全新世长江中下游地区降水变化及其驱动机制

徐家豪 ,  张志平 ,  陈钧伟 ,  孙炜毅 ,  申忠伟 ,  贾鑫

地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 699 -717.

PDF (5483KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 699 -717. DOI: 10.3799/dqkx.2023.214

全新世长江中下游地区降水变化及其驱动机制

作者信息 +

Holocene Precipitation Change in the Middle and Lower Reaches of the Yangtze River and Its Forcing Mechanisms

Author information +
文章历史 +
PDF (5613K)

摘要

为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录. 结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱. 机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响. 晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.

Abstract

In order to reconcile the contradictions among the Holocene precipitation records retrieved from different nature archives in the middle and lower reaches of the Yangtze River (MLRYR), this study analyzed 12 Holocene precipitation records in the middle reaches of the Yangtze River and 18 Holocene precipitation records in the lower reaches of the Yangtze River. The results show that the precipitation in the MLRYR has gradually increased since the onset of the Holocene, and then decreased after the middle Holocene. During the late Holocene, the precipitation evolution pattern in the MLRYR was decoupled: the precipitation in the middle reaches of the Yangtze River increased again, while the precipitation in the lower reaches of the Yangtze River tended to decrease with fluctuations. In terms of mechanisms, the Holocene precipitation evolution in the MLRYR was generally controlled by the Northern Hemisphere summer insolation (NHSI). During the late Holocene, the ENSO activity increased significantly, and the position of the Asian westerly jet was shifted to the south, superimposed on the anomalies of the Indian summer monsoon circulation, which not only led to the deviation of the precipitation pattern in the MLRYR from the variation trend of NHSI, but also resulted in the formation of a more wet climate in the middle reaches of the Yangtze River relative to the lower reaches of the Yangtze River.

Graphical abstract

关键词

全新世 / 长江中下游地区 / 东亚夏季风 / 降水变化 / 驱动机制 / 地貌学.

Key words

Holocene / Middle and lower reaches of the Yangtze River / East Asian summer monsoon / precipitation changes / forcing mechanisms / geomorphology

引用本文

引用格式 ▾
徐家豪,张志平,陈钧伟,孙炜毅,申忠伟,贾鑫. 全新世长江中下游地区降水变化及其驱动机制[J]. 地球科学, 2025, 50(02): 699-717 DOI:10.3799/dqkx.2023.214

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

长江中下游地区是国家重大战略发展区域长江经济带的核心区,是国家重要的工业基地,粮、油、棉生产基地. 据长江经济带大数据平台数据(http://yreb.sozdata.com/)显示,2020年该地区国内生产总值约占全国的35%,人口总量约占全国的29%. 同时,长江中下游地区是中华民族文明的摇篮之一,孕育着璀璨的新石器时代文明(蒋赞初,1960;陈中原等,1997;朱诚等,2014). 研究表明,长江中下游地区史前时期人类的生业模式和文化脉络的演替以及当前社会经济发展与受东亚夏季风环流控制下的区域降水变化所造成旱涝灾害紧密相关(王伟铭等,2010;Zhu et al., 2017Wu et al., 2021Zhang et al., 2021a,2021b;杨劲松等,2022). 在未来全球变暖趋势下,长江中下游地区降水将如何变化?将产生什么影响?这是学术界和公众极为关注的重要科学问题.

全新世(即现代间冰期)是指最近一万多年以来的温暖间冰期,也是地球历史上最近的一个间冰期,更是人类文明发展的关键阶段(陈发虎等,2019;Zhao et al., 2020). 目前和不久的将来,气候的边界条件仍是全新世边界条件的延续. 因此,深入理解全新世时段自然状况下的长江中下游地区降水变化历史和驱动机制,是解答上述科学问题的前提和基础. 过去二十年间,利用湖泊、泥炭、石笋等不同地质载体,发表了大量全新世长江中下游地区降水变化的记录. 然而,已有研究揭示的全新世以来长江中下游地区降水变化及其驱动机制仍存在较大分歧. 例如,Lu et al.(2019)基于长江下游新街钻孔孢粉数据定量重建的全新世以来年降水量变化,发现全新世时段降水量最盛期出现在早全新世、中晚全新世降水逐步减弱,与Li et al.(2018)基于巢湖、固城湖以及太湖东部平原平望钻孔孢粉资料定量集成重建的长江下游地区年降水变化结果类似. 而相较于前文所认为的长江下游地区在晚全新世最为干旱,Liu et al.(2021)基于长江下游南漪湖沉积钻孔化学元素分析,发现该区域在中全新世最为干旱,早、晚全新世降水较多. 机制方面,Li et al.(2018)认为,长江下游地区全新世降水变化主要受控于夏季太阳辐射及热带或亚热带气候环流变化,如热带辐合带(ITCZ)、西太平洋副热带高(简称“西太副高”)及厄尔尼诺-南方涛动(ENSO). Liu et al.(2021)进一步提出长江中下游地区降水变化主要受控于热带太平洋海表温度调控的西太副高位置和强度变化. 当太平洋海表温度呈现厄尔尼诺态时,西太副高增强并西伸南移,阻挡季风雨带的北推,使得长江流域降水增加;相反,当太平洋海表温度呈现拉尼娜态时,西太副高减弱北跳,导致雨带北移,而长江流域降水减少.

对于长江中游地区,大九湖泥炭多指标(Xie et al., 2013Huang et al., 2018Wang et al., 2018Liu et al., 2019)及和尚洞石笋碳同位素和环境磁学参数等指标(Li et al., 2014aZhu et al., 2017)重建的区域降水量变化都支持早晚全新世湿润、中全新世干旱的降水演化模式. 而Li et al.(2014b)对江汉平原湖相沉积物元素地球化学记录的综合分析显示,7.9~4.4 ka BP为全新世该区域最湿润时期. 这一模式也与Gu et al.(2012)基于江汉平原湖泊沉积物植硅体重建的区域古气候变化类似,即中全新世气候最为湿润、早晚全新世相对干旱. 不仅如此,Sun et al.(2019)基于大九湖泥炭孢粉定量重建的长江中游降水结果表明,晚全新世该区域最为干旱且气候波动剧烈. 机制方面,Li et al.(2014b)认为随着中晚全新世北半球夏季太阳辐射逐渐减少,热带辐合带逐渐南移,从而导致区域季风降水减少,但江汉平原特殊的地貌在一定程度上延缓了区域干旱化趋势. Sun et al.(2019)则认为全新世夏季南北半球低纬度间经向太阳辐射梯度的季节周期性变化驱动东亚季风强度变化进而影响区域降水. Gu et al.(2012)研究表明,除了太阳辐射驱动的亚洲夏季风变化影响区域降水外,太阳活动减弱引起的全新世北大西洋冷事件也调节了长江中游地区降水变化.

总之,关于长江中下游地区降水演化历史及其驱动机制目前在学术界尚未达成共识,亟待对已有的全新世以来长江中下游地区降水变化的研究资料进行梳理,厘清全新世长江中下游地区降水演变趋势,分析不同研究之间差异的原因,探讨全新世以来长江中下游地区降水变化的可能驱动机制. 从而为该地区新石器文化兴衰与气候变化耦合关系的研究提供较为可信的环境变化背景,同时也有助于提升对未来气候变化背景下该地区人-地相互作用关系的理解与适应.

1 研究材料与方法

1.1 研究区概况

长江中下游地区一般指湖北宜昌以东长江流域(约105°E~123°E,24°N~34°N),流域总面积约为77.6万km2. 流域内为典型的亚热带季风气候,地带性植被为常绿阔叶林,年均温14~18 ℃,年降水量1 000~1 400 mm,降水主要受控于东亚夏季风环流(An et al., 2000). 每年6-7月,长江中下游地区进入梅雨季,出现长时间阴雨天气;梅雨季过后受西太副高影响,在缺少台风活动时又出现长时间高温少雨的“伏旱”现象(吴畅,2018). 降水时空分布不均匀导致长江中下游流域旱涝灾害频发.

区域内地貌类型多样,以平原和低山丘陵为主,大部分地区海拔在50 m以下. 地势西高东低,境内河谷众多、湖泊密布. 长江中下游流域是我国文明起源的主要地区之一,在史前时期发源了多支考古学文化(穆东旭,2021). 近代以来研究区也是人类活动最强烈、经济最发达地区之一.

1.2 古气候资料

为获得全面可靠的长江中下游古降水变化资料,本研究筛选的已发表的长江中下游地区降水记录需符合以下标准:(1)代用指标可以有效反映湿度或降水的变化;(2)记录的时间序列长度在全新世期间至少跨越6 000 a且无沉积间断;(3)在整个全新世期间,每条序列至少有4个年代控制点,可以构建可靠的年龄模型.

基于以上标准,本研究共收集了30条符合标准的来自石笋、湖泊/泥炭地、陆地剖面和河口/海洋沉积的降水记录(表1). 除江西大湖(位于长江流域与珠江流域分水岭,地点30)与3条东海海洋沉积记录(地点15、16、18)外,其余记录均位于长江中下游流域范围内. 地貌类型方面,12条降水记录来自平原,9条来自盆地,7条来自山地,其余记录来自大陆架. 代用指标类型主要是化石孢粉(12条)、碳同位素(δ13C,6条)、氧同位素(δ18O,6条)和微量化学元素(6条).

1.3 研究方法

根据国际年代地层图的划分(Cohen et al., 2013),将全新世开始时间定为11.7 ka BP. 为了研究全新世长江中下游地区千年尺度降水演化模式,本文将全新世分为11个亚阶段,除了11.7~10.0 ka BP的时间长度为1 700 a,其余10个亚阶段的时间长度均为1 000 a. 本文使用WebPlotDigitizer4.6软件(Rohatgi, 2022)提取每条降水记录原始指标数值,随后根据原始指标数值标准化结果,计算每条降水记录在各个亚阶段湿润度. 详细计算信息如下:

(1)大多数情况下,计算每条降水记录在全新世各个亚阶段的湿润度. 具体方法如下:首先,分别计算每条降水记录在各个亚阶段的降水量(湿度)平均值;随后,将每条降水记录在各亚阶段的平均降水量(湿度)数据标准化至[0,1],如果原始文献中较低的指标数值代表了更湿润的气候条件(比如δ13C),在标准化前则将数据乘以“-1”. 需要注意的是,如果降水记录中存在不完整的时间阶段,例如浙江北湖桥沉积岩芯年龄跨度为11.30~4.17 ka BP(Ye et al., 2018),但其在5.0~4.0 ka BP的亚阶段中,时间序列长度超过500 a,则仍然计算该亚阶段湿润度;若亚阶段时间跨度少于500 a,则舍去这一阶段.

(2)其次,将收集的降水记录按照所处地理位置进行分类,湖口县以东归为长江下游地区,湖口县以西归为长江中游地区. 总体来看,长江下游地区共18条降水记录,长江中游地区共12条降水记录.

(3)最后,对同一地区同一亚阶段内所有降水记录标准化湿润度取平均值,分别获得全新世长江中游和长江下游降水综合演化序列.

2 研究结果

2.1 全新世以来长江中下游地区降水变化

长江中下游地区的30条高质量降水记录揭示了长江中游地区与长江下游地区降水演化模式(图2). 早中全新世(11.7~4.0 ka BP),长江中下游地区降水变化趋势大致相同:全新世伊始,长江中下游地区降水逐步增多,气候逐渐向湿润转变,~9.0~6.0 ka BP为全新世最湿润时期,随后降水逐渐减少. 进入晚全新世后,长江中游地区降水整体再次增加,而长江下游地区降水在波动中整体趋向干旱但减少趋势较中全新世放缓.

进一步地,本文根据收集的每条降水记录的原始序列演化模式,分别获得了其所表征的长江中下游地区全新世最湿润时期(图3). 结果显示,9.0~6.0 ka BP是大部分降水重建结果中最湿润时期,与本文获得的长江中游与下游地区湿润度变化出现高值的时期相对应(图2),说明原始序列定量化分析和集成得到的湿润度变化序列能够真实反映长江中下游地区全新世降水演变模式.

2.2 与长江中下游地区其他记录对比

本研究整理了已发表的长江中下游地区降水记录,基于湿润度计算分别获得了全新世长江中游和长江下游降水综合演化序列. 本节通过将获得的全新世长江中游和长江下游降水综合演化序列与对应的长江中下游地区其他气候代用记录或模拟记录进行比较,进一步理解长江中下游地区降水演化模式.

2.2.1 长江中游地区

基于长江中游不同地质载体的多指标分析,已有研究勾勒出了区域水文演化的大致框架:He et al.(2015)通过对长江中游大九湖泥炭正构烷烃的碳优势指数(CPI)分析发现(图4a),大九湖沉积物正构烷烃CPI值在~12.0~10.0 ka BP期间逐步减小,指示区域逐步转湿;~10.0~5.0 ka BP,正构烷烃CPI值逐步增大,指示区域气候趋向干旱化;~5.0 ka BP后,大九湖沉积物正构烷CPI值再次减小,区域气候再度转湿. Liu et al.(2019)通过对大九湖泥炭植硅体的分析,重建了区域地下水位埋深变化(图4b). 结果发现,11.0~8.5 ka BP期间,地下水位埋深降低,指示区域气候逐步湿润;~8.5~5.0 ka BP期间,地下水位埋深增加,指示区域气候趋干;晚全新世以来,大九湖泥炭植硅体重建的地下水位埋深持续降低,区域气候转向湿润. 不仅如此,基于长江中游和尚洞石笋细菌3⁃羟基脂肪酸重建的水文记录(图4c),Wang et al.(2018)同样发现,中全新世(~8.0~4.0 ka BP)区域气候逐步转干,晚全新世(~4.0~0.0 ka BP)区域气候重新向湿润化转变.

尽管受年代误差以及不同指标对气候变化的敏感响应程度不一样等因素的影响,单点重建的区域水文变化与本文综合集成的长江中游降水演化记录在时间及变化幅度上存在一定的差异(图4),但已有研究揭示的长江中游整体水文演化模式与本研究获得的全新世长江中游地区降水演化模式类似:早晚全新世气候逐步湿润、中全新世气候趋干(图4). 这说明本研究集成的记录能够可靠而准确地反映长江中游降水演化的模式.

2.2.2 长江下游地区

基于三角洲沉积、湖相沉积等地质载体与气候模拟结果,不同研究者重建了全新世以来长江下游的降水演化. 基于TraCE⁃21ka古气候模型(Liu et al., 2009)模拟的长江下游(119.483°E,31.433°N)全新世夏季降水变化显示:~12.0~10.0ka BP期间夏季降水量逐步增加,气候趋向湿润;~10.0 ~6.0 ka BP期间夏季降水量略有波动但总体保持在相对高值;~6.0 ka BP期间夏季降水量逐步减少,区域气候趋向干旱(图5a). 湿润气候下水动力增强会导致更多粗颗粒物质沉积,反之亦然(Orton et al., 1993). 基于此原理,Wang et al.(2012)通过对长江三角洲YZ07钻孔岩芯的粒度进行分析,重建了区域全新世气候波动与环境变化. 结果显示,YZ07岩芯中值粒径在~10.0~8.0 ka BP期间逐步变粗,指示区域降水量在早全新世逐步增加;~8.0 ka BP后中值粒径在波动中呈逐渐减小趋势,指示区域降水量逐渐减少(图5b). Chen et al.(2021)通过对长江下游南漪湖钻孔的孢粉学分析,发现南漪湖沉积物中对降水量变化较为敏感的青冈花粉(张立娟等,2020)含量同样在~9.0~6.0 ka BP期间持续上升,指示区域气候逐渐转湿;而6.0 ka BP后青冈花粉含量逐步减少,指示区域气候趋向干旱(图5c).

整体上,长江下游已有的全新世降水量(湿度)重建与本研究综合集成的长江下游降水变化在千年时间尺度变化趋势上具有一致性:早全新世伊始,降水逐步增多,中晚全新世区域气候持续向干旱化转变,晚全新世最为干燥(图5). 然而,不可否认的是,受年代误差、地理位置以及局部因素等影响,单点记录所重建的全新世长江下游气候变化模式与本研究综合集成的记录在变化幅度、持续变湿/变干的时间段上均存在一定差异(图5). 例如,~9.0~7.5 ka BP期间,YZ07岩芯中值粒径表现出异常高值,这可能是受该时期海侵的影响(Hori et al., 2007),导致粒径的异常变化;晚全新世南漪湖钻孔中青冈花粉含量的快速降低,可能与人类活动的干扰相关(Chen et al., 2021).

3 讨论

3.1 全新世以来长江中游与下游地区内不同降水记录差异原因

过去二十年间,发表了大量全新世以来长江中下游地区的降水记录. 然而,已有研究呈现的结果中并非所有长江中下游的降水记录都支持本研究提出的降水演化模式. 如在长江中游地区,三宝洞(Dong et al., 2010)与莲花洞(Zhang et al., 2013)石笋δ18O记录显示,自中全新世后气候持续向干旱转变,晚全新世并未出现重新转向湿润. 在长江下游地区,南漪湖地球化学元素记录(Liu et al., 2021)与长江水下三角洲地球化学指标和粒度分析(Xu et al., 2020)表明,晚全新世气候较为湿润,与本文提出的长江下游地区晚全新世相对干旱模式也存在一定矛盾. 针对全新世以来长江中下游地区不同降水记录差异的原因,本节从以下3个方面进行探讨:

3.1.1 代用指标有效性

中国石笋δ18O记录因其绝对定年和高分辨率的特点,成为全球古气候对比的基准之一,为推动过去气候和环境变化研究做出了巨大贡献(Wang et al., 2008Cheng et al., 2012Cai et al., 2015Cheng et al., 2016). 然而,石笋δ18O变化受到一系列复杂因素的影响,诸如温度、降水量、水汽来源以及洞穴的通风作用等(周厚云等,2016),其对东亚夏季风降水的指示意义一直存在争议(Liu et al., 2014Liu et al., 2020). 例如,基于大九湖(Xie et al., 2013Liu et al., 2019)与和尚洞(Zhu et al., 2017Wang et al., 2018)的多指标研究表明,长江中游地区在中全新世出现明显的干旱. 而三宝洞(Dong et al., 2010)与莲花洞(Zhang et al., 2013)的石笋δ18O记录则表现出完全不同的变化趋势:约8.0~6.0 ka BP区域气候最为湿润,在此之后,降水持续减少. 不仅如此,来自同一根石笋中不同指标的对比也同样揭示了不同指标之间重建结果的差异:通过对和尚洞石笋(HS⁃4)酸溶有机质(ASOM)碳同位素序列(Li et al., 2014a)与环境磁学记录(IRMsoft⁃flux值)(Zhu et al., 2017)的分析,研究者认为该区域晚全新世较中全新世更为湿润;通过对和尚洞石笋δ18O记录指征的降水量(Hu et al., 2008)进行分析,则显示该区域在中晚全新世无明显变化. 实际上,石笋δ18O记录主要继承大气降水氧同位素(δ18Op)的变化(Cheng et al., 2012),而δ18Op可以追踪水文与大气环流变化,本身具有时空上的复杂性(Caley et al., 2014). 因此,石笋δ18O记录具有大尺度上的气候学意义,可能并不能够直接反映局地的降水变化(Chen et al., 2016).

降水多寡是控制中国北方现代孢粉组合的主要气候变量(Li et al., 2015). 因此,地层中的孢粉记录通常被作为重建降水(湿度)的可靠指标. 例如,Chen et al.(2015a)基于山西公海化石孢粉定量重建了14.7 ka BP以来中国北方的年降水量变化,其结果与黄土高原古土壤年代频率分布(Wang et al., 2014)以及东部沙地沉积相变化(Li et al., 2014c)所表征湿度有着较好的对应关系. 相比于中国北方,这种对应关系在南方地区则表现的较弱:长江中游大九湖地区泥炭叶蜡正构烷烃δ2H29含量重建的水文变化(Huang et al., 2018)显示约3.0 ka BP后气候进入长时间湿润期,而基于同一研究区域孢粉记录定量重建的降水则显示晚全新世气候最为干燥(Sun et al., 2019). 由于降水在中国南方并不成为限制因子(Chen et al., 2016),北方指示降水(湿度)的代用指标在南方是否适用有待深入探究. 利用孢粉数据库构建基于化石孢粉-降水转换函数时需完善现代过程研究,剔除非降水因子对中国南方化石孢粉重建的降水序列的影响(Li et al., 2018). 此外,对于非定量重建的降水记录来说,寻找对降水(湿度)变化较为敏感的指标,如乔木中的青冈属(张立娟等,2020)、水生湿生植物中的莎草科及香蒲属等(李冰等,2018),可以间接作为反映降水(湿度)的有效代用指标.

总体上,不同指标能否作为指示长江中下游地区降水变化的良好指示器,需要得到现代过程的验证. 通过提取影响指标变化的主要气候因子,评估代用指标的有效性,进而建立准确的指标-降水转换函数,反演区域降水变化.

3.1.2 人类活动

长江下游地区孕育了灿烂的新石器文明,先民因而较早就开始了对地面景观的改造,比如栽培与驯化水稻(Zuo et al., 2017). 但早期人类活动对自然环境的影响程度较低(舒军武等,2007;Chen et al., 2009;李冰等,2018),约5.0 ka BP后,长江下游地区水稻种植面积明显扩大(Yu et al., 2022),人口扩张与农业活动加强导致花粉浓度降低、原生植被从阔叶林转变为以禾本科为主的草地(Wu et al., 2019). 例如在4.0 ka BP后,长江三角洲地区多个钻孔的孢粉图谱中都显示乔木花粉含量下降、陆生草本植物花粉含量上升(Yi et al., 2006;王伟铭等,2010). 晚全新世长江中下游地区较为强烈的人类活动干扰可能对区域地层孢粉图谱的变化产生较大干扰(李冰等,2018). Chen et al.(2009)的研究表明,在约2.0 ka BP后巢湖地区孢粉图谱中很少观察到天然森林植被,人类活动已经取代气候变化成为改变植被演化的主要驱动因素. 南漪湖地区孢粉图谱(Chen et al., 2021)在3.0 ka BP后也表现出类似情景-阔叶林被陆生草本植物所取代. 正因为如此,本文在降水集成曲线中,舍去巢湖记录(地点3)在2.0~0.0 ka BP期间与南漪湖记录(地点6)在3.0~0.0 ka BP期间的数据.

与本研究提出的长江下游降水演化模式不同,Xu et al.(2020)基于长江水下三角洲沉积岩芯粒度分析,发现晚全新世区域气候湿润,东亚夏季风影响下频繁发生的洪水促进长江口沙洲发育. 然而,在晚全新世,人类活动对长江流域沉积物的侵蚀运移的影响不容忽视(Bi et al., 2017). 人类农业活动加强与早期城市化发展会加剧流域内水土流失,使得长江河口地区沉积更多的粗颗粒物质,与河流高流量情况下沉积物粒度变化类似(Zhan et al., 2010). 因此,人类活动加强会干扰对沉积环境判断,Xu et al.(2020)重建的结果可能高估了晚全新世季风降水带来的影响.

Liu et al.(2021)对南漪湖沉积岩芯的地球化学元素分析表明,11.5~8.0 ka BP及2.0~0.0 ka BP区域气候较为湿润,8.0~2.0 ka BP区域气候较为干旱. 作为重建降水的指标,2.0 ka BP后南漪湖岩芯中Rb/Sr及CIA大幅上升,与安徽省人口增长同步(Liu et al., 2021). 而人类活动通过破坏地表植被来促进风化侵蚀(Tao et al., 2006),加快Sr2+、Na+等离子淋失,形成Rb/Sr与CIA异常高值. 因此,2.0 ka BP后南漪湖岩芯中Rb/Sr及CIA大幅上升可能指示了人类活动加剧而非降水量的增加. 类似地,江汉平原JZ⁃2010剖面Rb/Sr比值在1.2 ka BP后出现剧烈波动也可能与人类活动对环境严重干扰相关(Li et al., 2014b).

3.1.3 地貌背景

江汉平原多指标重建区域降水变化显示(Gu et al., 2012Li et al., 2014b)中全新世气候转向干旱,但与大九湖(Xie et al., 2013;Liu et al., 2019)及和尚洞(Zhu et al., 2017;Wang et al., 2018)多条降水记录重建结果相比,干旱化趋势并不明显,这可能与不同地区间地貌背景差异相关. 江汉平原是由长江、汉江冲积而成的洪泛平原,自第四纪以来地质构造持续沉降(陈思思等,2014;李长安等,2023),在东北、北部和西部的山脉包围下整体向东南倾斜. 特殊地理环境可以阻挡干冷冬季风南下,增强暖湿夏季风影响,在长江沿岸形成雨带(Li et al., 2014a). 这有助于江汉平原维持更长时间湿润气候,延缓东亚夏季风减弱所带来干旱化趋势. 相比之下大九湖与和尚洞的较高海拔可能使得降水记录中捕捉到一些高纬度信号,进一步形成与江汉平原间重建结果差异(Guan et al., 2022). 此外,部分记录年代学框架建立在单一的湖泊有机沉积物测年结果上. 然而长江中下游湖泊,尤其是开放型湖泊,有机沉积物的测年由于碳库效应可能存在明显的14C年代偏差(Zhou et al., 2012Jiang et al., 2022). 如Wu et al.(2019)对巢湖岩芯就采用了单一湖泊沉积有机物进行测年,但由于其数据处理过程已经将碳库效应纳入考虑,通过树轮定标与线性回归定标得到与岩芯深度具有良好线性关系的年代框架,因此我们仍将其纳入本文搜集降水记录中.

综上所述,代理指标有效性、人类活动与地貌背景等因素可能是导致长江中游与下游地区内降水重建结果间差异的主要原因. 在考虑这些因素影响后,各条降水记录所反映全新世降水变化趋势与本文提出长江中下游地区降水演化模式在总体上保持一致.

3.2 全新世以来长江中下游地区降水变化的可能驱动机制

已有研究揭示出东亚季风气候以轨道旋回为主(Cheng et al., 2016Maher et al., 2016),而地球轨道参数(轨道偏心率、地轴倾角和岁差)变化会改变太阳辐射在地表的分布,产生海陆热力差异,从而驱动季风强度变化(Prell and Kutzbach,1987). 因此,长江中下游地区降水量多寡与太阳辐射控制下的东亚夏季风强度变化具有重要联系.

北半球高纬度地区冰盖可以通过改变中高纬地区经向温度梯度(Cheng et al., 2016)及冰盖地形(Yin et al., 2014)引起的大气遥相关,在冰期-间冰期的时间尺度上改变东亚夏季风强度. 早全新世,北半球高纬度地区冰盖尚未完全消融(Dyke,2004),这将对长江中下游地区季风降水起到一定调控作用.

现代监测资料与地质记录显示,不同时间尺度上ENSO与长江中下游地区降水均存在一定相关性(Liu et al., 2019):在1951—1978年类拉尼娜条件下,华南地区与北方地区夏季降水增加,长江中下游地区降水减少,与中全新世情况类似;1979—1992年类厄尔尼诺条件下长江中下游地区降水增加,但华南地区与北方地区降水减少,与晚全新世状况一致. 此外,先前研究表明亚洲西风急流位置异常与长江中下游地区夏季降水量联系密切(况雪源等,2006;Zhang et al., 2018).

因此,本节将通过探讨长江中下游地区降水变化与太阳辐射、高纬度冰量、中低纬度ENSO与亚洲西风急流位置的关系,来理解全新世以来长江中下游地区降水变化的驱动机制.

3.2.1 太阳辐射驱动

长江中下游地区全新世最湿润时期出现在9.0~6.0 ka BP,对应北半球夏季太阳辐射量(Laskar et al., 2004)相对高值(图6a). 较高的太阳辐射可以形成更大的海陆热力梯度,增强季风环流,进而增加长江中下游地区夏季风降水(Wen et al., 2016). 然而,早中全新世长江中下游地区湿润度变化对太阳辐射响应存在一定滞后,且在进入晚全新世后长江中下游地区降水变化与太阳辐射变化趋势出现分异:晚全新世北半球夏季太阳辐射处于较低水平,而长江中下游地区降水减少趋势放缓,长江中游地区降水则进一步增多. 因此,对于太阳辐射与长江中下游地区降水演化序列的差异,本文进一步开展了分析.

3.2.2 高纬度驱动

在早全新世,尽管北半球夏季太阳辐射处于最高值,但高纬度地区仍存在大范围冰盖(Dyke,2004)(图6b),这可能从以下两个方面影响长江中下游地区降水:

(1)早全新世高纬度地区大范围冰盖的存在,降低了低层大气中水汽含量(曹剑和吴立广,2016),输送水汽的减少使得长江中下游地区的降水量相对较少. 此外,大范围冰盖的存在使得早全新世海平面高度相对现代较低(Dyke,2004),较低的海平面与暴露的东亚大陆架增加了海洋到陆地的水汽输送距离(Ding et al., 2005).

(2)由于早全新世高纬度冰盖尚未完全融化,北半球中高纬地区温度较低,导致西伯利亚高压增强,东亚冬季风加强(Hao et al., 2012). 同时冰盖作用下的欧洲大陆与北美大陆形成反气旋环流,减弱北半球季风区夏季风环流强度(曹剑和吴立广,2016).

在进入中全新世后,冰盖消融,大气环流重组,长江中下游地区降水对太阳辐射驱动表现出更加线性的响应——随夏季太阳辐射减弱而减少. 因此,早全新世北半球高纬度地区残存的冰盖改变了大气环流,使得长江中下游地区最湿润时期明显滞后于夏季太阳辐射峰值.

3.2.3 中低纬度驱动

观测资料表明在年代际尺度上亚洲西风急流位置与亚洲夏季风降水存在密切联系(Xie et al., 2015Lin et al., 2019). Zhang et al.(2018)模拟结果显示,自全新世早期至晚期西风急流持续向东、向南移动. 西风急流东移(西移)同时伴随着南亚高压核心东移(西移)和西太副高西移(东移)(Jiang et al., 2011). 在早全新世,西太副高的位置偏东,低空急流可沿副高西北边缘向中国北方地区输送水汽(Zhou and Yu,2005),长江中下游地区降水相对较少. 而在晚全新世,北半球夏季太阳辐射的不均匀减少增大经向温度梯度,使得亚洲西风急流南移(徐楚楚,2018;Herzschuh et al., 2019),进而迫使梅雨带南移并延长梅雨季节,增加长江中下游地区降水量(Kong et al., 2017).

ENSO是重要的海气耦合模式之一,对中国东部地区降水有着重要影响(Jiang et al., 2021). 现有的模拟结果与代理记录均显示晚全新世ENSO活动增强(Liu et al., 2014Du et al., 2021Zhou et al., 2022). 晚全新世北半球夏季太阳辐射减少,ITCZ向南迁移所带来的跨赤道东南信风减弱可以增强ENSO活动(Hu et al., 2018Du et al., 2021). 此外,夏季太阳辐射的减少还会导致热带太平洋纬向一致的海表温度异常,而大气在西太平洋对这些海表温度异常的响应相较于在东太平洋更加明显(Tian et al., 2023),即西太平洋上空大气冷却更为显著,从而促进类厄尔尼诺现象的产生(Zhang et al., 2021c). ENSO事件的发生会从以下两个方面影响长江中下游地区降水变化:(1)改变西太副高强度与位置,进而控制东亚夏季风雨带移动. (2)改变季风水汽源地蒸发速率,调节印度夏季风对长江中游地区的影响.

首先,在厄尔尼诺年,西太副高增强并向西延伸、向南移动,使得夏季风雨带停留在长江中下游流域,阻碍其向北推进,导致南方雨季延长、夏季降水偏多,北方降水偏少(Chen et al., 2015b). 在强厄尔尼诺事件发生后,西太副高与印度-太平洋暖池之间的强烈相互作用还可以维持西太平洋反气旋,在厄尔尼诺冬季成熟阶段到次年夏季衰退阶段持续增加长江中下游地区锋面降水(Wang et al., 2017). 现有地质记录印证了ENSO活动对长江中下游地区水文气候的影响:长江下游地区鄱阳湖孢粉记录重建的古水文变化(Guo et al., 2016)显示在3.50~2.85 ka BP、2.0~1.2 ka BP期间气候湿润,与同时期ENSO活动增强具有显著的一致性(Liu et al., 2014)(图6c). 而长江下游地区湿润度序列也在4.0~3.0 ka BP及2.0~1.0 ka BP两个亚阶段内出现相对高值(图6d). 在长江中游地区,Guan et al.(2022)利用粒度参数与地球化学元素记录重建晚全新世洪水历史,结果表明近4 000 a来,在3.40~2.55 ka BP与2.05~0.60 ka BP时期洪水频发,与和尚洞石笋软磁组分通量(IRMsoft⁃flux)所反映区域极端降水事件(Zhu et al., 2017)相吻合. 长江中游湿润度序列也反映在3.0 ka BP后降水较多. 因此,晚全新世ENSO活动增强可能是促使长江中下游地区降水减少趋势放缓,偏离北半球夏季太阳辐射变化趋势的重要原因.

其次,东亚季风区主要水汽来源是印度洋与热带太平洋(Liu et al.,2015),而水汽源区海温的变化会改变海水蒸发速率从而影响东亚地区夏季降水. 在厄尔尼诺的条件下,西太副高的增强有利于北印度洋与南海海温正异常的同步发展,增加水汽通量,加强印度夏季风影响(Yang and Lau,2004). 而由于长江中游地区较长江下游地区更靠近东亚夏季风与印度夏季风交界面,受印度夏季风影响更强烈(图7). Guo et al.(2016)结合地质记录与历史记录确定了长江中游地区3 000多年以来的5个主要的洪水时期,认为当亚洲夏季风较弱时,印度夏季风环流异常会使西北大陆风带来的冷气团与印度夏季风及东亚夏季风带来的暖湿气流相遇,在长江中上游流域上空形成准静止锋,容易为该地区带来长时间暴雨,从而引发洪水. 这一理论已经得到地质记录与现代过程的验证:喜马拉雅山脉中部Benital湖沉积物高分辨率的地球化学元素记录(Bhushan et al., 2018)显示,印度夏季风在4.0 ka BP左右显著减弱,3.5~2.4 ka BP与1.8~1.0 ka BP期间明显增强,2.4~1.8 ka BP与1.0 ka BP后略有减弱但总体保持稳定. 相对应的,晚全新世长江中游湿润度在4.0~3.0 ka BP期间出现低值,在3.0 ka BP后迅速回升. 在2012年7月,在印度夏季风环流异常形成的强盛西南暖湿气流与南下冷空气共同作用下,长江流域出现4次强降雨事件,其中对长江中上游地区影响最为显著(尹志杰等,2014). 印度夏季风的作用可能是导致晚全新世长江中游地区形成相对于长江下游地区更加湿润气候的原因.

总体上,长江中下游地区的降水变化主要受到外部强迫(太阳辐射)与内部反馈机制(冰盖、亚洲西风急流、ENSO)共同驱动. 早全新世夏季太阳辐射处于最高值,但北半球高纬度大范围冰盖的存在减少了夏季风降水. 中全新世冰盖消融后,长江中下游地区降水随着夏季太阳辐射减弱而减少. 晚全新世,亚洲西风急流位置变化与ENSO活动增强使得长江中下游地区气候趋向湿润、区域降水演化模式再次偏离北半球夏季太阳辐射变化趋势. 此外,在亚洲夏季风较弱的背景下,印度夏季风环流异常更容易造成长江中游地区极端降水增加,使得长江中游地区在晚全新世形成相比于长江下游地区更加湿润的气候.

4 结论

为调和长江中下游地区不同降水记录在千年尺度变化趋势上的矛盾,本研究搜集了30条高质量降水记录,重建全新世以来长江中下游地区降水演化模式并进一步探讨了可能的驱动机制,主要结论如下:

(1)全新世伊始,长江中下游地区降水逐步增多,~9.0~6.0 ka BP期间区域气候最为湿润,随后降水逐渐减少;晚全新世长江中游气候重新转为湿润,长江下游则在波动中整体趋于干旱.

(2)长江中下游地区现有降水记录重建结果间差异可能主要是由于代用指标有效性、人类活动、地貌背景3个方面的原因. 在考虑这些因素的影响后,已有研究所揭示的长江中下游降水演化模式整体上与本研究重建结果保持一致.

(3)长江中下游地区的降水变化主要受控于夏季太阳辐射,但早全新世北半球冰盖的存在使得全新世长江中下游地区最湿润时期滞后于夏季太阳辐射峰值时期. 晚全新世,亚洲西风急流偏南位置与ENSO活动增强使得长江中下游地区降水增加,区域降水模式再次偏离北半球夏季太阳辐射变化趋势. 此外,在亚洲夏季风较弱背景下,印度夏季风异常环流的影响使得长江中游地区较下游地区气候更为湿润.

(4)目前,长江中下游地区定量高分辨率的气候数据较少,地域分布相对集中. 在更多地点开展基于湖泊等地质载体的高分辨率古气候定量重建工作以及沉积年代方面的研究有助于更深入理解该区域降水时空变化特征,同时为预测未来全球变暖趋势下的降水变化提供科学基础.

参考文献

[1]

An, Z. S., Porter, S. C., Kutzbach, J. E., et al., 2000.Asynchronous Holocene Optimum of the East Asian Monsoon. Quaternary Science Reviews, 19(8): 743-762. https://doi.org/10.1016/s0277⁃3791(99)00031⁃1

[2]

Bi, L., Yang, S.Y., Zhao, Y., et al., 2017. Provenance Study of the Holocene Sediments in the Changjiang (Yangtze River) Estuary and Inner Shelf of the East China Sea. Quaternary International, 441:147-161. https://doi.org/10.1016/j.quaint.2016.12.004

[3]

Bhushan, R., Sati, S. P., Rana, N., et al., 2018. High⁃Resolution Millennial and Centennial Scale Holocene Monsoon Variability in the Higher Central Himalayas. Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 95-104. https://doi.org/10.1016/j.palaeo.2017.09.032

[4]

Caley, T., Roche, D. M., Renssen, H., et al., 2014. Orbital Asian Summer Monsoon Dynamics Revealed Using an Isotope⁃Enabled Global Climate Model. Nature Communications, 5(1). https://doi.org/10.1038/ncomms6371

[5]

Cai, Y. J., Fung, I. Y., Edwards, R. L.,et al., 2015. Variability of Stalagmite⁃Inferred Indian Monsoon Precipitation over the Past 252,000 y. Proceedings of the National Academy of Sciences, 112(10): 2954-2959. https://doi.org/10.1073/pnas.1424035112

[6]

Cao, J., Wu,L., G., 2016. Asymmetric Impact of Last Glacial Maximum Ice Sheets on Global Monsoon Activity. Journal of the Meteorological Sciences, 36(4):425-435 (in Chinese with English abstract).

[7]

Chen, Z. Y., Hong, X. Q., Li S., et al., 1997. Study of Archaeology Related Environment Evolution of Taihu Lake in Southern Chang Jiang Delta Plain. Acta Geographica Sinica, 52(2): 131-137 (in Chinese with English abstract).

[8]

Chen, F. H., Yu, Z. C., Yang, M., et al., 2008. Holocene Moisture Evolution in Arid Central Asia and Its Out⁃of⁃Phase Relationship with Asian Monsoon History. Quaternary Science Reviews, 27(3-4): 351-364. https://doi.org/10.1016/j.quascirev.2010.02.017

[9]

Chen, W., Wang, W.M., Dai, X.R.,2009. Holocene Vegetation History with Implications of Human Impact in the Lake Chaohu Area, Anhui Province, East China. Vegetation History and Archaeobotany, 18(2): 137-146. https://doi.org/10.1007/s00334⁃008⁃0173⁃7

[10]

Chen, S. S., Wang, X. F., 2014. The Terrain and Climatic Change of Jianghan Plain since Holocene. Geographical Science Research, 3: 39 (in Chinese with English abstract).

[11]

Chen, F. H., Xu, Q. H., Chen, J. H., et al., 2015a. East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5(1):1-11. https://doi.org/10.1038/srep11186

[12]

Chen, J. H., Chen, F. H., Feng, S., et al., 2015b. Hydroclimatic Changes in China and Surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial Patterns and Possible Mechanisms. Quaternary Science Reviews, 107:98-111. https://doi.org/10.1016/j.quascirev.2014.10.012

[13]

Chen, J. H., Rao, Z. G., Liu, J. B., et al., 2016. On the Timing of the East Asian Summer Monsoon Maximum during the Holocene: Does the Speleothem Oxygen Isotope Record Reflect Monsoon Rainfall Variability?Science China Earth Sciences, 59(12): 2328-2338. https://doi.org/10.1007/s11430⁃015⁃5500⁃5

[14]

Chen, F. H., Fu B. J., Xia J., et al., 2019. Major Advances in Studies of the Physical Geography and LIving Environment of China during the Past 70 Years and Future Prospects. Science China Earth Sciences, 62: 1665-1701 (in Chinese).

[15]

Chen, W., Song, B., Shu, J.W., et al., 2021. Vegetation History with Implication of Climate Changes and Human Impacts over the Last 9000 Years in the Lake Nanyi Area, Anhui Province, East China. Palaeoworld, 30(3): 583-592. https://doi.org/10.1016/j.palwor.2020.09.006

[16]

Cheng, H., Sinha, A., Wang, X. F., et al., 2012. The Global Paleomonsoon as Seen through Speleothem Records from Asia and the Americas. Climate Dynamics, 39(5): 1045-1062. https://doi.org/10.1007/s00382⁃012⁃1363⁃7

[17]

Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640,000 Years and Ice Age Terminations.Nature, 534(7609): 640-646. https://doi.org/10.1038/nature18591

[18]

Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002

[19]

Ding, Y. H., Chan, J. C. L.,2005. The East Asian Summer Monsoon: An Overview. Meteorology and Atmospheric Physics, 89(1-4): 117-142. https://doi.org/10.1007/s00703⁃005⁃0125⁃z

[20]

Dong, J. G., Wang, Y. J., Cheng H., et al., 2010. A High⁃Resolution Stalagmite Record of the Holocene East Asian Monsoon from Mt Shennongjia, Central China. The Holocene, 20(2): 257-264. https://doi.org/10.1177/0959683609350393

[21]

Du, X. J., Hendy, I., Hinnov, L., et al., 2021. High⁃Resolution Interannual Precipitation Reconstruction of Southern California: Implications for Holocene ENSO Evolution. Earth and Planetary Science Letters, 554: 116670. https://doi.org/10.1016/j.epsl.2020.116670

[22]

Dyke, A. S., 2004. An Outline of North American Deglaciation with Emphasis on Central and Northern Canada.North America,Developments in Quaternary Sciences, 2:373-424. https://doi.org/10.1016/s1571⁃0866(04)80209⁃4

[23]

Gu, Y. S., Wang, H., Huang, X., et al., 2012. Phytolith Records of the Climate Change Since the Past 15000 Years in the Middle Reach of the Yangtze River in China. Frontiers of Earth Science, 6: 10-17. https://doi.org/10.1007/sl1707⁃012⁃0302⁃6

[24]

Gu, Y. S., Liu, H. Y., Guan, S., et al., 2018. Possible El Niño⁃Southern Oscillation⁃Related Lacustrine Facies Developed in Southern Lake Poyang during the Late Holocene: Evidence from Spore⁃Pollen Records. The Holocene, 28(4): 503-512. https://doi.org/10.1177/0959683617735593

[25]

Guo, Y. Q., Huang, C. C., Zhou, Y. L., et al., 2016. Extraordinary Flood Events and the Response to Monsoonal Climatic Change during the Last 3000 Years along the Middle Yangtze River Valley, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 70-84. https://doi.org/10.1016/j.palaeo.2016.09.005

[26]

Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO⁃Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo. 2022.110834

[27]

Hao, Q. Z., Wang, L., Oldfield, F., et al., 2012. Delayed Build⁃Up of Arctic Ice Sheets during 400,000⁃Year Minima in Insolation Variability. Nature: 490(7420): 393-396. https://doi.org/10.1038/nature11493

[28]

He, Y. X., Zhao, C., Zheng, Z., et al., 2015. Peatland Evolution and Associated Environmental Changes in Central China over the Past 40,000 Years. Quaternary Research, 84(2): 255-261. https://doi.org/10.1016/j.yqres. 2015. 06.004

[29]

Herzschuh, U., Cao, X. Y., Laepple, T., et al., 2019. Position and Orientation of the Westerly Jet Determined Holocene Rainfall Patterns in China. Nature Communications, 10(1): 2376. https://doi.org/10.1038/s41467⁃019⁃09866⁃8

[30]

Hori, K., Saito, Y., 2007. An Early Holocene Sea⁃Level Jump and Delta Initiation. Geophysical Research Letters, 34(18). https://doi.org/10.1029/2007gl031029

[31]

Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. https://doi.org/10.1016/j.epsl.2007.10.015

[32]

Hu, S., Fedorov, A. V. 2018. Cross⁃Equatorial Winds Control El Niño Diversity and Change. Nature Climate Change, 8(9): 798-802. https://doi.org/10.1038/s41558⁃018⁃0248⁃0

[33]

Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. R Response of Carbon Cycle to Drier Conditions in the Mid⁃Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467⁃018⁃03804⁃w

[34]

Jiang, S. W., Zhou, X., Sachs, J. P., et al., 2021. Central Eastern China Hydrological Changes and ENSO⁃Like Variability over the Past 1 800 Yr. Geology, 49(11): 1386-1390.https://doi.org/10.1130/g48894.1

[35]

Jiang, S. W., Zhou, X., Tu, L. Y., et al., 2022. Radiocarbon Age Offset of Lake Sediments from Central Eastern China Modulated by Both Hydroclimate and Human Activity. Quaternary Science Reviews, 293: 107726. https://doi.org/10.1016/j.quascirev.2022.107726

[36]

Jiang, X. W., Li, Y.Q., Yang, S., 2011. Interannual and Interdecadal Variations of the South Asian and Western Pacific Subtropical Highs and Their Relationships with Asian⁃Pacific Summer Climate. Meteorology and Atmospheric Physics, 113(3-4): 171-180. https://doi.org/10.1007/s00703⁃011⁃0146⁃8

[37]

Jiang, Z. C., 1960.The Achaeological Discoveries in Jiangsu and Their Significance to the Study of Ancient History. Jianghai Academic Journal, (7): 39-47 (in Chinese).

[38]

Jin, L. Y., Schneider, B., Park, W., et al., 2014. The Spatial⁃Temporal Patterns of Asian Summer Monsoon Precipitation in Response to Holocene Insolation Change: A Model⁃Data Synthesis. Quaternary Science Reviews, 85: 47-62. https://doi.org/10.1016/j.quascirev. 2013. 11.004

[39]

Kong, W. W., Swenson, L. M., Chiang, J. C., 2017. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon. Journal of Climate, 30(9): 3343-3365. https://doi.org/10.1016/10.1175/JCLI⁃D⁃16⁃0087.1

[40]

Kuang, X. Y., Zhang, Y. C., 2006. Impact of the Position Abnormalities of East Asian Subtropical Westerly Jet on Summer Precipitation in Middle⁃Lower Reaches of Yangtze River. Plateau Meteorology, 25(3): 382-389 (in Chinese with English abstract).

[41]

Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long⁃Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1):261-285. https://doi.org/10.1051/0004⁃6361:20041335

[42]

Li, X. L., Hu, C. Y., Huang, J. H., et al., 2014a. A 9 000⁃Year Carbon Isotopic Record of Acid⁃Soluble Organic Matter in a Stalagmite from Heshang Cave, Central China: Paleoclimate Implications. Chemical Geology, 388: 71-77. https://doi.org/10.1016/j.chemgeo.2014.08.029

[43]

Li, F., Zhu, C., Wu, L., Sun, W., et al., 2014b. “Environmental Humidity Changes Inferred from Multi⁃Indicators in the Jianghan Plain, Central China during the Last 12,700 Years. Quaternary International, 349: 68-78. https://doi.org/10.1016/j.quaint.2013.09.040

[44]

Li, Q., Wu, H. B., Yu, Y. Y, Sun, A. Z., et al., 2014c. Reconstructed Moisture Evolution of the Deserts in Northern China since the Last Glacial Maximum and Its Implications for the East Asian Summer Monsoon. Global and Planetary Change, 121: 101-112. https://doi.org/10.1016/j.gloplacha.2014.07.009

[45]

Li, J. Y, Xu, Q. H., Zheng, Z., et al., 2015. A Dataset of Spatial Distribution of Bioclimatic Variables in China at 1km Resolution. Quaternary Research, 83(2): 287-297. https://doi.org10.1016/j.yqres.2014.12.002

[46]

Li, B., Ma, C. M., Zhu, C., et al., 2018.Environmental Evolution of Eastern Taihu Plain During the Holocene Achieved by Pingwang Core.Acta PalaeontologicaSinica,57(4):513-523 (in Chinese with English abstract).

[47]

Li, J. Y., Dodson, J., Yan, H., et al., 2018. Q Quantitative Holocene Climatic Reconstructions for the Lower Yangtze Region of China. Climate Dynamics, 50(3-4): 1101-1113. https://doi.org/10.1007/s00382⁃017⁃3664⁃3

[48]

Li, C. A., Zhang, Y. F., Xu, W. S., et al., 2023. Paleogeographic Pattern of Hankou and Hanjiang Estuary 350 Years Ago. Earth Science, 48(9): 3552-3561 (in Chinese with English abstract).

[49]

Lin, Z. D., Fu, Y. H., Lu, R. Y., 2019. Intermodel Diversity in the Zonal Location of the Climatological East Asian Westerly Jet Core in Summer and Association with Rainfall over East Asia in CMIP5 Models. Advances in Atmospheric Sciences, 36(6): 614-622. https://doi.org/10.1007/s00376⁃019⁃8221⁃z

[50]

Liu, Z. Y., Otto⁃Bliesner, B. L., He, F., et al., 2009. T Transient Simulation of Last Deglaciation with a New Mechanism for Bølling⁃Allerød Warming. Science, 325(5938): 310-314. https://doi.org/10.1126/science. 1171041

[51]

Liu, T., Chen, Z. Y., Sun, Q. L., et al., 2012. Migration of Neolithic Settlements in the Dongting Lake Area of the Middle Yangtze River Basin, China: Lake⁃Level and Monsoon Climate Responses. The Holocene, 22(6): 649-657. https://doi.org/10.1177/0959683611405084

[52]

Liu, Z. Y., Lu, Z. Y., Wen, X. Y., et al., 2014. Evolution and Forcing Mechanisms of El Niño over the Past 21,000 Years. Nature, 515(7528): 550-553. https://doi.org/10.1038/nature13963

[53]

Liu, Z. y., Wen, X. y., Brady, E. C., et al., 2014. Chinese Cave Records and the East Asia Summer Monsoon. Quaternary Science Reviews, 83: 115-128. https://doi.org/10.1016/j.quascirev.2013.10.021

[54]

Liu, J. B., Chen, J. H., Zhang, X. J., et al., 2015. Holocene East Asian Summer Monsoon Records in Northern China and Their Inconsistency with Chinese Stalagmite δ18O Records. EarthScience Reviews, 148: 194-208. https://doi.org/10.1016/j.earscirev.2015.06.004

[55]

Liu, J. B., Chen, S. Q., Chen, J. H., et al., 2017. Chinese Cave δ18O Records Records Do Not Represent Northern East Asian Summer Monsoon Rainfall. Proceedings of the National Academy of Sciences,114(15): E2987-E2988. https://doi.org/10.1073/pnas.1703471114

[56]

Liu, H. Y., Gu, Y. S., Huang, X. Y, et al., 2019. A 13,000⁃Year Peatland Palaeohydrological Response to the ENSO⁃Related Asian Monsoon Precipitation Changes in the Middle Yangtze Valley. Quaternary Science Reviews, 212: 80-91. https://doi.org/10.1016/j.quascirev.2019.03.034

[57]

Liu, X. K., Liu, J. B., Chen, S. Q., et al., 2020. New Insights on Chinese Cave δ18O Records and Their Paleoclimatic Significance. EarthScience Reviews, 207: 103216. https://doi.org/10.1016/j.earscirev.2020.103216

[58]

Liu, J. B., Shen, Z. W., Chen, W., et al., 2021. Dipolar Mode of Precipitation Changes between North China and the Yangtze River Valley Existed over the Entire Holocene: Evidence from the Sediment Record of Nanyi Lake. International Journal of Climatology, 41(3): 1667-1681. https://doi.org/10.1002/joc.6906

[59]

Lu, F. Z., Ma, C. M., Zhu, C., et al., 2019. Variability of East Asian Summer Monsoon Precipitation during the Holocene and Possible Forcing Mechanisms. Climate Dynamics, 52: 969-989.https://doi.org/10.1007/s00382⁃018⁃4175⁃6

[60]

Maher, B. A., 2016. Palaeoclimatic Records of the Loess/Palaeosol Sequences of the Chinese Loess Plateau. Quaternary Science Reviews, 154:23-84. https://doi.org/10.1016/j.quascirev.2016.08.004

[61]

Mu, D. X., 2021. A Comparative Study of the Middle and Lower Reaches of the Yangtze River in the Middle Neolithic Age(Dissertation). Shandong University, Jinan, 1-2 (in Chinese with English abstract).

[62]

Orton, G. J., Reading, H. G., 1993. Variability of Deltaic Processes in Terms of Sediment Supply, with Particular Emphasis on Grain Size. Sedimentology, 40(3): 475-512. https://doi.org/10.1111/j.1365⁃3091.1993.tb01347.x

[63]

Prell, W. L., Kutzbach, J. E., 1987. Monsoon Variability Over the Past 150,000 Years. Journal of Geophysical Research: Atmospheres, 92(D7): 8411-8425. https://doi.org/10.1029/JD092iD07p08411

[64]

Rohatgi, A., 2022. Webplotdigitizer: Version 4.6. Available from https://automeris.io/WebPlotDigitizer. (Last accessed on September, 2022)

[65]

Shu, J. W., Wang, W. M.,Chen, W., 2007. Holocene Vegetation and Environment Changes in the NwTaihu Plain, Jiangsu Province, East China. Acta MicropalaeontologicaSinica,(2):210-221 (in Chinese).

[66]

Sun, J., Ma, C. M., Cao, X. Y., et al., 2019. Quantitative Precipitation Reconstruction in the East⁃Central Monsoonal China since the Late Glacial Period. Quaternary International, 521: 175-184. https://doi.org/10.1016/j.quaint. 2019.05.033

[67]

Tao, J., Chen, M.T., Xu, S.Y., 2006. A Holocene Environmental Record from the Southern Yangtze River Delta, Eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(3-4): 204-229. https://doi.org/10.1016/j.palaeo.2005.07.015

[68]

Tian, S. H., Xiao, G. Q., Yin, Q. Z., et al., 2023. ENSO⁃related East Asian Climate Transition at ~3 600 BP and Its Implications for the Rise of Pastoralism in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 630: 111810. https://doi.org/10.1021/acsomega.3c07134

[69]

Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial⁃ and Orbital⁃Scale Changes in the East Asian Monsoon over the Past 224,000 Years. Nature, 451(7182): 1090-1093. https://doi.org/10.1038/nature06692

[70]

Wang, W. M.,Shu, J. W., Chen, W., 2010.Holocene Environmental Changes and Human Impact in the Yangtze River Delta Area/East China. Quaternary Sciences,30(2):233-244 (in Chinese with English abstract).

[71]

Wang, Z. H., Zhuang, C. C., Saito, Y., et al., 2012. Early Mid⁃Holocene Sea⁃Level Change and Coastal Environmental Response on the Southern Yangtze Delta Plain, China: Implications for the Rise of Neolithic Culture. Quaternary Science Reviews, 35:51-62. https://doi.org/10.1016/j.quascirev.2012.01.005

[72]

Wang, Q., Yang, S. Y., 2013. Clay Mineralogy Indicates the Holocene Monsoon Climate in the Changjiang (Yangtze River) Catchment, China. Applied Clay Science, 74: 28-36. https://doi.org/10.1016/j.clay.2012.08.011

[73]

Wang, H. P, Chen, J. H., Zhang, X. J., et al., 2014. Palaeosol Development in the Chinese Loess Plateau as an Indicator of the Strength of the East Asian Summer Monsoon: Evidence for a Mid⁃Holocene Maximum. Quaternary International, 334: 155-164. https://doi.org/10.1016/j.quaint.2014.03.013

[74]

Wang, B., Li, J., He, Q., 2017. Variable and Robust East Asian Monsoon Rainfall Response to El Niño over the Past 60 Years (1957-2016). Advances in Atmospheric Sciences, 34(10): 1235-1248. https://doi.org/10.1007/s00376⁃017⁃7016⁃3

[75]

Wang, C. F., Bendle, J. A., Zhang, H. B., et al., 2018. Holocene Temperature and Hydrological Changes Reconstructed by Bacterial 3⁃Hydroxy Fatty Acids in a Stalagmite from Central China. Quaternary Science Reviews, 192:97-105. https://doi.org/10.1016/j.quascirev. 2018.05.030

[76]

Wang, Z. J., Chen, S. T., Wang, Y. J., et al., 2022. Climatic Implication of Stalagmite δ13C in the Middle Reaches of the Yangtze River since the Last Glacial Maximum and Coupling with δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 608: 111290. https://doi.org/10.1016/j.palaeo.2022.111290

[77]

Wei, Z. Q., Zhong, W., Shang, S. T., et al., 2018. Lacustrine Mineral Magnetic Record of Postglacial Environmental Changes from Dahu Swamp, Southern China. Global and Planetary Change, 170: 62-75. https://doi.org/10.1016/j.gloplacha.2018.08.010

[78]

Wen, X. Y., Liu, Z. Y., Wang, S. W., et al., 2016. Correlation and Anti⁃Correlation of the East Asian Summer and Winter Monsoons during the Last 21,000 Years. Nature Communications, 7(1):11999. https://doi.org/10.1038/ncomms11999

[79]

Wu, C., 2018.Risk Assessment of Flood Disasters in the Middle⁃Lower Reaches of the Yangtze River. Wuhan University, Wuhan, 11-12 (in Chinese with English abstract).

[80]

Wu, L., Li, L. Y., Zhou, H., et al., 2019. Holocene Fire in Relation to Environmental Change and Human Activity Reconstructed from Sedimentary Charcoal of Chaohu Lake, East China. Quaternary International, 507: 62-73. https://doi.org/10.1016/j.quaint.2018.11.035

[81]

Wu, L., Lu, S. G., Zhu, C., et al., 2021. Holocene Environmental Archaeology of the Yangtze River Valley in China: A Review. Land, 10(3): 302. https://doi.org/10.3390/land10030302

[82]

Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon⁃Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8):827-830. https://doi.org/10.1130/g34318.1

[83]

Xie, Z. Q., Du, Y., Yang, S., 2015. Zonal Extension and Retraction of the Subtropical Westerly Jet Stream and Evolution of Precipitation over East Asia and the Western Pacific. Journal of Climate, 28(17): 6783-6798. https://doi.org/10.1175/jcli⁃d⁃14⁃00649.1

[84]

Xu, D., Lu, H. Y., Chu, G. Q., et al., 2014. 5500⁃Year Climate Cycles Stacking of Recent Centennial Warming Documented in an East Asian Pollen Record. Scientific Reports. https://doi.org/10.1038/srep03611

[85]

Xu, G., Liu, J., Gugliotta, M., et al., 2020. Link between East Asian Summer Monsoon and Sedimentation in River⁃Mouth Sandbars since the Early Holocene Preserved in the Yangtze River Subaqueous Delta Front. Quaternary Research, 95: 84-96. https://doi.org/10.1017/qua.2020.1

[86]

Xu, C. C., 2021. Summer Westerly Jet in Northern Hemisphere in Typical Period during the Holocene: A Multi⁃Model Study. (Dissertation). Nanjing Normal University, Nanjing, 27-28 (in Chinese with English abstract).

[87]

Yang, F., Lau, K. M., 2004. Trend and Variability of China Precipitation in Spring and Summer: Linkage to Sea Surface Temperatures. International Journal of Climatology, 24(13): 1625-1644. https://doi.org/10.1002/joc.1094

[88]

Yang, K., Wu, H., Qin, J., et al., 2014. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle: A Review. Global and Planetary Change, 112:79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001

[89]

Yang, J. S., Wang, Y., Yin, J. H., et al., 2023. Progress and Prospects in Reconstruction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959 (in Chinese with English abstract).

[90]

Yao, F. L., Ma, C. M., Zhu, C., et al., 2017. Holocene Climate Change in the Western Part of Taihu Lake Region, East China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 963-973. https://doi.org/10.1016/j.palaeo.2017.08.022

[91]

Ye, W., Chen, Q., Zhu, L. D., et al., 2018. Early Middle Holocene Climate Oscillations Recorded in the Beihuqiao Core, Yuhang, Zhejiang Province, China. Journal of Paleolimnology, 59(2): 263-278. https://doi.org/10.1007/s10933⁃017⁃9959⁃x

[92]

Ye, L. T., Gao, L. Li, Y. F., et al., 2022. Palynology⁃Based Reconstruction of Holocene Environmental History in the Northern Yangtze Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111186. https://doi.org/10.1016/j.palaeo.2022.111186

[93]

Yi, S., Saito, Y., Yang, D.Y. 2006. Palynological Evidence for Holocene Environmental Change in the Changjiang (Yangtze River) Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 103-117. https://doi.org/10.1016/j.palaeo.2006.06.016

[94]

Yin, Z. J., Liu, X. Y., Zhang, H. Y., 2014.Analysis of Storm Flood Occurred in Yangtze River Basin in July 2012. Journal of China Hydrology, 34(5): 81-87 (in Chinese with English abstract).

[95]

Berger, A., Driesschaert, E., Goosse, H., et al., 2010. The Eurasian Ice Sheet Reinforces the East Asian Summer Monsoon during the Interglacial 500 000 Years Ago. Climate of the Past, 4(2): 79-90. https://doi.org/10.5194/cp⁃4⁃79⁃2008

[96]

Yu, J., Yu, Y. Y., Wu, H. B., et al., 2022. Spatiotemporal Changes in Early Human Land Use during the Holocene throughout the Yangtze River Basin, China..The Holocene, 32(4): 334-345. https://doi.org/10.1177/09596836211066605

[97]

Zhan, W., Yang, S. Y., Liu, X. L., et al., 2010. Reconstruction of Flood Events over the Last 150 Years in the Lower Reaches of the Changjiang River. Chinese Science Bulletin, 55(21): 2268-2274. https://doi.org/10.1007/s11434⁃010⁃3263⁃8

[98]

Zhan, Q., Wang, Z. H., Xie, Y., et al., 2012. Assessing C/N and δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China. The Holocene, 22(6): 697-704. https://doi.org/10.1177/0959683611423685

[99]

Zhang, H. L., Yu, K. F., Zhao, J. X., et al., 2013. East Asian Summer Monsoon Variations in the Past 12.5 ka: High⁃Resolution Delta O⁃18 Record from a Precisely Dated Aragonite Stalagmite in Central China.Journal of Asian Earth Sciences, 73: 162-175. https://doi.org/10.1016/j.jseaes.2013.04.015

[100]

Zhang, H. B., Griffiths, M. L., Chiang, J. C. H., et al., 2018. East Asian Hydroclimate Modulated by the Position of the Westerlies during Termination I. Science, 362(6414):580-583. https://doi.org/10.1126/science.aat9393

[101]

Zhang, L. J., Li, Y. H., Ren Han., et al., 2020. Prediction of the Suitable Distribution of Cyclobalanopsis Glauca and Its Implications for the Northern Boundary of Subtropical Zone of China. Geographical Research, 39(4): 990-1001 (in Chinese with English abstract).

[102]

Zhang, H. W., Cheng, H., Sinha, A., et al., 2021a. Collapse of the Liangzhu and Other Neolithic Cultures in the Lower Yangtze Region in Response to Climate Change. Science Advances, 7(48): Eabi9275. https://doi.org/10.1126/sciadv.abi9275

[103]

Zhang, Z. P., Liu, J. B., Chen, J. H., et al., 2021b. Holocene Climatic Optimum in the East Asian Monsoon Region of China Defined by Climatic Stability. EarthScience Reviews, 212: 103450. https://doi.org/10.1016/j.earscirev.2020.103450

[104]

Zhang, H. W., Zhang, X., Cai, Y. J, et al., 2021c. A Data⁃Model Comparison Pinpoints Holocene Spatiotemporal Pattern of East Asian Summer Monsoon. Quaternary Science Reviews, 261:106911. https://doi.org/10.1016/j.quascirev.2021.106911

[105]

Zhao, C. S. P., Mo, D. W., et al., 2020. Holocene Hydro⁃Environmental Evolution and Its Impacts on Human Occupation in Jianghan⁃Dongting Basin, Middle Reaches of the Yangtze River, China. Journal of Geographical Sciences, 30(3): 423-438. https://doi.org/10.1007/s11442⁃020⁃1735⁃6

[106]

Zhou, T. J., Yu, R. C., 2005. Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China. Journal of Geophysical Research.110(D8). https://doi.org/10.1029/2004jd005413

[107]

Zhou, X., 2012. Asian Monsoon Precipitation Changes and the Holocene Methane Anomaly. The Holocene, 22(7): 731-738. https://doi.org/10.1177/0959683611430408

[108]

Zhou, H. Y.,Liu, S. H., Peng,X. T., et al., 2016. Paleoclimatic Interpretations of Speleothem δ18O Record In Monsoonal China: Controversies and Some Key Issues. Tropical Geography, 36(3): 448-456.(in Chinese with English abstract).

[109]

Zhou, W. J., Chui, Y. D., Yang, L., et al., 2022.14C Geochronology and Radiocarbon Reservoir Effect of Reviewed Lakes Study in China. Radiocarbon, 64(4): 833-844. https://doi.org/10.1017/rdc.2021.92

[110]

Zhou, P. C., Yan, H., Han, T., et al., 2022. Mid to Late Holocene ENSO Variability Reconstructed by High⁃Resolution Tridacna Sr/Ca Records from the Northern Part of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111117. https://doi.org/10.1016/j.palaeo.2022.111117

[111]

Zhu, C., Wu, L., Li, L., et al., 2014. Research Progress on Holocene Environmental Archaeology in the Yangtze river Valley, China. Acta Geographica Sinica, 69(9): 1268-1283 (in Chinese with English abstract).

[112]

Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO⁃Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences, 114(5):852-857. https://doi.org/10.1073/pnas.1610930114

[113]

Zuo, X. X., Lu, H. Y., Jiang, L. P., et al., 2017. Dating Rice Remains through Phytolith Carbon⁃14 Study Reveals Domestication at the Beginning of the Holocene. Proceedings of the National Academy of Sciences, 114(25): 6486-6491. https://doi.org/10.1073/pnas.1704304114

基金资助

国家自然科学基金项目(42301173)

江苏省自然科学基金资助(BK20230386)

AI Summary AI Mindmap
PDF (5483KB)

191

访问

0

被引

详细

导航
相关文章

AI思维导图

/