成熔体的地球化学特征与脱水熔融相反,Sr、Ca、Ba含量较高,Rb、Rb/Sr比较低.深熔作用不仅可以显著改变岩石的热力学和流变学性质,而且熔体的迁移可以促进地壳分异并形成广泛的淡色花岗岩,在陆壳的起源、改造和稳定中起着至关重要的作用.

关键词

深熔作用 / 水致熔融 / 脱水熔融 / 流变弱化 / 淡色花岗岩 / 构造地质.

Key words

anatexis / water-fluxed melting / dehydration melting / rheological weakening / leucogranite / tectonics

引用本文

引用格式 ▾
陶丽蓉,曹淑云,李文元,程雪梅,王浩博,董彦龙. 大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义[J]. 地球科学, 2024, 49(06): 2001-2023 DOI:10.3799/dqkx.2024.007

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

深熔作用被定义为原先存在岩石的熔融,是链接地壳深部变质作用、构造变形以及岩浆活动的重要纽带,也是大陆造山带演化过程中的核心问题之一.深熔作用强烈影响着碰撞造山带大陆地壳的热力学结构、流变学性质和地球化学行为( Whitney et al.,2003Sawyer et al.,2011Hu et al.,2016Gao et al.,2017Dong et al.,2022bGu et al.,2022Wang et al.,2022Xu et al.,2022)( 图1).板块构造理论基于大洋板块的刚性运动,并认为地壳变形主要是集中于板块边界.然而近年来,学者们越来越重视大陆板块内部在熔/流体参与下的构造弥散性变形与流变学行为( Solar et al.,1998Weinberg and Hasalová,2015Collins et al.,2016Wang et al.,2022).在深熔作用过程中,很少量的熔体(<7%,体积百分含量)生成,能致使原岩的力学强度与流变学性质发生显著变化,并导致下地壳与上地幔之间产生显著的力学解耦( Beaumont et al.,2004Rosenberg and Handy,2005Rosenberg and Kissling,2013).

深熔作用产生的熔体常常在颗粒边界聚集,致使岩石强度降低,加快岩石的应变速率,与构造变形之间存在明显的正向反馈( Vanderhaeghe,2009Wang et al.,2022).随着岩石中熔体比例的增加,岩石变形机制从熔体增强下的晶界滑移转变为液态流动,并进一步促进了地壳流变弱化与造山带垮塌,特别是沿着剪切带或断裂带的造山带垮塌( Vanderhaeghe and Teyssier,2001Rosenberg and Handy,2005Walte et al.,2005Vanderhaeghe,2009Cao and Neubauer,2016Wang et al.,2022).同时,熔体的提取与运移会引起大陆地壳纵向上的显著成分分异,使上地壳在成分上近似为花岗闪长质,而下地壳更富镁铁质( Sawyer et al.,2011).实验岩石学表明,温度升高、压力降低以及流体的加入都可以使岩石跨越固相线发生深熔作用( Mallik et al.,2016).陆壳加厚、软流圈地幔上涌、板片俯冲和折返、岩石圈的减薄以及注水都可以诱发部分熔融( Clark et al.,2011Kelsey and Hand,2015Harley,2016Yakymchuk,2021).混合岩是地壳岩石发生深熔作用的产物,有研究认为淡色花岗岩是深熔产生的熔体向上运移到浅部就位的产物( Chappell and White,2001Li et al.,2023).因此,淡色花岗岩中蕴藏着大量地壳深部深熔作用及其大陆演化的信息(高利娥等,2016; Cao et al.,2022),具有重要研究意义.

基于深熔作用是否有自由水的参与,将其分为脱水熔融和水致熔融两种方式.脱水熔融(dehydration melting)是指含水矿物在高温下脱水分解,并生成转熔矿物的过程.云母在高温下的脱水分解通常能够产生大量花岗质熔体( Guernina and Sawyer,2003Wang et al.,2022),而且高级变质岩中孔隙度较低,含有少量的自由水( Aranovich et al.,2014),因此,人们之前普遍认为在麻粒岩相条件下发生的脱水熔融是在大陆地壳中产生大量花岗质熔体的唯一途径( Clemens,1990Clemens and Watkins,2001Sawyer et al.,2011),而忽略了水致熔融的重要性.然而,近年来在研究自然界中深熔作用以及混合岩地体和淡色花岗岩的成因时,遇到了很多脱水熔融难以解释的问题( Slagstad et al.,2005Reichardt et al.,2010Reichardt and Weinberg,2012Hu et al.,2016).如生成的大量熔体与推断的峰期变质温度较低之间的不匹配( Cartwright and Buick,1998Li et al.,2018)、转熔矿物的生成与含水矿物脱水分解条件之间的不匹配( Hu et al.,2016)等现象都暗示岩石可能发生了水致熔融.因此,水致熔融也越来越被认为是许多深熔地体演化的关键过程( Lee and Cho,2013Wang et al.,2013Weinberg and Hasalová,2015Cao et al.,2022).水的存在不仅降低了花岗质岩体的熔融温度( Watkins et al.,2007Collins et al.,2021),还极大地提高了熔融反应的速率(Acosta- Vigil et al.,2006Jamtveit et al.,2016),使部分熔融可以在较低的温度条件下发生,同时产生大量熔体.混合岩地体中的很多构造活动克服了水致熔融存在的局限性,两种深熔作用在深熔地体的演化、淡色花岗岩的形成,甚至在地壳演化过程中共同起着重要作用.

本文详细介绍了脱水熔融和水致熔融两种深熔机制,从深熔作用发生的条件、深熔产生的混合岩和淡色花岗岩的野外及显微岩石学特征、生成熔体的物理和化学性质等方面对两种深熔机制加以区分,并分析了深熔作用可能存在的构造环境.最后,阐述了深熔作用对壳内分异、岩石流变学性质和地壳构造变形的可能影响.

1 深熔作用: 脱水熔融vs.水致熔融

深熔作用在高级变质地体和大陆碰撞造山带中广泛存在.考虑到矿物和流体的行为,深熔作用可以通过含水矿物的分解发生,也可以通过含水流体的加入来实现( Sawyer,2010Weinberg and Hasalová,2015Gao et al.,2017).发生深熔反应的类型主要取决于原岩的全岩成分、温度、压力、参与反应的矿物相以及流体的水活度等因素( Collins et al.,2021).基于深熔作用是否有自由水的参与,将其分为脱水熔融(dehydration melting)和水致熔融(water-fluxed melting)两种方式.

1.1 脱水熔融

脱水熔融是指含水矿物在高温下脱水分解,并生成转熔矿物的过程.脱水熔融反应所需的温度较高,一般大于650 ℃,随着温度的升高,白云母、黑云母和角闪石等含水矿物会依次发生脱水分解反应,不同的原岩成分和温压条件会引起不同的反应( 图2).需要注意,含水矿物的分解在含水和缺水的熔融反应中均可以发生( Clemens et al.,2020).脱水熔融产生的转熔矿物主要有石榴石、辉石、堇青石和钾长石(曾令森和高利娥,2017; Meng et al.,2021Wang et al.,2022).反应中涉及的水全部来源于含水矿物,产生的熔体是水不饱和的,成分一般为花岗质.此外,在脱水熔融过程中体积会增大,从而导致压力增大,如果熔体产出的速率大于熔体逃逸的速率,那么地壳可能会发生脆化.压力的增加还会使体系远离固相线,从而抑制其进一步熔融( Weinberg and Hasalová,2015).

1.2 水致熔融

水致熔融是指在地壳中含水流体作为单独相参与熔融反应,产生大量熔体的过程,部分熔体能在地壳中向上迁移.水致熔融反应所需的温度较低,随着水活度的增加也会逐渐降低花岗质岩石的熔融温度( Collins et al.,2021)( 图3).水致熔融分为低温下的一致熔融和高温下的不一致熔融,不一致水致熔融也可产生转熔矿物,最常见的为角闪石( Hu et al.,2016Zeng et al.,2021),也存在石榴石、辉石、堇青石等转熔相( Storkey et al.,2005;Jung et al.,2009).在没有云母参与的水致熔融反应中,不会产生转熔钾长石( Patiño Douce and Harris,1998).水致熔融最显著的特征是即使在角闪岩相条件下也能产生大量熔体,产生的熔体一般为英云闪长质或奥长花岗质的(Jung et al.,2000; Genier et al.,2008Sawyer,2010).水致熔融会导致系统体积和压力减小,致使源区产生微裂隙.而且压力的降低还会导致系统温压远离固相线,阻碍原岩发生进一步熔融;或造成源区存在压力梯度,吸引周围的含水流体或熔体,导致熔体积聚( Clemens and Droop,1998).

需要注意的是,水是水致熔融中的主要控制因素,其在深熔地体中的分布随时空变化,不同位置的熔体体积和深熔熔体的物理行为将有很大的不同.而且,在同一热循环中,水致熔融可以引起多次熔融事件或不同时代的岩石同时熔融.这可能会产生记录长时间结晶的锆石种群和含水流体的多次流入,解释了源区淡色花岗岩岩脉与浅色体之间的多重交叉关系( Rubatto et al.,2009).剪切带、裂隙是含水流体的重要通道,在构造压力梯度的驱动下,绕过与水饱和固相线相当的地体环境,到达高温地体,引发陆壳进一步熔融( Berger et al.,2008Sawyer,2010Aranovich et al.,2013Wang et al.,2021).

2 脱水熔融与水致熔融的基本特征

不同熔融反应形成的混合岩在野外和显微特征上略有差异.下面针对脱水熔融与水致熔融过程的显微与露头尺度、岩相学特征、熔体的地球化学特征及其熔体的含量和含水量变化特征分别进行阐述.

2.1 脱水熔融的基本特征

2.1.1 露头与显微尺度特征

对于脱水熔融来说,如果生成的熔体未发生分离,浅色体周围无暗色体;若熔体发生分离,浅色体与围岩之间有清晰界定的暗色边缘,暗色边缘主要由脱水熔融形成的暗色矿物组成(图 4a4b);这两种情况下浅色体均不会保留原岩的微观结构( Sawyer,2010).而且,浅色体分布在外观上多变,浅色体和暗色体一般均存在石榴石等转熔矿物(图 4c4d).从显微尺度来看,脱水熔融通常在三联点处形成孤立的熔池或沿晶界和断口形成薄膜( Sawyer,2001).此外,在显微镜下还可以观察到一些脱水熔融相关的反应结构.在变泥质岩中,如果可以观察到黑云母和矽线石的交织连晶结构,可能发生了黑云母脱水熔融的逆反应( 图4e);如果堇青石将黑云母和矽线石包裹其中,可能指示了岩石的进变质过程;在变基性岩中,如果观察到存在石榴石和斜方辉石共存,可能指示其发生了角闪石的脱水熔融反应( 图4f).

2.1.2 岩相学及反应过程条件

脱水熔融反应主要涉及到变泥质岩中白云母和黑云母的脱水分解以及变基性岩中角闪石的脱水分解.含水矿物高温分解可以产生大量熔体,最多可达到40%( White et al.,2001),并生成石榴石、堇青石、辉石、钾长石等转熔相( Sawyer et al.,2010Wu and Wei,2021Ye et al.,2021).常见的脱水熔融反应一般有:

(1)白云母脱水熔融:白云母+斜长石+石英 → 熔体+钾长石+铝硅酸盐+黑云母.

(2)黑云母脱水熔融:黑云母+铝硅酸盐+石英 → 石榴石(高压)/堇青石(低压)+钾长石+熔体(原岩为变泥质岩,无斜长石);黑云母+斜长石+铝硅酸盐+石英 → 石榴石(高压)/堇青石(低压)+钾长石+熔体(原岩为变泥质岩);黑云母+斜长石+石英 → 斜方辉石(+单斜辉石+石榴石)+熔体.

(3)角闪石脱水熔融:角闪石+石英 → 斜长石+斜方辉石+单斜辉石(+石榴石)+熔体(原岩为变基性岩);角闪石+斜长石 → 单斜辉石(+石榴石+斜方辉石)+熔体(原岩为斜长角闪岩).

白云母脱水熔融反应开始温度在650~700 ℃.黑云母脱水熔融较高,开始温度在780~850 ℃,根据全岩成分的差异会发生不同的脱水熔融反应;而且在不同的温压条件下也会生成不同的转熔矿物,对于可以生成石榴石或堇青石的岩石体系,黑云母脱水熔融反应在低压下形成堇青石,高压下形成石榴石.角闪石脱水熔融开始温度通常发生在850 ℃以上,转熔矿物的类型取决于岩石组成和温压条件( Thompson,2001Ye et al.,2021).

2.1.3 熔体的地球化学特征

在不同反应中造岩矿物(斜长石和云母)的熔融行为与副矿物(锆石、磷灰石、独居石、榍石等)的溶解行为存在差异性,这将导致水致熔融和脱水熔融形成的熔体都存在各自独有的微量元素和同位素地球化学特征(曾令森和高利娥,2017; Cao et al.,2022).首先,已有研究表明脱水熔融和水致熔融形成的熔体成分在An、Ab和Or的比例上存在显著不同,脱水熔融生成的熔体富含Or,贫An和Ab( Patiño Douce,1996)( 图5a).其次,白云母脱水熔融和水致熔融反应分别为22Ms+ 7Pl+8Qtz=25Melt+5Kfs+ 5Sil + 2Bt和9Ms+15Pl+7Qtz+xH2O=31Melt,脱水熔融反应中消耗的白云母比斜长石多,白云母富Rb贫Sr,并具有较高的 87Sr/ 86Sr同位素组成,因此脱水熔融形成的熔体Rb含量和Rb/Sr比、 87Sr/ 86Sr同位素较高,Sr、Ba和Ca含量较低( Inger and Harris,1993Zeng et al.,2005a, 2005b;雷凯等,2022; Liu et al.,2022)(图 5b5c).而且,在脱水熔融中,由于白云母脱水分解会产生富Ba的钾长石,所以随着Rb/Sr比的增加,Ba浓度会降低( Inger and Harris,1993Gao et al.,2017)( 图5d).此外,白云母对Nb的分配系数高于Ta,因此脱水熔融形成的熔体Nb/Ta较高( Stepanov et al.,2012Gao et al.,2017)( 图5f).

微量元素主要赋存在副矿物中,在部分熔融过程中副矿物的溶解行为间接控制着熔体的地球化学特征.独居石控制了轻稀土的含量,相比U对Th具有更大的容纳能力;锆石溶解会导致熔体中Zr与Hf的分馏( Gao et al.,2017);榍石中富含Ti、Nb、Ta等高场强元素( Zeng et al.,2021);磷灰石富含P2O5,其溶解会使熔体中磷含量增加.在水的参与下,独居石、锆石更容易发生溶解,在脱水熔融反应中由于缺乏自由水,生成的熔体Zr/Hf、Th/U比较低( Zeng et al.,2005aStepanov et al.,2012Gao et al.,2017;曾令森和高丽娥,2017; Cao et al.,2022)( 图6).由于熔体的CaO含量较低,磷灰石在脱水熔融中更容易发生溶解,使熔体的Sm/Nd和εNd值较高(曾令森和高利娥,2017;雷凯,2020).

转熔矿物对熔体的微量元素也有一定的影响.Sr在钾长石中是一种强相容元素,因此在脱水熔融中,白云母分解生成转熔钾长石有助于Rb与Sr的分馏;Rb、Nb在黑云母中是强相容元素,虽然白云母对Nb的分配系数高于Ta,但如果白云母分解生成转熔黑云母,则抑制了Nb与Ta的分馏,会抵消因白云母分解而在熔体中产生的高Nb/Ta值(雷凯等,2022).脱水熔融和水致熔融生成的熔体的δ 18O也具有不同特征,通常情况下,如果没有外部的δ 18O输入,脱水熔融具与原岩相似的δ 18O值( Weinberg and Hasalová,2015).

2.1.4 熔体含量及含水量

在脱水熔融中所有的水都来自于含水矿物,产生的熔体是水不饱和的,熔体中溶解的水含量取决于温度( Collins et al.,2021).温度升高,熔体含量增加,但熔体含水量降低.含水矿物脱水分解产生熔体的速率主要受动力学、热和压力的变化速率有关( Weinberg and Hasalová,2015).脱水熔融产生熔体的含量主要受控于全岩水含量和温压条件,全岩水含量取决于含水矿物的比例( Aranovich et al.,2014). White et al.(2001)定量模拟了在NCKFMASH体系中泥质麻粒岩的相平衡关系,随着温度的升高主要存在三阶段熔体产生:(1)饱和水固相线上的含水熔融,产生少量熔体;(2)白云母脱水熔融,大约产生10%的熔体;(3)黑云母脱水熔融,可以产生25%左右的熔体( 图7a).近年来,其他学者对缺乏自由水的常见地壳岩石的熔体量也进行了大量研究,发现白云母脱水熔融最多可以产生约15%熔体,黑云母脱水熔融在麻粒岩相条件下才有可能产生高达40%熔体( Powell et al.,2005Johnson et al.,2008Brown and Korhonen,2009). Aranovich et al.(2014)在确定全岩成分的基础上建立了泥质岩和英云闪长岩在变质过程中熔体含量与温度的关系.全岩水质量百分含量约2.2%、含有30%云母的泥质岩在大于900 ℃的条件下才可以产生体积百分含量约50%的熔体.英云闪长岩含有15%的黑云母和角闪石,全岩水质量百分含量为0.8%,约875 ℃黑云母开始发生脱水分解生成熔体,在约900 ℃的条件下只产生了20%的熔体.因此,也对脱水熔融在产生大体积花岗质熔体方面提出挑战.

2.2 水致熔融的基本特征

2.2.1 露头和显微尺度特征

水致熔融形成的浅色体的典型野外特征为:(1)如果水致熔融程度较小,熔体未发生分离,则浅色体与围岩之间呈弥散状,一般不存在暗色边界,新成体会保留原岩的显微构造;(2)在基本均匀的原岩中,代表熔体的浅色体在源区的空间分布是可变的,从无浅色体的片麻岩到变熔岩,再到全熔岩的短距离内变化(图 8a8b),揭示了流体流入的空间变化;(3)通常不存在与浅色体相联系的镁铁质包体和暗色体( Sawyer,2011Pourteau et al.,2020).如果含水流体从裂隙中进入原岩,生成的浅色体可呈网状、细线状( Sawyer,2010).在显微镜下也可以观察到水致熔融的一些特征.一致水致熔融过程中产生的熔体在矿物颗粒之间可能会冷却结晶形成长英质的熔体薄膜.矿物颗粒边界的串珠状石英也被认为是在熔体存在的环境中生长的粒间熔体( Holness et al.,2011) (图 8c8d).

2.2.2 岩相学特征及反应

水致熔融分为一致熔融和不一致熔融.在低温下发生的一致水致熔融无转熔矿物形成,产生的熔体是富水的,甚至是水饱和的;在高温下,发生不一致水致熔融,在反应过程中会产生角闪石、石榴石、辉石、堇青石和铝硅酸盐矿物等转熔相,在不一致熔融中产生的熔体是水不饱和的( Zeng et al.,2021).常见的水致熔融反应有:

(1)水致白云母部分熔融:白云母+斜长石+石英+流体 → 熔体(一致熔融).

(2)水致黑云母部分熔融:黑云母+石英+斜长石+流体 → 熔体+角闪石(不一致熔融);黑云母+石英+钾长石+流体 → 熔体(一致熔融).

(3)水致角闪石部分熔融:角闪石+斜长石+石英+流体 → 角闪石+熔体(不一致熔融).

泥质岩和花岗岩等常见的岩石在地壳压力下发生水致熔融的初始温度为620~650 ℃,变基性岩在700~750 °C(高压条件)发生水致熔融反应.多种岩性的岩石会在相似的条件下发生水致熔融;并且对于各种花岗质和变质沉积岩来说,低温下共熔的熔体成分相似( Clemens and Droop,1998Rubatto et al.,2009).大量实验显示,转熔角闪石的存在表明在部分熔融过程中有外部含水流体的加入( Gardien et al.,2000Hu et al.,2016).水的存在还会增加角闪石和堇青石的稳定性,提高熔体中的Si含量,但会导致斜长石的稳定性降低( Koester et al.,2002Zeng et al.,2021),并使熔体成分从花岗质向花岗闪长质和英云闪长质转变.

2.2.3 生成熔体的地球化学特征

与脱水熔融相反,在水致熔融反应中,相比白云母会消耗更多比例的斜长石(曾令森和高利娥,2017; Zeng et al.,2021).斜长石富Sr贫Rb,Ba在斜长石中为Ca的类质同象.所以水致熔融产生的熔体一般Sr、Ba、Ca含量高,Rb含量和Rb/Sr比低(图 5a5b).实验岩石学表明,在白云母水致熔融中,随着Ba含量的降低和Sr含量的增加,Rb/Sr比几乎不变(图 5d5e);而且,随着aH2O的增加,水致熔融生成熔体中的正长石组分逐渐减小,钠长石和钙长石组分增加( Patiño Douce and Harris,1998Collins et al.,2021).Eu主要赋存在斜长石中,斜长石的消耗导致生成熔体中的Eu表现为正异常或无异常.水的存在增加了Al在熔体中的溶解度,水致熔融产生的熔体的铝饱和指数(ASI)较高(Acosta- Vigil et al.,2003).此外,水致熔融形成的熔体Nb/Ta和 87Sr/ 86Sr同位素值较低(图 5c5f).

由于锆石、独居石在自由水的参与下更容易发生溶解,因此,由水致熔融形成的淡色花岗岩Zr和轻稀土含量、Th/U和Zr/Hf比值较高( 图6).但是,由于熔体中CaO含量和活度较高,抑制了磷灰石的溶解,熔体的Sm/Nd和 ε Nd值较低.需要注意的是,水致熔融中由于斜长石的溶解通常会导致Eu正异常,但锆石和独居石的溶解会抵消此异常( Trail et al.,2012).在镁铁质岩石的低程度部分熔融中,由于不利的熔融条件(温度或者流体)或岩石结构(榍石成包裹体被角闪石等矿物围绕),产生的熔体往往表现为亏损稀土元素和Ti亲和力的元素以及Nd同位素正异常( Zeng et al.,2021).在水致熔融中,由于含有不同于熔体源氧同位素的水的流入改变了熔体的同位素组成,熔体的δ 18O通常会显著降低或均一化( Weinberg and Hasalová,2015).以此特点可以追踪熔融过程中流体的存在和来源.在水致熔融中,如果δ 18O没有变化,则渗透流体的δ 18O与原岩相似,极有可能是变质成因,含水流体来源于类似岩石的脱水反应(Jung et al.,2000; Sawyer,2010);如果δ 18O显著降低,则反映加入了大气水或海水或岩浆流体.

2.2.4 生成熔体的产量和含水量

水致熔融的主要控制因素为水,水的流入速度及其在整个岩体中的分布控制了熔体的生成速率,产生的熔体含量受加入到系统中的水体积的限制.由于地体中渗透性通道的几何形状不同,含水流体往往在时空上有很大变化,因此熔体的体积和深熔地体的物理性质有很大不同( Weinberg and Hasalová,2015).在变泥质岩中,云母的脱水熔融在温度较高的麻粒岩相条件下能产生大量熔体.但在水致熔融中,即使有少量水(1%~2%)的加入也会对熔体生产率产生较大影响,并且会加快熔融反应的速率( Gardien et al.,2000Zeng et al.,2021;雷凯等,2022)( 图7b). Collins et al.(2021)模拟了不同压力下泥质岩和角闪岩变质过程中的温度与含水量关系,结果表明,当水从外部来源引入时,在相对较低的温度下会产生更大体积的熔体;在700 ℃添加1.0% H2O的变泥质岩(总水含量为2.44%,质量百分含量)产生熔体的体积会从~15%增加到~30%;在750 ℃添加1.0% H2O到角闪岩(总水含量为2.36%,质量百分含量)生成熔体的体积将从~5%增加到~10%.雷凯(2020)通过设定熔融的初始成分和初始水含量,对喜马拉雅地区不同熔融反应进行了模拟,获得脱水熔融的固相线温度较高,从固相线温度到800 ℃之间,生成熔体体积的速度在任何温度下都相对恒定,只有当温度大于800 ℃时,熔体体积生成速率加快;而在水致熔融中固相线温度较低,当温度高于固相线时,斜长石被快速消耗,同时生成大量熔体.

在水致熔融中,即使存在自由水的参与,与地壳保持平衡的水饱和熔体只有在水饱和固相线处存在( Collins et al.,2021).由水致熔融产生的熔体中的水含量受稳定熔体所需的最低含量(液相线)和熔体中水的最大溶解度控制.从理论上来讲,如果地壳中瞬时的 P- T条件在固相线之上,此时含水硅酸盐熔体的水含量原则上可以在最大水溶解度和液相线之间的任何地方,但是由于熔融系统以岩石为主,那么任何引入的“过量水”都会与岩石发生反应进一步生成花岗质熔体,直到满足 P- T-H2O平衡条件.因此,在固相线之上生成的熔体往往具有最低的含水量,由当时 P- T条件下的液相线决定( Weinberg and Hasalová,2015Collins et al.,2021图9).

3 脱水熔融与水致熔融形成的条件及其构造环境

3.1 脱水熔融形成的构造环境

升温和降压都可以使岩石系统跨过固相线发生部分熔融.因此,发生脱水熔融的构造背景可能有下大陆地壳岩石圈拆沉和软流圈上涌( Zheng and Gao,2021Cheng et al.,2022;李洪梁等,2023)、地壳加厚( Bea,2012Clark et al.,2011)、玄武质岩浆底侵( Dewey et al.,2006Xu et al.,2022)以及俯冲板片的折返等( Chen et al.,2015Li et al.,2016;刘彬等,2023).

在大陆碰撞造山带的构造演化过程中,首先会经历陆壳的增厚阶段,在此阶段,岩石会发生构造埋藏,浅部低温岩层迅速进入深部,岩石所处压力和温度迅速升高.喜马拉雅造山带是亚洲大陆和印度大陆碰撞所形成的典型碰撞造山带,学者们研究发现在特提斯喜马拉雅东段雅拉香波地区广泛发育的始新世二云母淡色花岗岩是造山带加厚下地壳部分熔融的产物,并提出了大量证据( Patiño Douce and Harris,1998Gao et al.,2017;张泽明和康东艳,2018).此外,也有学者发现喜马拉雅地区中新世淡色花岗岩形成于高喜马拉雅结晶岩系折返过程中,为降压熔融.在对高喜马拉雅岩系的变质温度研究中发现,在地壳增厚阶段,岩石系统处于最高压力状态时的变质温度不同程度地高于泥质和长英质岩石中白云母的脱水熔融温度(650~700 ℃),表明在增压和增温的进变质过程中也可以发生部分熔融( Prince et al.,2001Lee and Whitehouse,2007Finch et al.,2014Regis et al.,2014).虽然地壳深熔作用确实可以发生在加厚造山带中,但这并不意味着在碰撞造山带地壳增厚过程中持续发生地壳深熔作用( Zheng and Chen,2017).

在汇聚板块边缘,沿减薄岩石圈的软流圈地幔上涌在地壳岩石的部分熔融中起了重要作用( Zheng and Gao,2021).在后碰撞阶段,岩石圈减薄变为伸展状态,发育明显的大断裂( Cipar et al.,2020Zheng,2021).软流圈地幔上涌带来大量的热,将下伏软流圈地幔的高热流转换到上覆的减薄岩石圈中,产生高地热梯度,在这种情况下,地壳岩石发生部分熔融和变质脱水.这一过程会形成以片麻岩穹窿为主的变质核杂岩,其主要由长英质混合岩、少量花岗岩和麻粒岩组成,形成花岗岩-混合岩-麻粒岩组合.因此,大陆裂谷作用是汇聚板块边缘形成变质核杂岩的一种地球动力学机制( Ricketts et al.,2015Rabillard et al.,2018).而且,下地壳因升温发生脱水熔融释放出大量含水流体,这些流体可能会进一步向上运移诱发上层地壳的含水熔融.这种耦合脱水-水致熔融为上覆地壳提供了含水流体,不仅促进地壳岩石发生角闪岩相变质作用,而且有助于在固相线以上的水致熔融( Xu et al.,2022Zheng and Chen,2017Zheng and Gao,2021)( 图10).

俯冲大陆地壳的部分熔融主要发生在超高压变质地体的折返过程中( Prince et al.,2001Liu et al.,2010),这在苏鲁-大别造山带和柴北缘超高压变质带等地区都得到了很好的证明.在深俯冲大陆地壳的折返过程中,由于会经历近等温减压或增温减压的过程,岩石系统不可避免地会发生部分熔融(张泽明等,2020)( 图11).深熔作用主要是通过含水矿物的分解来实现的,例如多硅白云母、黝帘石等.多硅白云母作为超高压变质地体中的主要含水矿物,所涉及的脱水熔融反应主要有:(1)多硅白云母+单斜辉石+柯石英=石榴石+熔体±蓝晶石±钾长石( Hermann and Green,2001Schmidt et al.,2004);(2)多硅白云母+单斜辉石+柯石英=石榴石+黑云母+斜长石+熔体;(3)多硅白云母+石英 =蓝晶石+钾长石+熔体±黑云母.当温度大于800 ℃时,英云闪长质和杂砂质岩石在降压过程中可能会发生黑云母的脱水熔融.

3.2 水致熔融形成的构造环境

在大陆下地壳中,岩石孔隙度较小,因此,只有当含水流体从外部引入时,下地壳中才有可能存在含有大量水的岩石.这种情况可能发生的主要地点是具有倒转变质梯度的构造环境( Sawyer,2011Clemens et al.,2020).如果逆冲速度足够快,并且在此过程中沿剪切带有足够的热产生,那么高级变质岩石逆冲于低级变质序列之上可能导致了下部岩石升温发生脱水熔融,其产生的含水流体或熔体向高级变质岩石迁移( Berger et al.,2008).喜马拉雅造山带就是一个典型的例子,主中央逆冲断层(main central thrust,MCT)将高温、变质程度高的高喜马拉雅变质岩叠加在冷的、低级变质岩低喜马拉雅之上,带来的热诱发了低喜马拉雅强烈的脱水熔融( Daniel et al.,2003Aikman et al.,2012Guo and Wilson,2012Hopkinson et al.,2020Zeng et al.,2021).脱水熔融产生的流体向上运移,引起了上覆高喜马拉雅在含水流体参与下的水致熔融( Le Fort,1981Liu et al.,2022)( 图12).

剪切带和裂隙是运输含水流体的良好通道,其存在为水致熔融的广泛发生具有重要意义( Sawyer,2010Cao and Neubauer,2016, 2019)( 图13).运输含水流体的通道也有可能重新成为熔体提取的通道,高水活度熔体的迁移可能会诱发周围低水活度环境的进一步熔融,增加熔体比例和渗透率( Wang et al.,2021).除此之外,岩浆的侵入也会导致水致熔融的发生.岩浆结晶会释放含水流体,含水流体可能通过裂缝向周围运移,造成一些花岗质深成岩体的围岩发生角闪岩相条件下的水致熔融反应. Clemens et al.(2020)提到,在理想的情况下,至少需要70%的玄武质岩浆结晶才可以引发大规模的水致熔融.在某些情况下,某种岩石发生脱水熔融释放的含水流体在另一种岩石的水致熔融反应中被消耗,喜马拉雅地区也存在这样的情况.

4 讨论

4.1 淡色花岗岩成因

淡色花岗岩一词最先在喜马拉雅地区提出,它代表了一种色率小于5%的过铝质花岗岩,主要由石英、斜长石、钾长石和白云母等浅色矿物组成.有研究认为淡色花岗岩是深熔产生的熔体向上运移至浅部就位的产物.一般来说,深熔作用产生的硅酸盐熔体的密度较原岩(典型陆相岩石的密度为2 650~3 100 kg/m 3)低,为2 400~2 700 kg/m 3Rudnick and Fountain,1995).这种密度的差异为熔体向上运移提供了可能.在开放的部分熔融系统中,密度较低的硅酸盐熔体向上迁移,导致固体残留物的密度比固体原岩以及部分熔融层的密度更高,促进了陆壳分异.从另一方面来说,固体残留物、晶体以及包裹体等物质的沉降降低了生成熔体的密度,增加了熔体相对于部分熔融岩石的浮力,有利于生成熔体的上移( Vanderhaeghe,2009)( 图14).岩石系统的非均质变形会产生压力梯度,压力梯度为熔体的分离和迁移提供了额外的驱动力( Holtzman et al.,2003).在部分熔融的初始阶段,熔体的迁移可以通过渗透作用来实现,当熔体或岩浆的压力超过岩石的力学强度时,岩石就会发生破裂,熔体可能沿破裂向上运移( 图15).

淡色花岗岩在喜马拉雅地区广泛出露,国内外学者对其分布、地球化学特征、成岩时代以及成因等进行了大量研究( Liu et al.,2014Meng et al.,2021Shi et al.,2021Shuai et al.,2021Liu et al.,2022).起初,喜马拉雅淡色花岗岩被认为是地壳深熔的产物. Le Fort(1981)提出热的中-高级变质程度的高喜马拉雅变质岩叠覆在变质程度低的低喜马拉雅岩石之上,诱发了低喜马拉雅岩石的脱水熔融,含水矿物中的水向上运移导致上覆高喜马拉雅地区发生水致熔融.产生的熔体通过脉状网络在高喜马拉雅顶部浅层构造带内汇聚,形成了大规模的浅色花岗岩体.然而,随后有研究表明,部分淡色花岗岩经历了韧性剪切变形,认为喜马拉雅淡色花岗岩是由云母脱水熔融形成,而不存在水致熔融的参与( Harris et al.,1993).近年来,学者对喜马拉雅淡色花岗岩的地球化学特征进行了大量研究. Gao et al.(2017)根据主量元素、微量元素、同位素组成等将喜马拉雅淡色花岗岩分为两类,判断其成因分别为白云母的水致熔融和脱水熔融,由于在深熔过程中主要矿物的深熔行为和副矿物的溶解行为存在差异,水致熔融成因的淡色花岗岩具有较高含量的Ca、Sr、Ba、Zr、Hf、Th和轻稀土元素,高Zr/Hf、Eu/Eu *和Nd/Nd *比,而Rb、Nb、Ta、U和Rb/Sr、 87Sr/ 86Sr比值较低.雷凯等(2022)利用热力学模拟等方法,根据地球化学特征和初始熔体的水含量将高喜马拉雅淡色花岗岩判定为脱水熔融和水致熔融的产物.喜马拉雅地区淡色花岗岩的成因机制除白云母脱水熔融和水致熔融外,部分学者还提出了增厚下地壳角闪石的部分熔融、黑云母脱水熔融机制( Groppo et al.,2010;张泽明等,2018).增厚下地壳角闪石的部分熔融形成的淡色花岗岩具有特殊的地球化学特征, CaO、MgO和TiO2含量更高,Sr/Y比值高,Rb/Sr比值低,而且轻重稀土分异程度明显, Eu异常更弱(高利娥等,2009,2010;曾令森等,2009).

在对喜马拉雅淡色花岗岩的研究中,还提出了淡色花岗岩的另一种形成机制——结晶分异( Liu et al.,2014Gao et al.,2021Cao et al.,2022).中下地壳产生的熔体在长距离的运移过程中会充分地发生结晶分异作用,还可能在岩浆房中与多种物源的岩浆混合.在判断淡色花岗岩是源于低程度部分熔融还是高度结晶分异时,一般将元素地球化学特征作为依据,例如Rb/Sr、Y/Ho、Nb/Ta、Zr/Hf和Th/U比值( Shi et al.,2021Shuai et al.,2021),但这种方法也不是绝对有效的,对于同一种地化特征,两种成因机制可能都可以解释.此外,在研究淡色花岗岩的成因时,变质条件、源岩的种类和大地构造环境等方面也会对淡色花岗岩的微量元素和同位素特征产生较大影响( Cao et al.,2022).因此,在考虑淡色花岗岩的成因时,我们要综合野外宏观和显微镜下分析、地球化学特征等多种因素.根据岩石的矿物组合、重稀土含量、Nb/Ta、Rb/Sr、Zr/Hf比等关键性化学指标可以区分经历了强烈结晶分异和堆晶作用的样品( Gao et al.,2017);进一步判断其深熔机制时,首先要确保选择的淡色花岗岩可以代表初始熔体的成分(雷凯等,2022).除低温下的白云母水致熔融和脱水熔融,还可能会发生黑云母和角闪石含水矿物的脱水熔融.此外,可以结合相平衡模拟方法判断其峰期变质条件,确定深熔机制.

近年来,浅色体和淡色花岗岩的成因联系也受到广泛争议. Sawyer(2008)将浅色体分为原位浅色体、源内浅色体以及浅色体细脉3类.原位浅色体是由临近的残余体发生部分熔融产生的熔体直接或间接演化而来,与围岩具有明显的成因联系;将浅色体细脉认为是迁移离开源区的熔体结晶而成,代表熔体结晶分异后的成分;此种分类方法认为浅色体与浅色体细脉具有成因联系.在喜马拉雅地区,有学者认为浅色体与淡色花岗岩脉存在联系,生成的熔体在原地形成浅色体,如果其向上迁移则形成淡色花岗岩;但部分学者认为与混合岩化作用有关的浅色体是高喜马拉雅浅层水致熔融形成的( Yang et al.,2019),而广泛出露的淡色花岗岩是高喜马拉雅深部地壳高温下脱水熔融的结果( Liu et al.,2022). Wang et al.(2022)对三江地区哀牢山-点苍山出露的全熔岩、变熔岩以及大量的淡色花岗岩进行了详细的野外构造观测与显微镜下分析,揭示了该地区熔体生成、与原岩分离并最终向上迁移至地表的完整序列,并通过热力学模拟,得到了岩石深熔作用可获得的初始熔体含量,建立了浅色体与淡色花岗岩之间清晰的成因联系.因此,我们可以推断浅色体与淡色花岗岩虽然都作为深熔作用的产物,但在不同地区可能存在不同的成因联系,需具体分析.

4.2 部分熔融与变质作用

在地壳深熔和花岗岩的形成过程中,水的存在不仅极大地降低了固相线温度,而且当外部水进入岩石系统时,在较低的温度下会产生更大体积的熔体( Collins et al.,2021Zeng et al.,2021).在高级变质作用过程中,含水矿物分解释放流体,促进了深熔作用的发生( Wang et al.,2022).低喜马拉雅地区变质作用释放的含水流体上移,降低了深熔温度,诱发了高喜马拉雅地区的水致熔融.在大多数高级变质岩中,深熔作用是通过进变质过程中的各种变质反应来实现( Weinberg and Hasalová,2015).在混合岩中产生熔体的具体反应取决于岩石的全岩组成、温度、压力以及反应物的可用性( Yakymchuk,2021).随着温度的升高,变泥质岩一般会依次发生饱和水固相线上的水致熔融、白云母的脱水熔融和黑云母的脱水熔融,在变基性岩中深熔作用主要涉及饱和水固相线上的熔融、绿帘石的脱水熔融和角闪石的脱水熔融( Vielzeuf and Schmidt,2001).在岩石系统的进变质深熔过程中,在不同阶段通过各种反应会生成不同程度的熔体.在变泥质岩中,黑云母的脱水熔融可产生25%的熔体;变基性岩中的熔体主要来源于角闪石的脱水熔融,在没有外来流体的参与下,饱和水固相线处只能产生1%~2%的熔体( White et al.,2001).在到达峰期变质条件之前,随着温度的升高,变质作用和深熔作用均不断增强,熔体含量持续增加.

在高级变质作用下,尤其是在麻粒岩相变质条件下,岩石系统会产生大量熔体.熔体的活动性较强,可以在岩石系统内部某一处聚集,也可以从岩石系统中提取、分离(魏春景和王伟,2007).如果岩石系统处于封闭状态,那么通过变质反应产生的水会全部进入熔体中,岩石内部水含量在固相线上方保持不变.主要由含水矿物和含水熔体组成的麻粒岩相岩石在冷却过程中,随着熔体结晶和水的释放,残余固相与熔体发生反应使其经历相当大的退变质作用,形成含水的高角闪岩相矿物组合,麻粒岩相矿物组合难以保存( White and Powell,2002).因此,麻粒岩相矿物组合的保存要求岩石系统在进行变质过程中丢失大量熔体. White and Powell(2002)通过对不同成分泥质变质岩的熔体损失进行相图建模表明,为保存麻粒岩相组合而必须从岩石中去除的熔体数量受岩石成分、部分熔体损失事件的数量和熔体损失发生的 P- T条件影响.我们现今可以观察到的麻粒岩相岩石,一定在其演化过程中经历了不同程度的熔体损失.此外,深熔作用需要高温和大量能量( Bea,2012),在区域范围内,深熔作用的发生可能会耗尽变质作用所需的热量( Clemens et al.,2020).因此,变质作用可以促进深熔作用,但深熔作用可能会反过来抑制变质作用.

4.3 地壳流变弱化/流变学

深熔作用可以显著改变岩石的热力学和流变学性质.实验岩石学表明,即使是少量的深熔熔体也会大大地降低地壳岩石的流变学强度,促进应变局部化( Rosenberg and Handy,2005Ganzhorn et al.,2014Li et al.,2021Dokukina et al.,2022)( 图16).当岩石刚发生部分熔融时,熔体含量较少,产生的熔体首先在颗粒边界处聚集.晶界熔体的存在有利于晶界扩散和颗粒流动,与初始岩石系统的强度相比,百分之几熔体的存在就可以使发生部分熔融岩石的强度下降两到三个数量级( Rosenberg and Handy,2005),这个过程被称为熔体连通性转变(MCT,melt connectivity transition).当熔体含量达到20%~40%,岩石系统的强度继续下降约十个数量级,此时将失去其固体框架的连续性,发生从固态到液态的力学转变.当熔体体积较高时,岩石结构从固体框架支撑转变为具有悬浮未熔化岩石颗粒的熔体( 图17).当把大陆地壳作为一个整体考虑其强度时,岩石系统刚发生熔融时,其强度发生显著降低.在部分熔融岩石与岩浆转变阶段,部分熔融岩石的强度与固体岩石的强度相比已非常小( Vanderhaeghe,2009).

在造山带的构造演化中,深熔作用在前期俯冲过程和后期陆壳折返阶段都可以存在,甚至在超高压变质地体的峰期阶段也可以发生( Liu et al.,2012Chen et al.,2015Li et al.,2016).由于深熔作用产生的熔体降低了岩石系统的强度,弱化的岩石更容易发生变形,进而影响了造山带的演化.在实验岩石学模型中,岩石系统的均质变形激活了熔体从收缩到膨胀位置的迁移,非均质变形产生的压力梯度也为熔体的分离和迁移提供了额外的驱动力(Holtzman et al.,2003).在地幔深处,超高压变质岩的熔融不仅降低了其强度,而且增加了其与周围地幔岩石的浮力,所以深熔作用在促进,甚至触发深俯冲大陆板片从地幔向上剥露起着重要作用( Wallis et al.,2005Labrousse et al.,2015).在碰撞后阶段,岩石圈加厚升温也会发生部分熔融,深熔作用产生的熔体密度较小,向上迁移远离源区,导致下地壳残留体的密度进一步增加,加大了造山带根部的重力不稳定性,促使其开始垮塌.

大陆地壳深部的深熔作用对剪切带变质作用和相关变形的演化具有重要意义( Li et al.,2021Dong et al.,2022aWang et al.,2022Li et al.,2023).熔体的存在降低了岩石的强度,将剪切作用局限在地壳最薄弱的部分;而且,剪切带被广泛认为可以作为流体运移和熔体向上迁移的通道( Genier et al.,2008Sawyer et al.,2010).在喜马拉雅地区,有研究者认为渐新世早期的淡色花岗岩代表了伸展环境,并且藏南拆离系开始启动( Yang et al.,2009Lin et al.,2020);在晚渐新世(28~26 Ma),高喜马拉雅和特提斯均以伸展构造背景为主,在此时期也发育了大量淡色花岗岩( Webb et al.,2017Carosi et al.,2018).虽然目前藏南拆离系的启动时间还未得到准确限定,但是可以推断出喜马拉雅地区的下地壳深熔作用与造山伸展作用存在联系. Wang et al.(2022)通过对哀牢山地区的浅色体和混合岩进行定年分析,将该地区的变质和深熔作用限制在发生强烈左旋走滑作用之前,认为哀牢山剪切带在含熔体的地壳中成核,并作为通道使熔体上升到更高的地壳水平.综上可知,深熔作用与深部韧性剪切带具有密切联系,下地壳深熔作用与剪切作用相互促进,具有正反馈机制.

5 结论

之前人们认为脱水熔融在地壳演化中占主导地位,由于大陆地壳孔隙度较低、含水量较少以及水饱和熔体难以向上运移等因素而忽视了水致熔融的重要性.现今研究发现,水致熔融在大陆地壳中也是一个广泛存在的过程,脱水熔融和水致熔融可能共同对地壳的演化起着重要作用.脱水熔融形成的浅色体与围岩之间一般有清晰界定的暗色反应边,而水致熔融与原岩通常无明显暗色边界.由于在不同深熔过程中造岩矿物熔融行为以及副矿物溶解行为的差异性,脱水熔融生成的熔体一般Rb、Rb/Sr比和Nb/Ta比较高,Sr、Ba、Ca含量和Zr/Hf比较低,并且Ba和Rb/Sr比呈负相关;水致熔融生成的熔体Sr、Ba、Ca含量较高,Rb和Rb/Sr比较低,Ba和Rb/Sr基本不存在相关性.尽管两种熔融机制在深熔岩石的野外特征、镜下特征、生成熔体的物理和化学性质等方面都有所不同,但在实际情况中由于混合岩中存在含水流体的岩石学证据难以识别,判断自然界中的水致熔融仍是一项挑战.

在下地壳岩石圈拆沉、软流圈地幔上涌、地壳加厚、玄武质岩浆底侵以及俯冲板片的折返等构造背景下都可以发生脱水熔融,变质梯度倒转、玄武质岩浆侵入等可能会诱发水致熔融.在自然界中,深熔作用的发生对淡色花岗岩的形成、地壳构造变形和地壳岩石的流变学性质具有重大意义.深熔产生的熔体首先在颗粒边界聚集,极大地降低了岩石系统的力学强度,使岩石更易发生变形;熔体从原岩分离、向上迁移,促进了地壳的成分分异,导致下地壳在化学成分上更偏基性,熔体在地壳浅部就位形成了广泛分布的淡色花岗岩.

参考文献

[1]

Acosta-Vigil,A.,London,D.,Morgan,G.B.,2006.Experiments on the Kinetics of Partial Melting of a Leucogranite at 200 MPa H2O and 690-800 ℃:Compositional Variability of Melts during the Onset of H2O-Saturated Crustal Anatexis. Contributions to Mineralogy and Petrology, 151( 5): 539- 557.https://doi.org/10.1007/s00410-006-0081-8

[2]

Acosta-Vigil,A.,London,D.,Morgan,G.B., et al.,2003.Solubility of Excess Alumina in Hydrous Granitic Melts in Equilibrium with Peraluminous Minerals at 700-800 ℃ and 200 MPa,and Applications of the Aluminum Saturation Index. Contributions to Mineralogy and Petrology, 146( 1): 100- 119.https://doi.org/10.1007/s00410-003-0486-6

[3]

Aikman,A.B.,Harrison,T.M.,Hermann,J.,2012.The Origin of Eo- and Neo-Himalayan Granitoids,Eastern Tibet. Journal of Asian Earth Sciences, 58: 143- 157.https://doi.org/10.1016/j.jseaes.2012.05.018

[4]

Aranovich,L.Y.,Makhluf,A.R.,Manning,C.E.,et al.,2014.Dehydration Melting and the Relationship between Granites and Granulites. Precambrian Research, 253: 26- 37.https://doi.org/10.1016/j.precamres.2014.07.004

[5]

Aranovich,L.Y.,Newton,R.C.,Manning,C.E.,2013.Brine-Assisted Anatexis:Experimental Melting in the System Haplogranite-H2O-NaCl-KCl at Deep-Crustal Conditions. Earth and Planetary Science Letters, 374: 111- 120.https://doi.org/10.1016/j.epsl.2013.05.027

[6]

Bea,F.,2012.The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278- 291.https://doi.org/10.1016/j.lithos.2012.01.017

[7]

Beaumont,C.,Jamieson,R.A.,Nguyen,M.H.,et al.,2004.Crustal Channel Flows:1.Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research,109(B6):B06406.https://doi.org/10.1029/2003jb002809

[8]

Berger,A.,Burri,T.,Alt-Epping,P.,et al.,2008.Tectonically Controlled Fluid Flow and Water-Assisted Melting in the Middle Crust:An Example from the Central Alps. Lithos,102(3-4):598-615.https://doi.org/10.1016/j.lithos.2007.07.027

[9]

Brown,M.,Korhonen,F.J.,2009.Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks.In:Gupta,A.K.,Dasgupta,S.,eds.,Physics and Chemistry of the Earth’s Interior.Springer,New York,U.S.A..https://doi.org/10.1007/978-1-4419-0346-4_4

[10]

Cao,H.W.,Pei,Q.M.,Santosh,M.,et al.,2022.Himalayan Leucogranites:A Review of Geochemical and Isotopic Characteristics,Timing of Formation,Genesis,and Rare Metal Mineralization. Earth-Science Reviews, 234:104229.https://doi.org/10.1016/j.earscirev.2022.104229

[11]

Cao,S.Y.,Neubauer,F.,2016.Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems:Shear Zone Initiation on Rheological Boundaries. Earth- Science Reviews, 162: 155- 176.https://doi.org/10.1016/j.earscirev.2016.09.010

[12]

Cao,S.Y.,Neubauer,F.,2019.Graphitic Material in Fault Zones:Implications for Fault Strength and Carbon Cycle. Earth-Science Reviews, 194: 109- 124.https://doi.org/10.1016/j.earscirev.2019.05.008

[13]

Carosi,R.,Montomoli,C.,Iaccarino,S.,2018.20 Years of Geological Mapping of the Metamorphic Core across Central and Eastern Himalayas. Earth-Science Reviews, 177: 124- 138.https://doi.org/10.1016/j.earscirev.2017.11.006

[14]

Cartwright,L.,Buick,S.L.,1998.The Link between Oxygen Isotope Resetting,Partial Melting,and Fluid Flow in Metamorphic Terrains. Terra Nova, 10( 2): 81- 85.https://doi.org/10.1046/j.1365-3121.1998.00171.x

[15]

Chappell,B.W.,White,A.J.R.,2001.Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48( 4): 489- 499.https://doi.org/10.1046/j.1440-0952.2001.00882.x

[16]

Chen,X.Y.,Liu,J.L.,Tang,Y.,et al.,2015.Contrasting Exhumation Histories along a Crustal-Scale Strike-Slip Fault Zone:The Eocene to Miocene Ailao Shan-Red River Shear Zone in Southeastern Tibet. Journal of Asian Earth Sciences, 114: 174- 187.https://doi.org/10.1016/j.jseaes.2015.05.020

[17]

Cheng,X.M.,Cao,S.Y.,Li,J.Y.,et al.,2022.Early Paleoproterozoic Tectono-Magmatic and Metamorphic Evolution of the Yuanmou Complex in the Southwestern Yangzte Block. Precambrian Research, 371:106572.https://doi.org/10.1016/j.precamres.2022.106572

[18]

Cipar,J.H.,Garber,J.M.,Kylander-Clark,A.R.C.,et al.,2020.Active Crustal Differentiation beneath the Rio Grande Rift. Nature Geoscience, 13( 11): 758- 763.https://doi.org/10.1038/s41561-020-0640-z

[19]

Clark,C.,Fitzsimons,I.C.W.,Healy,D.,et al.,2011.How does the Continental Crust Get Really Hot? Elements, 7( 4): 235- 240.https://doi.org/10.2113/gselements.7.4.235

[20]

Clemens,J.,Watkins,J.,2001.The Fluid Regime of High-Temperature Metamorphism during Granitoid Magma Genesis. Contributions to Mineralogy and Petrology, 140( 5): 600- 606.https://doi.org/10.1007/s004100000205

[21]

Clemens,J.D.,1990.The Granulite-Granite Connexion.In:Vielzeuf,D.,Vidal,P.,eds.,Granulites and Crustal Evolution.Springer,Dordrecht.https://doi.org/10.1007/978-94-009-2055-2_3

[22]

Clemens,J.D.,Droop,G.T.R.,1998.Fluids, P- T Paths and the Fates of Anatectic Melts in the Earth’s Crust. Lithos,44(1-2):21-36.https://doi.org/10.1016/s0024-4937(98)00020-6

[23]

Clemens,J.D.,Stevens,G.,Bryan,S.E.,2020.Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold;Drenched,Damp or Dry? Earth-Science Reviews, 200:102982.https://doi.org/10.1016/j.earscirev.2019.102982

[24]

Collins,W.J.,Huang,H.Q.,Jiang,X.Y.,2016.Water-Fluxed Crustal Melting Produces Cordilleran Batholiths. Geology, 44( 2): 143- 146.https://doi.org/10.1130/g37398.1

[25]

Collins,W.J.,Murphy,J.B.,Blereau,E.,et al.,2021.Water Availability Controls Crustal Melting Temperatures. Lithos,402-403:106351.https://doi.org/10.1016/j.lithos.2021.106351

[26]

Daniel,C.G.,Hollister,L.S.,Parrish,R.R.,et al.,2003.Exhumation of the Main Central Thrust from Lower Crustal Depths,Eastern Bhutan Himalaya. Journal of Metamorphic Geology, 21( 4): 317- 334.https://doi.org/10.1046/j.1525-1314.2003.00445.x

[27]

Dewey,J.F.,Robb,L.,van Schalkwyk,L.,2006.Did Bushmanland Extensionally Unroof Namaqualand? Precambrian Research,150(3-4):173-182.https://doi.org/10.1016/j.precamres.2006.07.007

[28]

Dokukina,K.A.,Khiller,V.V.,Khubanov,V.B.,et al.,2022.Neoarchean High-Pressure Granulite-Facies Anatexis of Continental Rocks in the Belomorian Eclogite Province,Russia. Precambrian Research, 381:106843.https://doi.org/10.1016/j.precamres.2022.106843

[29]

Dong,Y.L.,Cao,S.Y.,Neubauer,F.,et al.,2022a.Exhumation of the Crustal-Scale Gaoligong Strike-Slip Shear Belt in SE Asia. Journal of the Geological Society, 179( 2): JGS2021.https://doi.org/10.1144/jgs2021-038

[30]

Dong,Y.L.,Cao,S.Y.,Zhan,L.F.,et al.,2022b.Tectono-Magmatism Evolution in the Gaoligong Orogen Belt during Neoproterozoic to Paleozoic:Significance for Assembly of East Gondwana. Precambrian Research, 378:106776.https://doi.org/10.1016/j.precamres.2022.106776

[31]

Finch,M.,Hasalova,P.,Weinberg,R.F.,et al.,2014.Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone,NW Himalaya:Implications for Channel Flow. Geological Society of America Bulletin,126(7-8):892-924.https://doi.org/10.1130/b30817.1

[32]

Ganzhorn,A.C.,Labrousse,L.,Prouteau,G.,et al.,2014.Structural,Petrological and Chemical Analysis of Syn-Kinematic Migmatites:Insights from the Western Gneiss Region,Norway. Journal of Metamorphic Geology, 32( 6): 647- 673.https://doi.org/10.1111/jmg.12084

[33]

Gao,L.E.,Zeng,L.S.,Asimow,P.D.,2017.Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45( 1): 39- 42.https://doi.org/10.1130/g38336.1

[34]

Gao,L.E.,Zeng,L.S.,Hu,G.Y.,2010.High Sr/Y Two-Mica Granite from Quedang Area,Southern Tibet,China:Formation Mechanism and Tectonic Implications. Geological Bulletin of China, 29( 2): 214- 226 (in Chinese with English abstract).

[35]

Gao,L.E.,Zeng,L.S.,Liu,J.,et al.,2009.Early Oligocene Na-Rich Peraluminous Leucogranites in the Yardoi Gneiss Dome,Southern Tibet:Formation Mechanism and Tectonic Implications. Acta Petrologica Sinica, 25( 9): 2289- 2302 (in Chinese with English abstract).

[36]

Gao,L.E.,Zeng,L.S.,Wang,L.,et al.,2016.Timing of Different Crustal Partial Melting in the Himalayan Orogenic Belt and Its Tectonic Implications. Acta Geologica Sinica, 90( 11): 3039- 3059 (in Chinese with English abstract).

[37]

Gao,P.,Zheng,Y.F.,Yakymchuk,C.,et al.,2021.The Effects of Source Mixing and Fractional Crystallization on the Composition of Eocene Granites in the Himalayan Orogen. Journal of Petrology, 62( 7): EGAB037.https://doi.org/10.1093/petrology/egab037

[38]

Gardien,V.,Thompson,A.B.,Ulmer,P.,2000.Melting of Biotite+Plagioclase+Quartz Gneisses:The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41( 5): 651- 666.https://doi.org/10.1093/petrology/41.5.651

[39]

Genier,F.,Bussy,F.,Epard,J.L.,et al.,2008.Water-Assisted Migmatization of Metagraywackes in a Variscan Shear Zone,Aiguilles-Rouges Massif,Western Alps. Lithos,102(3-4):575-597.https://doi.org/10.1016/j.lithos.2007.07.024

[40]

Groppo,C.,Rubatto,D.,Rolfo,F.,et al.,2010.Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley,Eastern Nepal Himalaya). Lithos,118(3-4):287-301.https://doi.org/10.1016/j.lithos.2010.05.003

[41]

Gu,D.X.,Zhang,J.J.,Lin,C.,et al.,2022.Anatexis and Resultant Magmatism of the Ama Drime Massif:Implications for Himalayan Mid-Miocene Tectonic Regime Transition. Lithos,424-435:106773.https://doi.org/10.1016/j.lithos.2022.106773

[42]

Guernina, S., Sawyer, E. W., 2003. Large-Scale Melt-Depletion in Granulite Terranes:An Example from the Archean Ashuanipi Subprovince of Quebec. Journal of Metamorphic Geology, 21( 2): 181- 201.https://doi.org/10.1046/j.1525-1314.2003.00436.x

[43]

Guo,Z.F.,Wilson,M.,2012.The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22( 2): 360- 376.https://doi.org/10.1016/j.gr.2011.07.027

[44]

Harley,S.L.,2016.A Matter of Time:The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111( 2): 50- 72.https://doi.org/10.2465/jmps.160128

[45]

Harris,N.,Massey,J.,Inger,S.,1993.The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74( 1): 391- 400.https://doi.org/10.1144/gsl.sp.1993.074.01.26

[46]

Hermann,J.,Green,D.H.,2001.Experimental Constraints on High Pressure Melting in Subducted Crust. Earth and Planetary Science Letters, 188( 12): 149- 168.https://doi.org/10.1016/s0012-821x(01)00321-1

[47]

Holness,M.B.,Cesare,B.,Sawyer,E.W.,2011.Melted Rocks under the Microscope:Microstructures and Their Interpretation. Elements, 7( 4): 247- 252.https://doi.org/10.2113/gselements.7.4.247

[48]

Holtzman,B.K.,Groebner,N.J.,Zimmerman,M.E.,et al.,2003.Stress-Driven Melt Segregation in Partially Molten Rocks. Geochemistry, Geophysics, Geosystems, 4(5):8607.https://doi.org/10.1029/2001gc000258

[49]

Hopkinson,T.,Harris,N.,Roberts,N.M.W.,et al.,2020.Evolution of the Melt Source during Protracted Crustal Anatexis:An Example from the Bhutan Himalaya. Geology, 48( 1): 87- 91.https://doi.org/10.1130/g47078.1

[50]

Hu,Z.P.,Zhang,Y.S.,Hu,R.,et al.,2016.Amphibole-Bearing Migmatite in North Dabie,Eastern China:Water-Fluxed Melting of the Orogenic Crust. Journal of Asian Earth Sciences, 125: 100- 116.https://doi.org/10.1016/j.jseaes.2016.05.018

[51]

Inger,S.,Harris,N.,1993.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley,Nepal Himalaya. Journal of Petrology, 34( 2): 345- 368.https://doi.org/10.1093/petrology/34.2.345

[52]

Jamtveit,B.,Austrheim,H.,Putnis,A.,2016.Disequilibrium Metamorphism of Stressed Lithosphere. Earth-Science Reviews, 154: 1- 13.https://doi.org/10.1016/j.earscirev.2015.12.002

[53]

Johnson,T.E.,White,R.W.,Powell,R.,2008.Partial Melting of Metagreywacke:A Calculated Mineral Equilibria Study. Journal of Metamorphic Geology, 26( 8): 837- 853.https://doi.org/10.1111/j.1525-1314.2008.00790.x

[54]

Jung,C.,Jung,S.,Nebel,O.,et al.,2009.Fluid-Present Melting of Meta-Igneous Rocks and the Generation of Leucogranites-Constraints from Garnet Major- and Trace Element Data,Lu-Hf Whole Rock-Garnet Ages and Whole Rock Nd-Sr-Hf-O Isotope Data. Lithos,111(3-4):220-235.https://doi.org/10.1016/j.lithos.2008.11.008

[55]

Jung,S.,Hoernes,S.,Mezger,K.,2000.Geochronology and Petrology of Migmatites from the Proterozoic Damara Belt:Importance of Episodic Fluid-Present Disequilibrium Melting and Consequences for Granite Petrology. Lithos, 51( 3): 153- 179.https://doi.org/10.1016/s0024-4937(99)00062-6

[56]

Kelsey,D.E.,Hand,M.,2015.On Ultrahigh Temperature Crustal Metamorphism:Phase Equilibria,Trace Element Thermometry,Bulk Composition,Heat Sources,Timescales and Tectonic Settings. Geoscience Frontiers, 6( 3): 311- 356.https://doi.org/10.1016/j.gsf.2014.09.006

[57]

Koester,E.,Pawley,A.R.,Fernandes,L.A.D.,et al.,2002.Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 43( 8): 1595- 1616.https://doi.org/10.1093/petrology/43.8.1595

[58]

Labrousse, L., Duretz, T., Gerya, T., 2015. H2O - Fluid-Saturated Melting of Subducted Continental Crust Facilitates Exhumation of Ultrahigh-Pressure Rocks in Continental Subduction Zones. Earth and Planetary Science Letters, 428: 151- 161.https://doi.org/10.1016/j.epsl.2015.06.016

[59]

Le Fort,P.,1981.Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement. Journal of Geophysical Research: Solid Earth,86(B11):10545-10568.https://doi.org/10.1029/jb086ib11p10545

[60]

Lee,J.,Whitehouse,M.J.,2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages. Geology, 35(1):45.https://doi.org/10.1130/g22842a.1

[61]

Lee,Y.,Cho,M.,2013.Fluid-Present Disequilibrium Melting in Neoarchean Arc-Related Migmatites of Daeijak Island,Western Gyeonggi Massif,Korea. Lithos, 179: 249- 262.https://doi.org/10.1016/j.lithos.2013.08.0

[62]

Lei,K.,2020.Genesis of High Himalayan Pale Granite and Its Dynamic Significance (Dissertation).Changan University,Xi’an (in Chinese with English abstract).

[63]

Lei,K.,Wang,X.C.,Pang,C.J.,et al.,2022.Contribution of Free Water in the Anatexis of Continental Crust:Constraints from the High Himalayan Leucogranites. Geochimica, 51( 1): 83- 97 (in Chinese with English abstract).

[64]

Li,H.L.,Yang,D.X.,Tian,Y.,et al.,2023.Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture. Earth Science, 48( 4): 1330- 1350 (in Chinese with English abstract).

[65]

Li,J.Y.,Cao,S.Y.,Neubauer,F.,et al.,2021.Structure and Spatial-Temporal Relationships of Eocene-Oligocene Potassic Magmatism Linked to the Ailao Shan-Red River Shear Zone and Post-Collisional Extension. Lithos, 396:106203.https://doi.org/10.1016/j.lithos.2021.106203

[66]

Li,W.C.,Chen,R.X.,Zheng,Y.F.,et al.,2016.Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen,China. Geological Society of America Bulletin,128(9-10):1521-1542.https://doi.org/10.1130/b31366.1

[67]

Li,W.Y.,Cao,S.Y.,Dong,Y.L.,et al.,2023.Crustal Anatexis and Initiation of the Continental-Scale Chongshan Strike-Slip Shear Zone on the Southeastern Tibetan Plateau. Tectonics,42(4):e2023TC007864.https://doi.org/10.1029/2023tc007864

[68]

Li,X.C.,Niu,M.L.,Yakymchuk,C.,et al.,2018.Anatexis of Former Arc Magmatic Rocks during Oceanic Subduction:A Case Study from the North Wulan Gneiss Complex. Gondwana Research, 61: 128- 149.https://doi.org/10.1016/j.gr.2018.04.016

[69]

Lin,C.,Zhang,J.J.,Wang,X.X.,et al.,2020.Oligocene Initiation of the South Tibetan Detachment System:Constraints from Syn-Tectonic Leucogranites in the Kampa Dome,Northern Himalaya. Lithos,354-355:105332.https://doi.org/10.1016/j.lithos.2019.105332

[70]

Liu,B.,Xu,Y.,Ma,C.Q.,et al.,2023.Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48( 9): 3296- 3311 (in Chinese with English abstract).

[71]

Liu,F.L.,Robinson,P.T.,Gerdes,A.,et al.,2010.Zircon U-Pb Ages,REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China:Constraints on the Timing and Nature of Partial Melting. Lithos,117(1-4):247-268.https://doi.org/10.1016/j.lithos.2010.03.002

[72]

Liu,J.L.,Tran,M.D.,Tang,Y.,et al.,2012.Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt,NW Vietnam:Geochronology,Geochemistry and Tectonic Implications. Gondwana Research, 22( 2): 628- 644.https://doi.org/10.1016/j.gr.2011.10.011

[73]

Liu,X.C.,Wu,F.Y.,Kohn,M.J.,et al.,2022.Plutonic-Subvolcanic Connection of the Himalayan Leucogranites:Insights from the Eocene Lhunze Complex,Southern Tibet. Lithos,434-435:106939.https://doi.org/10.1016/j.lithos.2022.106939

[74]

Liu,Z.C.,Wu,F.Y.,Ji,W.Q.,et al.,2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos,208-209:118-136.https://doi.org/10.1016/j.lithos.2014.08.022

[75]

Mallik,A.,Dasgupta,R.,Tsuno,K.,et al.,2016.Effects of Water,Depth and Temperature on Partial Melting of Mantle-Wedge Fluxed by Hydrous Sediment-Melt in Subduction Zones. Geochimica et Cosmochimica Acta, 195: 226- 243.https://doi.org/10.1016/j.gca.2016.08.018

[76]

Meng,Z.Y.,Gao,X.Y.,Chen,R.X.,et al.,2021.Fluid-Present and Fluid-Absent Melting of Muscovite in Migmatites in the Himalayan Orogen:Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships. Lithos, 388:106071.https://doi.org/10.1016/j.lithos.2021.106071

[77]

Patiño Douce,A.E.,1996.Effects of Pressure and H2O Content on the Compositions of Primary Crustal Melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,87(1-2):11-21.https://doi.org/10.1017/s026359330000643x

[78]

Patiño Douce,A.E.,Harris,N.,1998.Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39( 4): 689- 710.https://doi.org/10.1093/petroj/39.4.689

[79]

Pourteau,A.,Doucet,L.S.,Blereau,E.R.,et al.,2020.TTG Generation by Fluid-Fluxed Crustal Melting:Direct Evidence from the Proterozoic Georgetown Inlier,NE Australia. Earth and Planetary Science Letters, 550:116548.https://doi.org/10.1016/j.epsl.2020.116548

[80]

Powell,R.,Guiraud,M.,White,R.W.,2005.Truth and Beauty in Metamorphic Phase-Equilibria:Conjugate Variables and Phase Diagrams. The Canadian Mineralogist, 43( 1): 21- 33.https://doi.org/10.2113/gscanmin.43.1.21

[81]

Prince,C.,Harris,N.,Vance,D.,2001.Fluid-Enhanced Melting during Prograde Metamorphism. Journal of the Geological Society, 158( 2): 233- 241.https://doi.org/10.1144/jgs.158.2.233

[82]

Rabillard,A.,Jolivet,L.,Arbaret,L.,et al.,2018.Synextensional Granitoids and Detachment Systems within Cycladic Metamorphic Core Complexes (Aegean Sea,Greece):Toward a Regional Tectonomagmatic Model. Tectonics, 37( 8): 2328- 2362.https://doi.org/10.1029/2017tc004697

[83]

Regis,D.,Warren,C.J.,Young,D.,et al.,2014.Tectono-Metamorphic Evolution of the Jomolhari Massif:Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan. Lithos,190-191:449-466.https://doi.org/10.1016/j.lithos.2014.01.001

[84]

Reichardt,H.,Weinberg,R.F.,2012.Hornblende Chemistry in Meta- and Diatexites and Its Retention in the Source of Leucogranites:An Example from the Karakoram Shear Zone,NW India. Journal of Petrology, 53( 6): 1287- 1318.https://doi.org/10.1093/petrology/egs017

[85]

Reichardt,H.,Weinberg,R.F.,Andersson,U.B.,et al.,2010.Hybridization of Granitic Magmas in the Source:The Origin of the Karakoram Batholith,Ladakh,NW India. Lithos,116(3-4):249-272.https://doi.org/10.1016/j.lithos.2009.11.013

[86]

Ricketts,J.W.,Karlstrom,K.E.,Kelley,S.A.,2015.Embryonic Core Complexes in Narrow Continental Rifts:The Importance of Low-Angle Normal Faults in the Rio Grande Rift of Central New Mexico. Geosphere, 11( 2): 425- 444.https://doi.org/10.1130/GES01109.1

[87]

Rosenberg,C.L.,Handy,M.R.,2005.Experimental Deformation of Partially Melted Granite Revisited:Implications for the Continental Crust. Journal of Metamorphic Geology, 23( 1): 19- 28.https://doi.org/10.1111/j.1525-1314.2005.00555.x

[88]

Rosenberg,C.L.,Kissling,E.,2013.Three-Dimensional Insight into Central-Alpine Collision:Lower-Plate or Upper-Plate Indentation? Geology, 41( 12): 1219- 1222.https://doi.org/10.1130/G34584.1

[89]

Rubatto,D.,Hermann,J.,Berger,A.,et al.,2009.Protracted Fluid-Induced Melting during Barrovian Metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158( 6): 703- 722.https://doi.org/10.1007/s00410-009-0406-5

[90]

Rudnick,R.L.,Fountain,D.M.,1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33( 3): 267- 309.https://doi.org/10.1029/95rg01302

[91]

Sawyer,E.W.,2001.Melt Segregation in the Continental Crust:Distribution and Movement of Melt in Anatectic Rocks. Journal of Metamorphic Geology, 19( 3): 291- 309.https://doi.org/10.1046/j.0263-4929.2000.00312.x

[92]

Sawyer,E.W.,2008.Atlas of migmatites.The Canadian Mineralogist Special Publication 9.NRC Research Press,Ottawa,Ontario,Canada,371.

[93]

Sawyer,E.W.,2010.Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith:Microstructures in the Residual Rocks and Source of the Fluid. Lithos,116(3-4):273-286.https://doi.org/10.1016/j.lithos.2009.07.003

[94]

Sawyer,E.W.,Cesare,B.,Brown,M.,2011.When the Continental Crust Melts. Elements, 7( 4): 229- 234 https://doi.org/10.2113/gselements.7.4.229

[95]

Schmidt,M.W.,Vielzeuf,D.,Auzanneau,E.,2004.Melting and Dissolution of Subducting Crust at High Pressures:The Key Role of White Mica. Earth and Planetary Science Letters,228(1-2):65-84.https://doi.org/10.1016/j.epsl.2004.09.020

[96]

Shi,Q.,Ding,D.,Xu,Z.Y.,et al.,2021.Metamorphic Evolution of Daqingshan Supracrustal Rocks and Garnet Granite from the North China Craton:Constraints from Phase Equilibria Modelling,Geochemistry,and SHRIMP U-Pb Geochronology. Gondwana Research, 97: 101- 120.https://doi.org/10.1016/j.gr.2021.05.014

[97]

Shuai,X.,Li,S.M.,Zhu,D.C.,et al.,2021.Tetrad Effect of Rare Earth Elements Caused by Fractional Crystallization in High-Silica Granites:An Example from Central Tibet. Lithos,384-385:105968.https://doi.org/10.1016/j.lithos.2021.105968

[98]

Slagstad,T.,Jamieson,R.A.,Culshaw,N.G.,2005.Formation,Crystallization,and Migration of Melt in the Mid-Orogenic Crust:Muskoka Domain Migmatites,Grenville Province,Ontario. Journal of Petrology, 46( 5): 893- 919.https://doi.org/10.1093/petrology/egi004

[99]

Solar,G.S.,Pressley,R.A.,Brown,M.,et al.,1998.Granite Ascent in Convergent Orogenic Belts:Testing a Model. Geology,26(8):711-714.https://doi.org/10.1130/0091-7613(1998)0260711:gaicob>2.3.co;2

[100]

Stepanov,A.S.,Hermann,J.,Rubatto,D.,et al.,2012.Experimental Study of Monazite/Melt Partitioning with Implications for the REE,Th and U Geochemistry of Crustal Rocks. Chemical Geology,300-301:200-220.https://doi.org/10.1016/j.chemgeo.2012.01.007

[101]

Storkey,A.C.,Hermann,J.,Hand,M.,et al.,2005.Using In Situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 46( 6): 1283- 1308.https://doi.org/10.1093/petrology/egi017

[102]

Thompson,A.B.,2001.Clockwise P- T Paths for Crustal Melting and H2O Recycling in Granite Source Regions and Migmatite Terrains. Lithos, 56( 1): 33- 45.https://doi.org/10.1016/s0024-4937(00)00058-x

[103]

Trail,D.,Watson,E.B.,Tailby,N.D.,2012.Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70- 87.https://doi.org/10.1016/j.gca.2012.08.032

[104]

Vanderhaeghe,O.,2009.Migmatites,Granites and Orogeny:Flow Modes of Partially-Molten Rocks and Magmas Associated with Melt/Solid Segregation in Orogenic Belts. Tectonophysics,477(3-4):119-134.https://doi.org/10.1016/j.tecto.2009.06.021

[105]

Vanderhaeghe,O.,Teyssier,C.,2001.Partial Melting and Flow of Orogens. Tectonophysics,342(3-4):451-472.https://doi.org/10.1016/s0040-1951(01)00175-5

[106]

Vielzeuf,D.,Schmidt,M.W.,2001.Melting Relations in Hydrous Systems Revisited:Application to Metapelites,Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141( 3): 251- 267.https://doi.org/10.1007/s004100100237

[107]

Wallis,S.,Tsuboi,M.,Suzuki,K.,et al.,2005.Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 33(2):129.https://doi.org/10.1130/g20991.1

[108]

Walte,N.P.,Bons,P.D.,Passchier,C.W.,2005.Deformation of Melt-Bearing Systems—Insight from In Situ Grain-Scale Analogue Experiments. Journal of Structural Geology, 27( 9): 1666- 1679.https://doi.org/10.1016/j.jsg.2005.05.006

[109]

Wang,H.B.,Cao,S.Y.,Li,J.Y.,et al.,2022.High-Pressure Granulite-Facies Metamorphism and Anatexis of Deep Continental Crust:New Insights from the Cenozoic Ailao Shan-Red River Shear Zone,Southeast Asia. Gondwana Research, 103: 314- 334.https://doi.org/10.1016/j.gr.2021.10.010

[110]

Wang,S.J.,Li,S.G.,Chen,L.J.,et al.,2013.Geochronology and Geochemistry of Leucosomes in the North Dabie Terrane,East China:Implication for Post-UHPM Crustal Melting during Exhumation. Contributions to Mineralogy and Petrology, 165( 5): 1009- 1029.https://doi.org/10.1007/s00410-012-0845-2

[111]

Wang,Y.Q.,Zhai,M.G.,He,H.L.,et al.,2021.Incipient Charnockite Formation in the Trivandrum Block,Southern India:Evidence from Melt-Related Reaction Textures and Phase Equilibria Modelling. Lithos,380-381:105825.https://doi.org/10.1016/j.lithos.2020.105825

[112]

Watkins,J.M.,Clemens,J.D.,Treloar,P.J.,2007.Archaean TTGS as Sources of Younger Granitic Magmas: Melting of Sodic Metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 154( 1): 91- 110.https://doi.org/10.1007/s00410-007-0181-0

[113]

Webb,A.A.G.,Guo,H.C.,Clift,P.D.,et al.,2017.The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 9( 4): 637- 651.https://doi.org/10.1130/l636.1

[114]

Wei,C.J.,Wang,W.,2007.Phase Equilibria of Anatexis in High-Grade Metapelites. Earth Science Frontiers, 14( 1): 125- 134 (in Chinese with English abstract).

[115]

Weinberg,R.F.,Hasalová,P.,2015.Water-Fluxed Melting of the Continental Crust:A Review. Lithos,212-215:158-188.https://doi.org/10.1016/j.lithos.2014.08.021

[116]

White,R.W.,Powell,R.,2002.Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20( 7): 621- 632.https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x

[117]

White,R.W.,Powell,R.,Holland,T.J.B.,2001.Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19( 2): 139- 153.https://doi.org/10.1046/j.0263-4929.2000.00303.x

[118]

Whitney,D.L.,Teyssier,C.,Fayon,A.K.,et al.,2003.Tectonic Controls on Metamorphism,Partial Melting,and Intrusion:Timing and Duration of Regional Metamorphism and Magmatism in the Niğde Massif,Turkey. Tectonophysics,376(1/2):37-60.https://doi.org/10.1016/j.tecto.2003.08.009

[119]

Wu,D.,Wei,C.J.,2021.Metamorphic Evolution of Two Types of Garnet Amphibolite from the Qingyuan Terrane,North China Craton:Insights from Phase Equilibria Modelling and Zircon Dating. Precambrian Research, 355:106091.https://doi.org/10.1016/j.precamres.2021.106091

[120]

Xu,J.,Xia,X.P.,Yin,C.Q.,et al.,2022.Geochronology and Geochemistry of the Granitoids in the Diancangshan-Ailaoshan Fold Belt:Implications on the Neoproterozoic Subduction and Crustal Melting along the Southwestern Yangtze Block,South China. Precambrian Research, 383:106907.https://doi.org/10.1016/j.precamres.2022.106907

[121]

Yakymchuk,C.,2021.Migmatites.In:Alderton,D.,Elias,S.A.,eds.,Encyclopedia of Geology.Elsevier,Amsterdam,492-501.https://doi.org/10.1016/b978-0-08-102908-4.00021-7

[122]

Yang,L.,Liu,X.C.,Wang,J.M.,et al.,2019.Is Himalayan Leucogranite a Product by In Situ Partial Melting of the Greater Himalayan Crystalline?A Comparative Study of Leucosome and Leucogranite from Nyalam,Southern Tibet. Lithos, 342: 542- 556.https://doi.org/10.1016/j.lithos.2019.06.007

[123]

Yang,X.Y.,Zhang,J.J.,Qi,G.W.,et al.,2009.Structure and Deformation around the Gyirong Basin,North Himalaya,and Onset of the South Tibetan Detachment System. Science in China ( Series D), 52( 8): 1046- 1058.https://doi.org/10.1007/s11430-009-0111-2

[124]

Ye,Z.L.,Wan,F.,Jiang,N.,et al.,2021.Dehydration Melting of Amphibolite at 1.5​GPa and 800-950​℃:Implications for the Mesozoic Potassium-Rich Adakite in the Eastern North China Craton. Geoscience Frontiers, 12( 2): 896- 906.https://doi.org/10.1016/j.gsf.2020.03.008

[125]

Zeng,L.S.,Asimow,P.D.,Saleeby,J.B.,2005a.Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source. Geochimica et Cosmochimica Acta, 69( 14): 3671- 3682.https://doi.org/10.1016/j.gca.2005.02.035

[126]

Zeng,L.S.,Saleeby,J.B.,Asimow,P.,2005b.Nd Isotope Disequilibrium during Crustal Anatexis:A Record from the Goat Ranch Migmatite Complex,Southern Sierra Nevada Batholith,California. Geology,33(1):53.https://doi.org/10.1130/g20831.1

[127]

Zeng,L.S.,Gao,L.E.,2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33( 5): 1420- 1444 (in Chinese with English abstract).

[128]

Zeng,L.S.,Gao,L.E.,Zhao,L.H.,et al.,2021.The Role of Titanite in Shaping the Geochemistry of Amphibolite-Derived Melts. Lithos,402-403:106312.https://doi.org/10.1016/j.lithos.2021.106312

[129]

Zeng,L.S.,Liu,J.,Gao,L.E.,et al.,2009.Early Oligocene Anatexis in the Yardoi Gneiss Dome,Southern Tibet and Geological Implications. Science Bulletin, 54( 3): 373- 381 (in Chinese).

[130]

Zhang,Z.M.,Ding,H.X.,Dong,X.,et al.,2020.Partial Melting of Subduction Zones. Acta Petrologica Sinica, 36( 9): 2589- 2615 (in Chinese with English abstract).

[131]

Zhang,Z.M.,Kang,D.Y.,Ding,H.X.,et al.,2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43( 1): 82- 98 (in Chinese with English abstract).

[132]

Zheng,Y.F.,2021.Convergent Plate Boundaries and Accretionary Wedges.Encyclopedia of Geology.Elsevier,Amsterdam,770-787.https://doi.org/10.1016/b978-0-08-102908-4.00042-4

[133]

Zheng,Y.F.,Chen,R.X.,2017.Regional Metamorphism at Extreme Conditions:Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46- 73.https://doi.org/10.1016/j.jseaes.2017.03.009

[134]

Zheng,Y.F.,Gao,P.,2021.The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos,402/403:106232.https://doi.org/10.1016/j.lithos.2021.106232

基金资助

国家自然科学基金项目(42320104007;4197220)

AI Summary AI Mindmap
PDF (10688KB)

392

访问

0

被引

详细

导航
相关文章

AI思维导图

/