大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义
陶丽蓉 , 曹淑云 , 李文元 , 程雪梅 , 王浩博 , 董彦龙
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2001 -2023.
大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义
Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust
深熔作用是链接地壳深部变质作用、构造变形以及岩浆活动的重要纽带,对大陆地壳演化及其流变学性质具有重要意义.根据是否有自由水的参与,深熔作用分为水致熔融和脱水熔融两种机制.脱水熔融主要通过云母、角闪石等含水矿物的分解来实现,其发生所需的温度一般大于650 ℃.在脱水熔融反应中会生成钾长石、石榴石等转熔矿物和部分熔体,该熔体呈水不饱和态,具有高Rb、高Rb/Sr比、高 87Sr/ 86Sr,低Sr、Ba和Ca的特点.其产生的熔体含量主要受温压条件和全岩水含量的影响,在麻粒岩相条件下才有可能产生大量熔体.水致熔融是在含水流体参与下所发生的熔融反应,其最显著的特点就是所需温度较低,在角闪岩相条件下可以生成大量熔体.生成的熔体可以是水饱和或水不饱和,在高温条件下生成的水不饱和熔体具有向上迁移的能力.水致熔融生成熔体的地球化学特征与脱水熔融相反,Sr、Ca、Ba含量较高,Rb、Rb/Sr比较低.深熔作用不仅可以显著改变岩石的热力学和流变学性质,而且熔体的迁移可以促进地壳分异并形成广泛的淡色花岗岩,在陆壳的起源、改造和稳定中起着至关重要的作用.
深熔作用 / 水致熔融 / 脱水熔融 / 流变弱化 / 淡色花岗岩 / 构造地质.
anatexis / water-fluxed melting / dehydration melting / rheological weakening / leucogranite / tectonics
| [1] |
Acosta-Vigil,A.,London,D.,Morgan,G.B.,2006.Experiments on the Kinetics of Partial Melting of a Leucogranite at 200 MPa H2O and 690-800 ℃:Compositional Variability of Melts during the Onset of H2O-Saturated Crustal Anatexis. Contributions to Mineralogy and Petrology, 151( 5): 539- 557.https://doi.org/10.1007/s00410-006-0081-8 |
| [2] |
Acosta-Vigil,A.,London,D.,Morgan,G.B., et al.,2003.Solubility of Excess Alumina in Hydrous Granitic Melts in Equilibrium with Peraluminous Minerals at 700-800 ℃ and 200 MPa,and Applications of the Aluminum Saturation Index. Contributions to Mineralogy and Petrology, 146( 1): 100- 119.https://doi.org/10.1007/s00410-003-0486-6 |
| [3] |
Aikman,A.B.,Harrison,T.M.,Hermann,J.,2012.The Origin of Eo- and Neo-Himalayan Granitoids,Eastern Tibet. Journal of Asian Earth Sciences, 58: 143- 157.https://doi.org/10.1016/j.jseaes.2012.05.018 |
| [4] |
Aranovich,L.Y.,Makhluf,A.R.,Manning,C.E.,et al.,2014.Dehydration Melting and the Relationship between Granites and Granulites. Precambrian Research, 253: 26- 37.https://doi.org/10.1016/j.precamres.2014.07.004 |
| [5] |
Aranovich,L.Y.,Newton,R.C.,Manning,C.E.,2013.Brine-Assisted Anatexis:Experimental Melting in the System Haplogranite-H2O-NaCl-KCl at Deep-Crustal Conditions. Earth and Planetary Science Letters, 374: 111- 120.https://doi.org/10.1016/j.epsl.2013.05.027 |
| [6] |
Bea,F.,2012.The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278- 291.https://doi.org/10.1016/j.lithos.2012.01.017 |
| [7] |
Beaumont,C.,Jamieson,R.A.,Nguyen,M.H.,et al.,2004.Crustal Channel Flows:1.Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research,109(B6):B06406.https://doi.org/10.1029/2003jb002809 |
| [8] |
Berger,A.,Burri,T.,Alt-Epping,P.,et al.,2008.Tectonically Controlled Fluid Flow and Water-Assisted Melting in the Middle Crust:An Example from the Central Alps. Lithos,102(3-4):598-615.https://doi.org/10.1016/j.lithos.2007.07.027 |
| [9] |
Brown,M.,Korhonen,F.J.,2009.Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks.In:Gupta,A.K.,Dasgupta,S.,eds.,Physics and Chemistry of the Earth’s Interior.Springer,New York,U.S.A..https://doi.org/10.1007/978-1-4419-0346-4_4 |
| [10] |
Cao,H.W.,Pei,Q.M.,Santosh,M.,et al.,2022.Himalayan Leucogranites:A Review of Geochemical and Isotopic Characteristics,Timing of Formation,Genesis,and Rare Metal Mineralization. Earth-Science Reviews, 234:104229.https://doi.org/10.1016/j.earscirev.2022.104229 |
| [11] |
Cao,S.Y.,Neubauer,F.,2016.Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems:Shear Zone Initiation on Rheological Boundaries. Earth- Science Reviews, 162: 155- 176.https://doi.org/10.1016/j.earscirev.2016.09.010 |
| [12] |
Cao,S.Y.,Neubauer,F.,2019.Graphitic Material in Fault Zones:Implications for Fault Strength and Carbon Cycle. Earth-Science Reviews, 194: 109- 124.https://doi.org/10.1016/j.earscirev.2019.05.008 |
| [13] |
Carosi,R.,Montomoli,C.,Iaccarino,S.,2018.20 Years of Geological Mapping of the Metamorphic Core across Central and Eastern Himalayas. Earth-Science Reviews, 177: 124- 138.https://doi.org/10.1016/j.earscirev.2017.11.006 |
| [14] |
Cartwright,L.,Buick,S.L.,1998.The Link between Oxygen Isotope Resetting,Partial Melting,and Fluid Flow in Metamorphic Terrains. Terra Nova, 10( 2): 81- 85.https://doi.org/10.1046/j.1365-3121.1998.00171.x |
| [15] |
Chappell,B.W.,White,A.J.R.,2001.Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48( 4): 489- 499.https://doi.org/10.1046/j.1440-0952.2001.00882.x |
| [16] |
Chen,X.Y.,Liu,J.L.,Tang,Y.,et al.,2015.Contrasting Exhumation Histories along a Crustal-Scale Strike-Slip Fault Zone:The Eocene to Miocene Ailao Shan-Red River Shear Zone in Southeastern Tibet. Journal of Asian Earth Sciences, 114: 174- 187.https://doi.org/10.1016/j.jseaes.2015.05.020 |
| [17] |
Cheng,X.M.,Cao,S.Y.,Li,J.Y.,et al.,2022.Early Paleoproterozoic Tectono-Magmatic and Metamorphic Evolution of the Yuanmou Complex in the Southwestern Yangzte Block. Precambrian Research, 371:106572.https://doi.org/10.1016/j.precamres.2022.106572 |
| [18] |
Cipar,J.H.,Garber,J.M.,Kylander-Clark,A.R.C.,et al.,2020.Active Crustal Differentiation beneath the Rio Grande Rift. Nature Geoscience, 13( 11): 758- 763.https://doi.org/10.1038/s41561-020-0640-z |
| [19] |
Clark,C.,Fitzsimons,I.C.W.,Healy,D.,et al.,2011.How does the Continental Crust Get Really Hot? Elements, 7( 4): 235- 240.https://doi.org/10.2113/gselements.7.4.235 |
| [20] |
Clemens,J.,Watkins,J.,2001.The Fluid Regime of High-Temperature Metamorphism during Granitoid Magma Genesis. Contributions to Mineralogy and Petrology, 140( 5): 600- 606.https://doi.org/10.1007/s004100000205 |
| [21] |
Clemens,J.D.,1990.The Granulite-Granite Connexion.In:Vielzeuf,D.,Vidal,P.,eds.,Granulites and Crustal Evolution.Springer,Dordrecht.https://doi.org/10.1007/978-94-009-2055-2_3 |
| [22] |
Clemens,J.D.,Droop,G.T.R.,1998.Fluids, P- T Paths and the Fates of Anatectic Melts in the Earth’s Crust. Lithos,44(1-2):21-36.https://doi.org/10.1016/s0024-4937(98)00020-6 |
| [23] |
Clemens,J.D.,Stevens,G.,Bryan,S.E.,2020.Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold;Drenched,Damp or Dry? Earth-Science Reviews, 200:102982.https://doi.org/10.1016/j.earscirev.2019.102982 |
| [24] |
Collins,W.J.,Huang,H.Q.,Jiang,X.Y.,2016.Water-Fluxed Crustal Melting Produces Cordilleran Batholiths. Geology, 44( 2): 143- 146.https://doi.org/10.1130/g37398.1 |
| [25] |
Collins,W.J.,Murphy,J.B.,Blereau,E.,et al.,2021.Water Availability Controls Crustal Melting Temperatures. Lithos,402-403:106351.https://doi.org/10.1016/j.lithos.2021.106351 |
| [26] |
Daniel,C.G.,Hollister,L.S.,Parrish,R.R.,et al.,2003.Exhumation of the Main Central Thrust from Lower Crustal Depths,Eastern Bhutan Himalaya. Journal of Metamorphic Geology, 21( 4): 317- 334.https://doi.org/10.1046/j.1525-1314.2003.00445.x |
| [27] |
Dewey,J.F.,Robb,L.,van Schalkwyk,L.,2006.Did Bushmanland Extensionally Unroof Namaqualand? Precambrian Research,150(3-4):173-182.https://doi.org/10.1016/j.precamres.2006.07.007 |
| [28] |
Dokukina,K.A.,Khiller,V.V.,Khubanov,V.B.,et al.,2022.Neoarchean High-Pressure Granulite-Facies Anatexis of Continental Rocks in the Belomorian Eclogite Province,Russia. Precambrian Research, 381:106843.https://doi.org/10.1016/j.precamres.2022.106843 |
| [29] |
Dong,Y.L.,Cao,S.Y.,Neubauer,F.,et al.,2022a.Exhumation of the Crustal-Scale Gaoligong Strike-Slip Shear Belt in SE Asia. Journal of the Geological Society, 179( 2): JGS2021.https://doi.org/10.1144/jgs2021-038 |
| [30] |
Dong,Y.L.,Cao,S.Y.,Zhan,L.F.,et al.,2022b.Tectono-Magmatism Evolution in the Gaoligong Orogen Belt during Neoproterozoic to Paleozoic:Significance for Assembly of East Gondwana. Precambrian Research, 378:106776.https://doi.org/10.1016/j.precamres.2022.106776 |
| [31] |
Finch,M.,Hasalova,P.,Weinberg,R.F.,et al.,2014.Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone,NW Himalaya:Implications for Channel Flow. Geological Society of America Bulletin,126(7-8):892-924.https://doi.org/10.1130/b30817.1 |
| [32] |
Ganzhorn,A.C.,Labrousse,L.,Prouteau,G.,et al.,2014.Structural,Petrological and Chemical Analysis of Syn-Kinematic Migmatites:Insights from the Western Gneiss Region,Norway. Journal of Metamorphic Geology, 32( 6): 647- 673.https://doi.org/10.1111/jmg.12084 |
| [33] |
Gao,L.E.,Zeng,L.S.,Asimow,P.D.,2017.Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45( 1): 39- 42.https://doi.org/10.1130/g38336.1 |
| [34] |
Gao,L.E.,Zeng,L.S.,Hu,G.Y.,2010.High Sr/Y Two-Mica Granite from Quedang Area,Southern Tibet,China:Formation Mechanism and Tectonic Implications. Geological Bulletin of China, 29( 2): 214- 226 (in Chinese with English abstract). |
| [35] |
Gao,L.E.,Zeng,L.S.,Liu,J.,et al.,2009.Early Oligocene Na-Rich Peraluminous Leucogranites in the Yardoi Gneiss Dome,Southern Tibet:Formation Mechanism and Tectonic Implications. Acta Petrologica Sinica, 25( 9): 2289- 2302 (in Chinese with English abstract). |
| [36] |
Gao,L.E.,Zeng,L.S.,Wang,L.,et al.,2016.Timing of Different Crustal Partial Melting in the Himalayan Orogenic Belt and Its Tectonic Implications. Acta Geologica Sinica, 90( 11): 3039- 3059 (in Chinese with English abstract). |
| [37] |
Gao,P.,Zheng,Y.F.,Yakymchuk,C.,et al.,2021.The Effects of Source Mixing and Fractional Crystallization on the Composition of Eocene Granites in the Himalayan Orogen. Journal of Petrology, 62( 7): EGAB037.https://doi.org/10.1093/petrology/egab037 |
| [38] |
Gardien,V.,Thompson,A.B.,Ulmer,P.,2000.Melting of Biotite+Plagioclase+Quartz Gneisses:The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41( 5): 651- 666.https://doi.org/10.1093/petrology/41.5.651 |
| [39] |
Genier,F.,Bussy,F.,Epard,J.L.,et al.,2008.Water-Assisted Migmatization of Metagraywackes in a Variscan Shear Zone,Aiguilles-Rouges Massif,Western Alps. Lithos,102(3-4):575-597.https://doi.org/10.1016/j.lithos.2007.07.024 |
| [40] |
Groppo,C.,Rubatto,D.,Rolfo,F.,et al.,2010.Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley,Eastern Nepal Himalaya). Lithos,118(3-4):287-301.https://doi.org/10.1016/j.lithos.2010.05.003 |
| [41] |
Gu,D.X.,Zhang,J.J.,Lin,C.,et al.,2022.Anatexis and Resultant Magmatism of the Ama Drime Massif:Implications for Himalayan Mid-Miocene Tectonic Regime Transition. Lithos,424-435:106773.https://doi.org/10.1016/j.lithos.2022.106773 |
| [42] |
Guernina, S., Sawyer, E. W., 2003. Large-Scale Melt-Depletion in Granulite Terranes:An Example from the Archean Ashuanipi Subprovince of Quebec. Journal of Metamorphic Geology, 21( 2): 181- 201.https://doi.org/10.1046/j.1525-1314.2003.00436.x |
| [43] |
Guo,Z.F.,Wilson,M.,2012.The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22( 2): 360- 376.https://doi.org/10.1016/j.gr.2011.07.027 |
| [44] |
Harley,S.L.,2016.A Matter of Time:The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111( 2): 50- 72.https://doi.org/10.2465/jmps.160128 |
| [45] |
Harris,N.,Massey,J.,Inger,S.,1993.The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74( 1): 391- 400.https://doi.org/10.1144/gsl.sp.1993.074.01.26 |
| [46] |
Hermann,J.,Green,D.H.,2001.Experimental Constraints on High Pressure Melting in Subducted Crust. Earth and Planetary Science Letters, 188( 12): 149- 168.https://doi.org/10.1016/s0012-821x(01)00321-1 |
| [47] |
Holness,M.B.,Cesare,B.,Sawyer,E.W.,2011.Melted Rocks under the Microscope:Microstructures and Their Interpretation. Elements, 7( 4): 247- 252.https://doi.org/10.2113/gselements.7.4.247 |
| [48] |
Holtzman,B.K.,Groebner,N.J.,Zimmerman,M.E.,et al.,2003.Stress-Driven Melt Segregation in Partially Molten Rocks. Geochemistry, Geophysics, Geosystems, 4(5):8607.https://doi.org/10.1029/2001gc000258 |
| [49] |
Hopkinson,T.,Harris,N.,Roberts,N.M.W.,et al.,2020.Evolution of the Melt Source during Protracted Crustal Anatexis:An Example from the Bhutan Himalaya. Geology, 48( 1): 87- 91.https://doi.org/10.1130/g47078.1 |
| [50] |
Hu,Z.P.,Zhang,Y.S.,Hu,R.,et al.,2016.Amphibole-Bearing Migmatite in North Dabie,Eastern China:Water-Fluxed Melting of the Orogenic Crust. Journal of Asian Earth Sciences, 125: 100- 116.https://doi.org/10.1016/j.jseaes.2016.05.018 |
| [51] |
Inger,S.,Harris,N.,1993.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley,Nepal Himalaya. Journal of Petrology, 34( 2): 345- 368.https://doi.org/10.1093/petrology/34.2.345 |
| [52] |
Jamtveit,B.,Austrheim,H.,Putnis,A.,2016.Disequilibrium Metamorphism of Stressed Lithosphere. Earth-Science Reviews, 154: 1- 13.https://doi.org/10.1016/j.earscirev.2015.12.002 |
| [53] |
Johnson,T.E.,White,R.W.,Powell,R.,2008.Partial Melting of Metagreywacke:A Calculated Mineral Equilibria Study. Journal of Metamorphic Geology, 26( 8): 837- 853.https://doi.org/10.1111/j.1525-1314.2008.00790.x |
| [54] |
Jung,C.,Jung,S.,Nebel,O.,et al.,2009.Fluid-Present Melting of Meta-Igneous Rocks and the Generation of Leucogranites-Constraints from Garnet Major- and Trace Element Data,Lu-Hf Whole Rock-Garnet Ages and Whole Rock Nd-Sr-Hf-O Isotope Data. Lithos,111(3-4):220-235.https://doi.org/10.1016/j.lithos.2008.11.008 |
| [55] |
Jung,S.,Hoernes,S.,Mezger,K.,2000.Geochronology and Petrology of Migmatites from the Proterozoic Damara Belt:Importance of Episodic Fluid-Present Disequilibrium Melting and Consequences for Granite Petrology. Lithos, 51( 3): 153- 179.https://doi.org/10.1016/s0024-4937(99)00062-6 |
| [56] |
Kelsey,D.E.,Hand,M.,2015.On Ultrahigh Temperature Crustal Metamorphism:Phase Equilibria,Trace Element Thermometry,Bulk Composition,Heat Sources,Timescales and Tectonic Settings. Geoscience Frontiers, 6( 3): 311- 356.https://doi.org/10.1016/j.gsf.2014.09.006 |
| [57] |
Koester,E.,Pawley,A.R.,Fernandes,L.A.D.,et al.,2002.Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 43( 8): 1595- 1616.https://doi.org/10.1093/petrology/43.8.1595 |
| [58] |
Labrousse, L., Duretz, T., Gerya, T., 2015. H2O - Fluid-Saturated Melting of Subducted Continental Crust Facilitates Exhumation of Ultrahigh-Pressure Rocks in Continental Subduction Zones. Earth and Planetary Science Letters, 428: 151- 161.https://doi.org/10.1016/j.epsl.2015.06.016 |
| [59] |
Le Fort,P.,1981.Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement. Journal of Geophysical Research: Solid Earth,86(B11):10545-10568.https://doi.org/10.1029/jb086ib11p10545 |
| [60] |
Lee,J.,Whitehouse,M.J.,2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages. Geology, 35(1):45.https://doi.org/10.1130/g22842a.1 |
| [61] |
Lee,Y.,Cho,M.,2013.Fluid-Present Disequilibrium Melting in Neoarchean Arc-Related Migmatites of Daeijak Island,Western Gyeonggi Massif,Korea. Lithos, 179: 249- 262.https://doi.org/10.1016/j.lithos.2013.08.0 |
| [62] |
Lei,K.,2020.Genesis of High Himalayan Pale Granite and Its Dynamic Significance (Dissertation).Changan University,Xi’an (in Chinese with English abstract). |
| [63] |
Lei,K.,Wang,X.C.,Pang,C.J.,et al.,2022.Contribution of Free Water in the Anatexis of Continental Crust:Constraints from the High Himalayan Leucogranites. Geochimica, 51( 1): 83- 97 (in Chinese with English abstract). |
| [64] |
Li,H.L.,Yang,D.X.,Tian,Y.,et al.,2023.Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture. Earth Science, 48( 4): 1330- 1350 (in Chinese with English abstract). |
| [65] |
Li,J.Y.,Cao,S.Y.,Neubauer,F.,et al.,2021.Structure and Spatial-Temporal Relationships of Eocene-Oligocene Potassic Magmatism Linked to the Ailao Shan-Red River Shear Zone and Post-Collisional Extension. Lithos, 396:106203.https://doi.org/10.1016/j.lithos.2021.106203 |
| [66] |
Li,W.C.,Chen,R.X.,Zheng,Y.F.,et al.,2016.Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen,China. Geological Society of America Bulletin,128(9-10):1521-1542.https://doi.org/10.1130/b31366.1 |
| [67] |
Li,W.Y.,Cao,S.Y.,Dong,Y.L.,et al.,2023.Crustal Anatexis and Initiation of the Continental-Scale Chongshan Strike-Slip Shear Zone on the Southeastern Tibetan Plateau. Tectonics,42(4):e2023TC007864.https://doi.org/10.1029/2023tc007864 |
| [68] |
Li,X.C.,Niu,M.L.,Yakymchuk,C.,et al.,2018.Anatexis of Former Arc Magmatic Rocks during Oceanic Subduction:A Case Study from the North Wulan Gneiss Complex. Gondwana Research, 61: 128- 149.https://doi.org/10.1016/j.gr.2018.04.016 |
| [69] |
Lin,C.,Zhang,J.J.,Wang,X.X.,et al.,2020.Oligocene Initiation of the South Tibetan Detachment System:Constraints from Syn-Tectonic Leucogranites in the Kampa Dome,Northern Himalaya. Lithos,354-355:105332.https://doi.org/10.1016/j.lithos.2019.105332 |
| [70] |
Liu,B.,Xu,Y.,Ma,C.Q.,et al.,2023.Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48( 9): 3296- 3311 (in Chinese with English abstract). |
| [71] |
Liu,F.L.,Robinson,P.T.,Gerdes,A.,et al.,2010.Zircon U-Pb Ages,REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China:Constraints on the Timing and Nature of Partial Melting. Lithos,117(1-4):247-268.https://doi.org/10.1016/j.lithos.2010.03.002 |
| [72] |
Liu,J.L.,Tran,M.D.,Tang,Y.,et al.,2012.Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt,NW Vietnam:Geochronology,Geochemistry and Tectonic Implications. Gondwana Research, 22( 2): 628- 644.https://doi.org/10.1016/j.gr.2011.10.011 |
| [73] |
Liu,X.C.,Wu,F.Y.,Kohn,M.J.,et al.,2022.Plutonic-Subvolcanic Connection of the Himalayan Leucogranites:Insights from the Eocene Lhunze Complex,Southern Tibet. Lithos,434-435:106939.https://doi.org/10.1016/j.lithos.2022.106939 |
| [74] |
Liu,Z.C.,Wu,F.Y.,Ji,W.Q.,et al.,2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos,208-209:118-136.https://doi.org/10.1016/j.lithos.2014.08.022 |
| [75] |
Mallik,A.,Dasgupta,R.,Tsuno,K.,et al.,2016.Effects of Water,Depth and Temperature on Partial Melting of Mantle-Wedge Fluxed by Hydrous Sediment-Melt in Subduction Zones. Geochimica et Cosmochimica Acta, 195: 226- 243.https://doi.org/10.1016/j.gca.2016.08.018 |
| [76] |
Meng,Z.Y.,Gao,X.Y.,Chen,R.X.,et al.,2021.Fluid-Present and Fluid-Absent Melting of Muscovite in Migmatites in the Himalayan Orogen:Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships. Lithos, 388:106071.https://doi.org/10.1016/j.lithos.2021.106071 |
| [77] |
Patiño Douce,A.E.,1996.Effects of Pressure and H2O Content on the Compositions of Primary Crustal Melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,87(1-2):11-21.https://doi.org/10.1017/s026359330000643x |
| [78] |
Patiño Douce,A.E.,Harris,N.,1998.Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39( 4): 689- 710.https://doi.org/10.1093/petroj/39.4.689 |
| [79] |
Pourteau,A.,Doucet,L.S.,Blereau,E.R.,et al.,2020.TTG Generation by Fluid-Fluxed Crustal Melting:Direct Evidence from the Proterozoic Georgetown Inlier,NE Australia. Earth and Planetary Science Letters, 550:116548.https://doi.org/10.1016/j.epsl.2020.116548 |
| [80] |
Powell,R.,Guiraud,M.,White,R.W.,2005.Truth and Beauty in Metamorphic Phase-Equilibria:Conjugate Variables and Phase Diagrams. The Canadian Mineralogist, 43( 1): 21- 33.https://doi.org/10.2113/gscanmin.43.1.21 |
| [81] |
Prince,C.,Harris,N.,Vance,D.,2001.Fluid-Enhanced Melting during Prograde Metamorphism. Journal of the Geological Society, 158( 2): 233- 241.https://doi.org/10.1144/jgs.158.2.233 |
| [82] |
Rabillard,A.,Jolivet,L.,Arbaret,L.,et al.,2018.Synextensional Granitoids and Detachment Systems within Cycladic Metamorphic Core Complexes (Aegean Sea,Greece):Toward a Regional Tectonomagmatic Model. Tectonics, 37( 8): 2328- 2362.https://doi.org/10.1029/2017tc004697 |
| [83] |
Regis,D.,Warren,C.J.,Young,D.,et al.,2014.Tectono-Metamorphic Evolution of the Jomolhari Massif:Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan. Lithos,190-191:449-466.https://doi.org/10.1016/j.lithos.2014.01.001 |
| [84] |
Reichardt,H.,Weinberg,R.F.,2012.Hornblende Chemistry in Meta- and Diatexites and Its Retention in the Source of Leucogranites:An Example from the Karakoram Shear Zone,NW India. Journal of Petrology, 53( 6): 1287- 1318.https://doi.org/10.1093/petrology/egs017 |
| [85] |
Reichardt,H.,Weinberg,R.F.,Andersson,U.B.,et al.,2010.Hybridization of Granitic Magmas in the Source:The Origin of the Karakoram Batholith,Ladakh,NW India. Lithos,116(3-4):249-272.https://doi.org/10.1016/j.lithos.2009.11.013 |
| [86] |
Ricketts,J.W.,Karlstrom,K.E.,Kelley,S.A.,2015.Embryonic Core Complexes in Narrow Continental Rifts:The Importance of Low-Angle Normal Faults in the Rio Grande Rift of Central New Mexico. Geosphere, 11( 2): 425- 444.https://doi.org/10.1130/GES01109.1 |
| [87] |
Rosenberg,C.L.,Handy,M.R.,2005.Experimental Deformation of Partially Melted Granite Revisited:Implications for the Continental Crust. Journal of Metamorphic Geology, 23( 1): 19- 28.https://doi.org/10.1111/j.1525-1314.2005.00555.x |
| [88] |
Rosenberg,C.L.,Kissling,E.,2013.Three-Dimensional Insight into Central-Alpine Collision:Lower-Plate or Upper-Plate Indentation? Geology, 41( 12): 1219- 1222.https://doi.org/10.1130/G34584.1 |
| [89] |
Rubatto,D.,Hermann,J.,Berger,A.,et al.,2009.Protracted Fluid-Induced Melting during Barrovian Metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158( 6): 703- 722.https://doi.org/10.1007/s00410-009-0406-5 |
| [90] |
Rudnick,R.L.,Fountain,D.M.,1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33( 3): 267- 309.https://doi.org/10.1029/95rg01302 |
| [91] |
Sawyer,E.W.,2001.Melt Segregation in the Continental Crust:Distribution and Movement of Melt in Anatectic Rocks. Journal of Metamorphic Geology, 19( 3): 291- 309.https://doi.org/10.1046/j.0263-4929.2000.00312.x |
| [92] |
Sawyer,E.W.,2008.Atlas of migmatites.The Canadian Mineralogist Special Publication 9.NRC Research Press,Ottawa,Ontario,Canada,371. |
| [93] |
Sawyer,E.W.,2010.Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith:Microstructures in the Residual Rocks and Source of the Fluid. Lithos,116(3-4):273-286.https://doi.org/10.1016/j.lithos.2009.07.003 |
| [94] |
Sawyer,E.W.,Cesare,B.,Brown,M.,2011.When the Continental Crust Melts. Elements, 7( 4): 229- 234 https://doi.org/10.2113/gselements.7.4.229 |
| [95] |
Schmidt,M.W.,Vielzeuf,D.,Auzanneau,E.,2004.Melting and Dissolution of Subducting Crust at High Pressures:The Key Role of White Mica. Earth and Planetary Science Letters,228(1-2):65-84.https://doi.org/10.1016/j.epsl.2004.09.020 |
| [96] |
Shi,Q.,Ding,D.,Xu,Z.Y.,et al.,2021.Metamorphic Evolution of Daqingshan Supracrustal Rocks and Garnet Granite from the North China Craton:Constraints from Phase Equilibria Modelling,Geochemistry,and SHRIMP U-Pb Geochronology. Gondwana Research, 97: 101- 120.https://doi.org/10.1016/j.gr.2021.05.014 |
| [97] |
Shuai,X.,Li,S.M.,Zhu,D.C.,et al.,2021.Tetrad Effect of Rare Earth Elements Caused by Fractional Crystallization in High-Silica Granites:An Example from Central Tibet. Lithos,384-385:105968.https://doi.org/10.1016/j.lithos.2021.105968 |
| [98] |
Slagstad,T.,Jamieson,R.A.,Culshaw,N.G.,2005.Formation,Crystallization,and Migration of Melt in the Mid-Orogenic Crust:Muskoka Domain Migmatites,Grenville Province,Ontario. Journal of Petrology, 46( 5): 893- 919.https://doi.org/10.1093/petrology/egi004 |
| [99] |
Solar,G.S.,Pressley,R.A.,Brown,M.,et al.,1998.Granite Ascent in Convergent Orogenic Belts:Testing a Model. Geology,26(8):711-714.https://doi.org/10.1130/0091-7613(1998)0260711:gaicob>2.3.co;2 |
| [100] |
Stepanov,A.S.,Hermann,J.,Rubatto,D.,et al.,2012.Experimental Study of Monazite/Melt Partitioning with Implications for the REE,Th and U Geochemistry of Crustal Rocks. Chemical Geology,300-301:200-220.https://doi.org/10.1016/j.chemgeo.2012.01.007 |
| [101] |
Storkey,A.C.,Hermann,J.,Hand,M.,et al.,2005.Using In Situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 46( 6): 1283- 1308.https://doi.org/10.1093/petrology/egi017 |
| [102] |
Thompson,A.B.,2001.Clockwise P- T Paths for Crustal Melting and H2O Recycling in Granite Source Regions and Migmatite Terrains. Lithos, 56( 1): 33- 45.https://doi.org/10.1016/s0024-4937(00)00058-x |
| [103] |
Trail,D.,Watson,E.B.,Tailby,N.D.,2012.Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70- 87.https://doi.org/10.1016/j.gca.2012.08.032 |
| [104] |
Vanderhaeghe,O.,2009.Migmatites,Granites and Orogeny:Flow Modes of Partially-Molten Rocks and Magmas Associated with Melt/Solid Segregation in Orogenic Belts. Tectonophysics,477(3-4):119-134.https://doi.org/10.1016/j.tecto.2009.06.021 |
| [105] |
Vanderhaeghe,O.,Teyssier,C.,2001.Partial Melting and Flow of Orogens. Tectonophysics,342(3-4):451-472.https://doi.org/10.1016/s0040-1951(01)00175-5 |
| [106] |
Vielzeuf,D.,Schmidt,M.W.,2001.Melting Relations in Hydrous Systems Revisited:Application to Metapelites,Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141( 3): 251- 267.https://doi.org/10.1007/s004100100237 |
| [107] |
Wallis,S.,Tsuboi,M.,Suzuki,K.,et al.,2005.Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 33(2):129.https://doi.org/10.1130/g20991.1 |
| [108] |
Walte,N.P.,Bons,P.D.,Passchier,C.W.,2005.Deformation of Melt-Bearing Systems—Insight from In Situ Grain-Scale Analogue Experiments. Journal of Structural Geology, 27( 9): 1666- 1679.https://doi.org/10.1016/j.jsg.2005.05.006 |
| [109] |
Wang,H.B.,Cao,S.Y.,Li,J.Y.,et al.,2022.High-Pressure Granulite-Facies Metamorphism and Anatexis of Deep Continental Crust:New Insights from the Cenozoic Ailao Shan-Red River Shear Zone,Southeast Asia. Gondwana Research, 103: 314- 334.https://doi.org/10.1016/j.gr.2021.10.010 |
| [110] |
Wang,S.J.,Li,S.G.,Chen,L.J.,et al.,2013.Geochronology and Geochemistry of Leucosomes in the North Dabie Terrane,East China:Implication for Post-UHPM Crustal Melting during Exhumation. Contributions to Mineralogy and Petrology, 165( 5): 1009- 1029.https://doi.org/10.1007/s00410-012-0845-2 |
| [111] |
Wang,Y.Q.,Zhai,M.G.,He,H.L.,et al.,2021.Incipient Charnockite Formation in the Trivandrum Block,Southern India:Evidence from Melt-Related Reaction Textures and Phase Equilibria Modelling. Lithos,380-381:105825.https://doi.org/10.1016/j.lithos.2020.105825 |
| [112] |
Watkins,J.M.,Clemens,J.D.,Treloar,P.J.,2007.Archaean TTGS as Sources of Younger Granitic Magmas: Melting of Sodic Metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 154( 1): 91- 110.https://doi.org/10.1007/s00410-007-0181-0 |
| [113] |
Webb,A.A.G.,Guo,H.C.,Clift,P.D.,et al.,2017.The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 9( 4): 637- 651.https://doi.org/10.1130/l636.1 |
| [114] |
Wei,C.J.,Wang,W.,2007.Phase Equilibria of Anatexis in High-Grade Metapelites. Earth Science Frontiers, 14( 1): 125- 134 (in Chinese with English abstract). |
| [115] |
Weinberg,R.F.,Hasalová,P.,2015.Water-Fluxed Melting of the Continental Crust:A Review. Lithos,212-215:158-188.https://doi.org/10.1016/j.lithos.2014.08.021 |
| [116] |
White,R.W.,Powell,R.,2002.Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20( 7): 621- 632.https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x |
| [117] |
White,R.W.,Powell,R.,Holland,T.J.B.,2001.Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19( 2): 139- 153.https://doi.org/10.1046/j.0263-4929.2000.00303.x |
| [118] |
Whitney,D.L.,Teyssier,C.,Fayon,A.K.,et al.,2003.Tectonic Controls on Metamorphism,Partial Melting,and Intrusion:Timing and Duration of Regional Metamorphism and Magmatism in the Niğde Massif,Turkey. Tectonophysics,376(1/2):37-60.https://doi.org/10.1016/j.tecto.2003.08.009 |
| [119] |
Wu,D.,Wei,C.J.,2021.Metamorphic Evolution of Two Types of Garnet Amphibolite from the Qingyuan Terrane,North China Craton:Insights from Phase Equilibria Modelling and Zircon Dating. Precambrian Research, 355:106091.https://doi.org/10.1016/j.precamres.2021.106091 |
| [120] |
Xu,J.,Xia,X.P.,Yin,C.Q.,et al.,2022.Geochronology and Geochemistry of the Granitoids in the Diancangshan-Ailaoshan Fold Belt:Implications on the Neoproterozoic Subduction and Crustal Melting along the Southwestern Yangtze Block,South China. Precambrian Research, 383:106907.https://doi.org/10.1016/j.precamres.2022.106907 |
| [121] |
Yakymchuk,C.,2021.Migmatites.In:Alderton,D.,Elias,S.A.,eds.,Encyclopedia of Geology.Elsevier,Amsterdam,492-501.https://doi.org/10.1016/b978-0-08-102908-4.00021-7 |
| [122] |
Yang,L.,Liu,X.C.,Wang,J.M.,et al.,2019.Is Himalayan Leucogranite a Product by In Situ Partial Melting of the Greater Himalayan Crystalline?A Comparative Study of Leucosome and Leucogranite from Nyalam,Southern Tibet. Lithos, 342: 542- 556.https://doi.org/10.1016/j.lithos.2019.06.007 |
| [123] |
Yang,X.Y.,Zhang,J.J.,Qi,G.W.,et al.,2009.Structure and Deformation around the Gyirong Basin,North Himalaya,and Onset of the South Tibetan Detachment System. Science in China ( Series D), 52( 8): 1046- 1058.https://doi.org/10.1007/s11430-009-0111-2 |
| [124] |
Ye,Z.L.,Wan,F.,Jiang,N.,et al.,2021.Dehydration Melting of Amphibolite at 1.5GPa and 800-950℃:Implications for the Mesozoic Potassium-Rich Adakite in the Eastern North China Craton. Geoscience Frontiers, 12( 2): 896- 906.https://doi.org/10.1016/j.gsf.2020.03.008 |
| [125] |
Zeng,L.S.,Asimow,P.D.,Saleeby,J.B.,2005a.Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source. Geochimica et Cosmochimica Acta, 69( 14): 3671- 3682.https://doi.org/10.1016/j.gca.2005.02.035 |
| [126] |
Zeng,L.S.,Saleeby,J.B.,Asimow,P.,2005b.Nd Isotope Disequilibrium during Crustal Anatexis:A Record from the Goat Ranch Migmatite Complex,Southern Sierra Nevada Batholith,California. Geology,33(1):53.https://doi.org/10.1130/g20831.1 |
| [127] |
Zeng,L.S.,Gao,L.E.,2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33( 5): 1420- 1444 (in Chinese with English abstract). |
| [128] |
Zeng,L.S.,Gao,L.E.,Zhao,L.H.,et al.,2021.The Role of Titanite in Shaping the Geochemistry of Amphibolite-Derived Melts. Lithos,402-403:106312.https://doi.org/10.1016/j.lithos.2021.106312 |
| [129] |
Zeng,L.S.,Liu,J.,Gao,L.E.,et al.,2009.Early Oligocene Anatexis in the Yardoi Gneiss Dome,Southern Tibet and Geological Implications. Science Bulletin, 54( 3): 373- 381 (in Chinese). |
| [130] |
Zhang,Z.M.,Ding,H.X.,Dong,X.,et al.,2020.Partial Melting of Subduction Zones. Acta Petrologica Sinica, 36( 9): 2589- 2615 (in Chinese with English abstract). |
| [131] |
Zhang,Z.M.,Kang,D.Y.,Ding,H.X.,et al.,2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43( 1): 82- 98 (in Chinese with English abstract). |
| [132] |
Zheng,Y.F.,2021.Convergent Plate Boundaries and Accretionary Wedges.Encyclopedia of Geology.Elsevier,Amsterdam,770-787.https://doi.org/10.1016/b978-0-08-102908-4.00042-4 |
| [133] |
Zheng,Y.F.,Chen,R.X.,2017.Regional Metamorphism at Extreme Conditions:Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46- 73.https://doi.org/10.1016/j.jseaes.2017.03.009 |
| [134] |
Zheng,Y.F.,Gao,P.,2021.The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos,402/403:106232.https://doi.org/10.1016/j.lithos.2021.106232 |
国家自然科学基金项目(42320104007;4197220)
/
| 〈 |
|
〉 |