柴达木盆地更新统七个泉组建组剖面地层序列再厘定:岩性岩相和ESR年代学研究新证据

柯学 ,  杨文军 ,  曾雯 ,  张宗言 ,  张金明 ,  宋泰忠 ,  李靖 ,  张小瑾

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1514 -1530.

PDF (12888KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1514 -1530. DOI: 10.3799/dqkx.2024.096

柴达木盆地更新统七个泉组建组剖面地层序列再厘定:岩性岩相和ESR年代学研究新证据

作者信息 +

Redefinition of Stratigraphic Sequence of Type Section of Pleistocene Qigequan Formation in Qaidam Basin: New Evidence from Lithologic and Petrographic Studies and ESR Dating

Author information +
文章历史 +
PDF (13196K)

摘要

针对以往对柴达木盆地七个泉组岩性岩相涵义不清,尤其是其沉积时代是否存在中更新世争议颇大等问题,对位于青海省茫崖市七个泉子地区的七个泉组建组剖面(Z剖面)北部的七个泉组辅助层型剖面(Y剖面)开展了精细实测,并且在该剖面从底到顶首次获取了4个电子自旋共振(ESR)年龄,分别是562±64 ka、511±90 ka、438±32 ka和379±33 ka,进一步证实了七个泉组存在中更新世沉积序列.在详细分析Y剖面和Z剖面岩性岩相组合的基础上,将七个泉子剖面划分为下细上粗两段:剖面下部的泥-粉砂为主的湖相地层序列划归为七个泉组一段,上部以砾-砂为主的冲积扇根-扇中相的地层序列归为七个泉组二段.结合前人在Z剖面所获古地磁年龄和本次在Y剖面所获ESR年龄,七个泉组一段的沉积时代以早更新世为主,七个泉组二段的沉积时代以中更新世为主.虽然七个泉组一段在下、二段在上,但两者在早更新世晚期-中更新世早期期间存在相变关系,即两段地层的分界面是穿时的.还将七个泉组建组剖面与柴达木盆地其他同期地层进行了对比,为区域第四纪岩相古地理分析及第四纪钾盐等重要矿产勘查,提供了新的地层学基础材料.

Abstract

In response to the previous problems of unclear lithologic and petrographic meanings of the Qigequan Formation in Qaidam Basin,especially the controversial issue of whether its depositional age extends to the Middle Pleistocene. In this paper it re-conducted a fine study of the auxiliary type section (Section Y) of the Qigequan Formation located in the north of the type section (Section Z) in the Qigequanzi area of Mangya City, Qinghai Province. It obtained for the first time four ESR ages from the bottom to the top of the section, which are 562±64 ka, 511±90 ka, 438± 32 ka, and 379±33 ka, respectively, further confirming the existence of the Middle Pleistocene sedimentary sequences in the Qigequan Formation. Based on a detailed analysis of the lithological and petrographic assemblage of the Section Y and Section Z, the Qigequanzi Section is divided into two parts, the upper fine and the lower coarse.The lower part of the section is assigned to Member 1 of Qigequan Formation for the mud-sand lake sequences, and the upper part is assigned to the Member 2 of Qigequan Formation for the gravel-sand rhythmic sequence of the alluvial fan stratigraphy.Combined with the paleomagnetic age obtained in Section Z and ESR ages obtained in Section Y, the depositional age of the Member 1 of Qigequan Formation is limited mainly to the Early Pleistocene, and that of the Member 2 of Qigequan Formation mainly to the Middle Pleistocene.Although Member 1 of the Qigequan Formation is at the lower part and Member 2 is at the upper part, there is a phase transition between the late Early Pleistocene and the early Middle Pleistocene, which means that the stratigraphic interface between the two members is time-disconnected. In this paper it compares the type section of Qigequan Formation with other contemporaneous stratum in the Qaidam Basin, and provides new stratigraphic materials for the analysis of Quaternary petrographic paleogeography in the region as well as for the exploration of Quaternary potassium salts and other important minerals.

Graphical abstract

关键词

七个泉组 / 建组剖面 / ESR年龄 / 更新世 / 柴达木盆地 / 地球物理学.

Key words

Qigequan Formation / type section / ESR dating / Pleistocene / Qaidam Basin / geophysics

引用本文

引用格式 ▾
柯学,杨文军,曾雯,张宗言,张金明,宋泰忠,李靖,张小瑾. 柴达木盆地更新统七个泉组建组剖面地层序列再厘定:岩性岩相和ESR年代学研究新证据[J]. 地球科学, 2025, 50(04): 1514-1530 DOI:10.3799/dqkx.2024.096

登录浏览全文

4963

注册一个新账户 忘记密码

柴达木盆地是青藏高原东北部的大型山间盆地(郭雪等, 2024),呈长条状自北西-南东方向延伸.盆地东西长约850 km,南北宽约230 km,面积约139 898 km2,平均海拔3 000 m.盆地周缘被四大断裂围限,北为南祁连南缘断裂,西为阿尔金东南缘断裂,南为东昆仑北缘断裂,东为鄂拉山断裂(李锦轶和张进, 2015).在新生代期间,主要由东昆仑北缘断裂和南祁连南缘断裂对冲,形成了呈东西向展布的压陷盆地,在西侧同时受到阿尔金走滑断裂的拉分叠加,使其进一步沉陷(张克信等,2013a;隋立伟等,2014; 陈琰等, 2024).柴达木盆地不仅堆积了巨厚的第四纪湖相沉积物,在盆地周缘还发育大片第四纪冲洪积相-河流相地层.前人对盆地内不同地区的新生代河湖相沉积开展了较为系统的磁性地层学和生物地层学研究(Fang et al., 2007Zhang et al., 2013; 宋博文等,2022; Hou et al., 2024),并对早-中更新世的河湖相沉积开展了岩石地层和年代地层划分,自下向上建立了早更新世湖相的阿拉尔组和涩北组、中更新世湖相的察尔汗组和尕斯库勒组(刘泽纯等, 1990; 沈振枢等, 1993).而盆地周缘出露的以粗碎屑为主的冲洪积地层常被归为“七个泉组”和“巴龙马海组”(全国地层委员会, 1963; 青海省地层表编写小组, 1980; 青海省地质矿产局, 1991; 青海省地质矿产勘察开发局, 2007),其中“七个泉组”的使用更为广泛,但在七个泉组建组剖面上的七个泉子地区,以及另外一些地区的“七个泉组”,前人对“七个泉组”所划的沉积序列,不仅包含了粗碎屑的冲洪积序列,还包含了细粒的河湖相序列(林培贤等, 2018; 栾守亮, 2020; 晏文权, 2020).该“组”的岩性组合包含了两大类沉积相,显然不符合地层学对一个“组”的岩性岩相一致性的定义.并且,七个泉组建组剖面缺乏绝对年龄测年值的约束,研究者对其时代归属早更新世和早-中更新世两种划分方案长期争论不休(全国地层委员会, 1963; 青海省地层表编写小组, 1980; 青海省地质矿产局, 1991; 周慕林等, 2000; 青海省地质矿产勘察开发局, 2007).因此,非常有必要对柴达木盆地七个泉组的建组剖面开展岩石地层学与年代地层学的再研究,并将其与盆地内其他地区的七个泉组发育特征进行比较,从而更深入和全面地认识七个泉组的整体面貌.本文在重新系统梳理柴达木盆地七个泉组的划分沿革的基础上,根据七个泉子Z剖面的磁性地层年龄以及Y剖面的实测资料和ESR测年新数据,明确了七个泉组的岩性岩相特征和沉积时代,并将七个泉组建组剖面与柴达木盆地中发育的同期地层进行了对比,为区域早-中更新世岩相古地理分析及第四纪钾盐等重要矿产勘查,提供了新的地层学基础材料.

1 岩石地层划分

1.1 七个泉组的划分沿革

1959年的第一届全国地层会议上,中国科学院古脊椎动物与古人类研究所编制的中国新生界对比简表将柴达木盆地西部的七个泉组对应于盆地东部的巴龙马海组,地层时代为早更新世(全国地层委员会, 1963).中国科学院地质所1964年正式命名七个泉组,命名剖面地点位于青海省茫崖市七个泉子,地层时代为早-中更新世,其特征为一套土黄或灰色厚层砾岩与灰黄色薄-厚层砾岩、砂质泥岩互层,与下伏上新统狮子沟组为不整合接触,厚261 m.1976年西北地层会议决定将柴达木盆地西北缘的七个泉组、北缘的上丘陵组和东北缘的巴龙马海组统称为七个泉组(周慕林等, 2000).1980年青海省地层表柴达木分区采用七个泉组一名,时代为早-中更新世(青海省地层表编写小组, 1980).从20世纪80年代以来,前人对柴达木盆地第四系的七个泉组时代归属分歧颇大,划分为早更新世(青海省地质矿产勘察开发局, 2007)、早-中更新世(青海省地质矿产局, 1991; 樊小龙等, 2016; 孙蕗等, 2021; 王永等, 2024)、更新世(杨平等, 2013; 王伟涛等, 2022),或使用七个泉组统称全盆地新生界上部的地层(王建等, 1996; 潘家伟等, 2015; 施源等, 2024).一些学者采用生物地层、地震地层(孙镇城等, 2006)和磁性地层方法(Fang et al.,2007Zhang et al.,2013)限定了七个泉组的底界.综上,柴达木盆地七个泉组及相关岩石地层的划分沿革归纳如图1所示.

前人的研究中,不同学者对七个泉组的岩性特征描述不一,柴西和柴北缘地区的七个泉组为砾岩与砂泥岩互层(孙镇城等, 2006; Fang et al.,2007Zhang et al.,2013Luo et al.,2018),而柴东地区露头和钻孔剖面的七个泉组以泥岩和砂质泥岩为主,局部夹含砂砾岩(林培贤等, 2018; 栾守亮, 2020).由此可见,“七个泉组”一名长期在岩性岩相和时代划分上涵义不统一,争议不断,不利于柴达木盆地的地层对比和第四纪精细地层格架的建立.

在七个泉子剖面,青海油田研究所1972年依据强壮青星介(Qinghaicypriscrassa)的出现,将七个泉组下部时代置于早更新世.孙镇城等(2006)也报道了七个泉组下部的粉砂质泥岩中产强壮青星介(Qinghaicypriscrassa)和奇妙白花介(Leucocytheremirabilis),上部的粉砂质泥岩产肥胖真星介(Eucyprisinflata),并认为其上部时代为中更新世.虽然杨藩等(2004)按照磁性地层定年及沉积速率计算结果,将Qinghaicypriscrassa的分布时限定为距今2.52~2.34 Ma,但其测年结果受古地磁采样和测试精度的影响,加之沉积速率计算本身存在一定的误差,因此其得出的七个泉组的沉积时限尚存在不确定性,仅依据磁性地层学和Qinghaicypriscrassa的分布特征并不能完全限定其赋存的地层时代.

1.2 七个泉组建组剖面岩性岩相研究

1.2.1 七个泉子实测剖面描述

柴达木盆地西部茫崖市七个泉子地区是柴达木盆地七个泉组的建组剖面所在地,本文七个泉组的辅助层型剖面(简称Y剖面)剖面坐标为38°21′18″N,90°39′50″E(图2c, 2d),位于七个泉组建组剖面(简称Z剖面)北部的Y沟(图2c, 2d),Y剖面距七个泉组命名地的七个泉子更近.Y剖面的岩层产状近水平,下部岩性主要为粉砂质泥岩和粉砂岩,上部为砾岩和含砾粗砂岩夹少量粉砂质泥岩条带(图3图4).该套地层与下伏上新统狮子沟组和上覆全新统冲洪积砾石层间均呈平行不整合接触(图3).

笔者于2022年对Y剖面进行了野外精细重测(图3~5),剖面的岩性岩相自上而下分层描述如下:

上覆地层:全新统冲洪积砾石层(Qhpal

平行不整合

七个泉组二段(Qp1-2q2,总厚度56.43 m)

70.深灰色中厚层状复成分中砾岩,具交错层理. 2.00 m

69.灰色中薄层状复成分细砾岩夹土黄色薄层状泥岩. 1.05 m

68.土黄色中层状泥岩. 0.40 m

67.灰色中厚层状复成分中-细砾岩夹土黄色泥岩透 镜体.砾石具叠瓦状构造,板状交错层理. 1.65 m

66.浅黄灰色中薄层状含砾粗砂岩夹灰色杂砾岩透镜 体.砾石局部具叠瓦状构造. 0.90 m

65.深灰色中厚层状复成分中-细砾岩夹灰色条带状 粗砂岩透镜体.具楔状交错层理和底冲刷面. 1.50 m

64.灰色薄层状含砾粗砂岩夹灰色细砾岩透镜体. 0.20 m

63.深灰色中厚层状复成分细-中粒杂砾岩夹灰色粗 砂岩透镜体.具楔状交错层理、冲槽充填构造和底 冲刷面. 1.20 m

62.浅灰黄色中薄层状含砾粗砂岩. 0.20 m

61.灰色中薄层状复成分细砾岩夹浅灰色细砂岩透 镜体. 0.50 m

60.土黄色中薄层状泥质粉砂岩夹灰色细砾岩透镜体. ESR样Q60-L,年龄379±33 ka. 0.27 m

59.灰色厚层状复成分中砾岩. 2.50 m

58.灰色中厚层状复成分中砾岩夹土黄色薄层状泥岩. 1.50 m

57.灰色中厚层状复成分中砾岩夹浅灰色中薄层状粉 砂质泥岩. 4.00 m

56.灰色中厚层状复成分细砾岩夹浅灰色中薄层状 泥岩. 2.60 m

55.灰色中厚层状复成分中-细砾岩夹浅灰色中薄层 状细砂岩及浅灰白色中厚层状泥岩. 20.00 m

54.灰色中厚层状复成分中-细砾岩夹浅灰白色中薄 层状细砂岩及土黄色薄层状泥岩. 3.00 m

53.浅灰色中厚层状含砾细砂岩,夹浅灰白色粉砂质泥 岩.ESR样Q53-L,年龄为438±32 ka. 2.30 m

52.浅灰色中薄层状复成分细砾岩. 1.15 m

51.灰色块层状复成分中砾岩,砾石略具叠瓦状构造. 2.20 m

50.灰色厚层状复成分粗砾岩,砾石具叠瓦状 构造. 0.90 m

49.灰色厚层状复成分砾岩,砾石略具叠瓦状 构造. 4.10 m

48.灰色中厚层状含砾复成分细砾岩,砾石略具叠瓦状 构造. 0.65 m

47.青灰色中薄层状粉砂质泥岩,具水平层理. 0.20 m

46.深灰色厚层状含砾粗砂岩. 1.25 m

45.青灰色薄层状细粒长石岩屑砂岩. 0.46 m

整合

七个泉组一段(Qp1-2q1,总厚度37.79 m)

44.浅灰色薄层状含钙泥岩. 0.30 m

43.浅灰白色层状泥岩. 0.36 m

42.土黄色中层状含砂泥岩. 0.65 m

41.土黄色中厚层状泥岩. 0.72 m

40.浅灰色块层状泥岩,含粉砂及细砂. 2.00 m

39.浅灰色厚层状含粉砂-砂质泥岩. 3.20 m

38.浅灰色中薄层状粉砂质泥岩. 2.80 m

37.深灰色中薄层状含钙泥岩. 1.65 m

36.浅灰色薄层状泥岩,含有钙质胶结泥砾. 0.84 m

35.浅灰白色中薄层状泥岩. 0.70 m

34.浅灰色中薄层状泥岩. 0.75 m

33.青灰色薄层状含钙质泥岩夹浅灰色中薄层状粉砂 质泥岩. 0.85 m

32.青灰色中薄层状泥岩. 0.80 m

31.深灰色薄层状含砾粗砂岩. 0.30 m

30.浅灰色薄层状泥岩.ESR样Q30-L,年龄为511± 90 ka. 0.50 m

29.青灰色中层状泥岩,具水平层理. 0.55 m

28.青灰色中厚层状泥岩. 0.50 m

27.浅灰色中薄层状泥岩. 0.37 m

26.姜黄色中薄层状泥岩. 0.40 m

25.土黄色中层状泥岩. 0.85 m

24.青灰色中厚层状含钙泥砾泥岩. 0.62 m

23.土黄色中层状泥岩. 0.42 m

22.土黄色块状泥岩. 1.54 m

21.土黄色块状泥岩. 0.92 m

20.浅灰色中薄层状泥岩. 0.68 m

19.姜黄色薄层状泥岩,含黄灰色富钙条带和钙质结核 (姜结石). 0.20 m

18.青灰色中薄层状含钙质泥岩. 0.30 m

17.浅灰白色块状含粉砂含钙质泥岩,含灰色钙质泥 砾,具水平层理. 1.10 m

16.灰色中薄层状含粉砂泥岩,具水平层理. 1.00 m

15.浅灰色中层状泥岩,含青灰色条带状泥砾. 0.80 m

14.灰紫色中厚层状中粗粒长石石英砂岩. 0.40 m

13.灰色中厚层状铁钙质胶结含细砂粗砂岩. 0.70 m

12.浅灰色层状泥岩. 0.60 m

11.浅灰白色块状泥岩. 2.08 m

10.浅灰色块状细粒泥岩. 1.14 m

9.深灰色薄层状细砂岩,具冲洗交错层理和虫迹. 0.52 m

8.浅灰色厚层状粉砂质泥岩,含钙质结核. 1.35 m

7.浅灰色厚层状粉砂质泥岩,块状层理. 1.30 m

6.浅灰色厚层状钙质粉砂质泥岩,块状层理. 1.00 m

5.深灰色厚层状粉砂岩,平行层理.ESR样Q5-L,年龄 为562±64 ka. 1.25 m

4.浅灰色厚层状钙质粉砂质泥岩,块状层理. 0.78 m

3.灰黄色厚层状细砾-中砾岩,具冲洗交错层理和人 字形交错层理. 3.30 m

平行不整合

下伏地层:狮子沟组(N2s,出露厚度>1.95 m)

2.浅灰黄色中厚层状钙质粉砂质泥岩,块状层理. 1.05 m

1.灰色厚层状粉砂-细砂岩夹薄层状泥岩,具平行层 理-微波状层理. 0.90 m

未见底

1.2.2 岩性岩相分析与“组”的划分

本文对七个泉子实测剖面地层序列开展野外描述和沉积特征详细研究的基础上,自下向上划分为2种沉积相类型:下部为以泥-粉砂为主的湖泊相,上部为以砾-粗砂为主的冲积扇扇根-扇中相(图3~5).

实测剖面第3~44层之湖相沉积序列,本文划归为七个泉组一段(图3,图4a~4d,图5).七个泉组一段平行不整合在狮子沟组之上(图3b),其底部(第3层)由细-中砾岩组成(为底砾岩),具双向人字型冲洗交错层理,砾石次圆状为主,砾石成分成熟度高,以脉石英和变质石英砂岩为主(图4a),反映了湖泊滨岸波浪带往返冲洗堆积之特征,为滨湖亚相沉积.七个泉组一段从第4层向上主体为滨、浅湖亚相沉积,岩性以浅灰色、土黄色中薄层状、块状泥岩与浅灰色中厚层状粉砂质泥岩为主(图4b~4d),夹少量中层状粗砂岩(图4d).剖面第6~9层、13~14层和38~39层以砂和粉砂为主,局部发育平行层理,为正常浪基面和平均低湖平面之间的浅湖环境沉积(图5).剖面第10~12层、15~30层、32~37层和40~44层以泥和含粉砂泥为主,发育水平层理和块状层理,一些层位见少量碳屑,是正常浪基面之下的静水或水动力较弱的深湖环境沉积(图5).第3~39层总体上显示一次湖进到湖退的沉积旋回,第40~44层为一次小的湖进,但突然结束了湖相,被冲积扇扇中的砂砾石沉积替代,其上为45层及其以上的冲积扇砂砾石沉积层,揭示出在剖面的第44层与45层之间发生了地壳的快速抬升事件,从而造成湖泊沉积迅速结束,代之冲积扇沉积发育.

实测剖面第45~70层之冲积扇相沉积序列,本文划归为七个泉组二段(图3,图4e~4h,图5).据其岩性岩相,将七个泉组二段的冲积扇沉积细划为扇根和扇中两个亚相.扇根亚相沉积主要为灰色中厚层状砾岩,砾径一般为1~5 cm,分选磨圆一般,填隙物以砂和粉砂为主,砾石成分复杂,以超基性岩、基性岩、花岗岩和脉石英为主,其次为浅变质的沉积岩,底冲刷面和叠瓦状排列之砾石层较发育(图4e,4h).扇中亚相沉积以灰色中薄层状粗砂岩、含砾粗砂岩与浅灰色、土黄色薄层状泥岩、粉砂质泥岩互层沉积为主,以透镜体或延伸不远的条带状分布,砂岩层局部发育楔状交错层理及板状交错层理(图4f~4h).

通过对七个泉组二段自下向上7个层位的古流向测量(图5),其古流以从北西流向南东为主,个别层位是从北向南流(第61层和65层)和从西向东流(第63层).揭示出七个泉组二段沉积期的冲积扇应发育于北西方向的阿尔金山脉.

综上所述,七个泉组一段整体表现为以泥和粉砂为主的湖泊相沉积,代表了盆地稳定沉降时期.七个泉组二段以砾-粗砂呈韵律交替的冲积扇沉积为主,揭示了盆地和阿尔金山系显著的构造抬升、湖泊消亡并代之以洪冲积为主的沉积时期(图5).

2 七个泉子剖面年代序列研究

2.1 样品采集

为确定Y剖面七个泉组的沉积时代,笔者本次在Y剖面从底部向顶部共采集了4个ESR样品(图3).样品采集时,首先挖去剖面表层风化层,露出新鲜沉积剖面,用不锈钢管(直径6 cm,长50 cm)垂直打入剖面岩层,用棉布封住钢管两端,并用不透明黑色塑料袋迅速包好密封.

2.2 电子自旋共振测年原理

电子自旋共振(Electron Spin Resonance, ESR),又称电子顺磁共振(Electron Paramagnetic Resonance, EPR),是一种微波吸收光谱技术,用来检测和研究含有未成对电子的顺磁性物质.地质环境中U、Th和K放射性元素(其他元素通常忽略不计)在衰变过程中放射的α、β、γ射线以及宇宙射线对石英产生辐射损伤,并在矿物晶格中形成顺磁性的自由电子或空穴中心(Grün, 1989).在常温下,这些顺磁中心的数量与辐照剂量成某比例的线性函数关系,所以实验室中测量的ESR信号强度是时间累积的函数(Zeller et al., 1967Odom and Rink, 1989).ESR测年原理详见参考文献(刘春茹等, 2011,2013, 2016).

2.3 电子自旋共振样品的前处理和实验测量

样品前处理及ESR信号测量在中国地质大学(武汉)湖北巴东地质灾害国家野外科学观测研究站电子自旋共振年代学实验室进行.

首先将样品放入温度为40 ℃的干燥箱中烘干,根据烘干前后的重量计算含水量.碎样并分选出105~200 μm粒径的样品进行化学处理,去除碳酸盐类、长石和磁性矿物等,获取单矿物石英样品.将每件样品分为10份(每份250 mg),除保留1份样品外,其余样品送往北京大学分子化学院钴源实验室用60Co进行不同剂量的γ 射线辐照.对等分后的未辐照样品和不同剂量辐照样品,用电子自旋共振波谱仪测试石英E’心的ESR信号强度.

测试ESR信号强度的电子自旋共振波谱仪型号为BRUKER A300-8/2.7(德国Bruber公司),在室温(20℃)条件下测量石英E'心和Ge心ESR 信号,E'心信号的测量位置为g=2.001,Ge 心信号的测量位置为g=1.997.

将4个样品筛选至粒度<75 μm,送至自然资源部中南矿产资源监督检测中心进行U、Th、K含量分析,采用X Series II等离子体质谱仪和iCAP 6000 Series等离子体全谱仪测试.

样品埋藏层的水含量对样品所接收的剂量率有不可忽视的影响,水对α、β、γ辐射有一定的吸收作用.样品埋藏期间含水量的变化,对样品年龄结果有直接的影响,因此还需要用含水量对年剂量率进行修正.

根据样品的U、Th和K含量和样品埋深宇宙射线的少量贡献及含水量等参数,计算样品环境剂量(即年剂量).根据公式A年龄(ka)=De古剂量(Gy)/Do年剂量(Gy/ka).计算样品的ESR年龄.

2.4 测年结果

经测试,笔者首次在七个泉子Y剖面从底部向顶部获得了4个ESR年龄(表2).

据此本文将七个泉子Y剖面的沉积时代限定为中更新世.其下部的湖相地层(图3),命名为七个泉组一段,上部冲积扇相地层(图3)划归七个泉组二段.结合建组剖面Z剖面的磁性地层年龄(Zhang et al., 2013; 施源等, 2024),可确定建组剖面的七个泉组为一套冲积扇-湖相(扇缘湖)地层,其沉积时限为早-中更新世.

3 讨论

3.1 七个泉子剖面七个泉组划分一段、二段的依据及区域对比

柴达木盆地下-中更新统的冲洪积-河流相地层广泛分布于盆地周缘地区,但前人的研究中并未对这套冲洪积-河流相地层进行“组”的划分和地层对比.本文在对七个泉子Y剖面的研究过程中,对盆地周缘地层进行了重新审视,并开展剖面的野外实地考察和修测工作.将七个泉子Z剖面和Y剖面与盆地南部小灶火和哈西牙地区、北部马海地区和东部怀头他拉地区中更新世地层进行对比(图6).盆地南部小灶火地区PM408剖面ESR年龄表明该套地层形成时代为中更新世(图6剖面16),可与哈西牙地区PM406剖面中更新统进行对比(图6剖面15),两者均以砾-粗砂为主,反映河床和心滩交替的辫状河相沉积.马海地区西北缘的钻孔资料(如ZK1009)显示该地区中更新统岩性为大套中粗砂夹砾石层(图6剖面10).并且本文在对盆地东部怀头他拉地区的HQ剖面进行修测的基础上,获取了3个新的ESR年龄数据(图6剖面12,另文发表),显示该地区中更新统以大套砾石夹粉细砂-粗砂的冲积扇相为主.七个泉子Y剖面的测年数据显示其为中更新世地层(图5图6剖面20,表1),其下部细碎屑湖相沉积与上部粗碎屑冲积扇相沉积不同.Z剖面中下部地层以相对细粒的泥质砂岩和砂岩为主,夹少量砾岩,与Y剖面下部地层可对比;其上部地层以砾石为主,与Y剖面上部地层岩性一致(图6剖面17).Z剖面的磁性地层年龄显示其中下部细粒沉积为早更新世,上部粗粒沉积为中更新世,因此,本文将七个泉子剖面下部细碎屑沉积地层划分为七个泉组一段,将其上部粗碎屑沉积地层划分为七个泉组二段,两者在早更新世晚期-中更新世早期期间存在相变关系,即两段地层的分界面是穿时的.

3.2 柴达木盆地与七个泉组二段同期沉积的湖相地层对比

根据沈振枢等(1993) 对柴达木盆地第四纪湖相地层的划分方案,柴达木盆地在盆地内部广泛分布的中更新世湖相地层命名为尕斯库勒组,其建组剖面为位于尕斯库勒湖的ZK2605钻孔(图7剖面1).建组剖面的尕斯库勒组底部以一层含石膏角砾的细砂岩与下伏下更新统阿拉尔组呈假整合接触,可见冲刷面;中下部岩性为含石膏黏土的粉砂,属于咸水湖滨湖亚相沉积;上部为含粉砂石盐夹粉砂、含黏土粉砂及含芒硝淤泥,属于咸水湖浅湖亚相沉积(图7剖面1).尕斯库勒组在柴达木盆地的西北部的大浪滩(如钻孔ZK336、黑ZK01和ZK402)、马海(如钻孔ZK8012)、察汗斯拉图(如剖面D12、钻孔ZK4613)、昆特依(如钻孔ZK3208)等次级盆地普遍出现石膏和石盐沉积,岩性以碎屑岩和盐类的咸水湖沉积为主,随咸水湖的浓缩和淡化,含盐比例有所增加或减少(图7剖面2~6, 8, 11).在柴达木盆地中部的一里坪地区,仅在ZK701钻孔剖面的中下部出现薄层石膏和石盐,上部盐类沉积完全消失,岩性以含粉砂黏土和含粉砂淤泥为主(图7剖面7),反映该地区的咸水湖逐步淡化.柴达木盆地东南部的察尔汗盐湖地区钻孔CK6和水6孔中更新世未见有盐类沉积,处于淡水-微咸水湖环境,岩性以粉砂和含黏土粉砂等碎屑岩类为主(图7剖面13,14).位于昆特依地区北部冷湖构造带的露头剖面PM002中更新统尕斯库勒组岩性主要为粉砂质泥和泥质粉砂,含少量石盐和石膏(图7剖面9),处于微咸水湖泊环境.

3.3 研究区早-中更新世沉积序列对构造隆升的响应

柴达木盆地周缘山系从上新世晚期至第四纪经历了阶段性的强构造隆升事件(沈振枢等, 1993;Li et al., 1996; 张克信等,2008; Wang et al., 2011Zhang et al., 2013),主要表现在周缘山系向盆地输送的洪冲积砂砾石沉积大量出现并逐步增强(张克信等,2007, 2013b; Zhang et al., 2010).柴西南七个泉子地区位于东昆仑祁曼塔格山和阿尔金山构造复合区域,无论东昆仑还是阿尔金的物质来源都会在该区域留有沉积层和古流向印记,可很好地推演盆地周缘山系的构造隆升史.七个泉子地区Z剖面在七个泉子之南,距东昆仑山北缘祁漫塔格山较近;本文实测的Y剖面紧临七个泉子,距阿尔金山较近(图2c和2d).Z剖面的七个泉组一段(早更新世)下部古流向为近W向;一段上部古流向较分散,但以近N向为主(晏文权,2020);W向和N向之古流均指示其物源来自ES侧的东昆仑祁曼塔格山,是对东昆仑山北缘构造隆升明显增强的沉积响应.到中更新世时期,以冲积扇的扇根-扇中沉积为主的Z剖面的古流向发生反转,为近E向,E向之物源只能来自阿尔金山(晏文权,2020).Z剖面在早更新世期间接受来自东昆仑山北缘冲洪积时,其冲洪积范围未波及到更北部的Y剖面点,故Y剖面缺失早更新世沉积.时至中更新世,由于东昆仑山北部逆冲压陷和阿尔金山走滑拉分的双重作用,七个泉子地区Y剖面分布区拗陷较深,该地区形成一个水深较深的淡水湖泊,早期沉积了以粉砂和泥为主的七个泉组一段,晚期沉积了冲洪积为主的二段.笔者在Y剖面获得古流向指向ES、E和S向(图5).由此可见,中更新世的七个泉组地层序列,无论是Z剖面还是Y剖面,它们的古流都在E、ES和S向古流分布范围内.说明中更新世期间,七个泉组的物源均应来自于西和西北部的阿尔金山,从而揭示出阿尔金山至中更新世时的构造隆升十分强烈.

3.4 对前人文献中七个泉组厚度和底界时代的讨论

周慕林等(2000)、Fang et al.(2007)Zhang et al.(2013)Luo et al.(2018)等文献中的七个泉组厚度在300 m左右,并认为七个泉组底部接近2.5 Ma,这与本文所测七个泉组建组剖面为56 m的厚度和底界时代相差较大.(1)Zhang et al.(2013)和施源等(2024)文中在七个泉子地区Z剖面所获七个泉组总厚约260 m,与孙镇城等(2006)所获厚度一致.但从Zhang et al.(2013)图3d实测剖面图看,该剖面的七个泉组地层的倾角是23°,本文所测七个泉组地层的倾角小于5°,近水平,说明Zhang et al.(2013)和本文所测剖面虽然都在七个泉子地区,但具体剖面位置不同(图2c和2d);从地层倾角的变化不难看出,Zhang et al.(2013)所测剖面更靠近东昆仑祁曼塔格山(Zhang et al.(2013)文中的图8; 图2c和2d),前已述及,来自祁漫塔格山的冲洪积物自早更新世早期开始向盆地内部推进,沉积速率高,故厚度大;本文所测Y剖面离祁漫塔格山较远,未接受早更新世冲洪积沉积地层,且其下部由于阿尔金山和祁漫塔格山构造运动的共同作用形成了淡水湖,总体粒度较细,沉积速率小,故厚度较小.陆相地层由于相变快,其沉积粒度和厚度在横向不远的距离内变化大是很正常的.(2)Fang et al.(2007)文中的七个泉组位于柴达木盆地的最东端的怀头他拉,厚约450 m.笔者也修测了怀头他拉剖面,但位于Fang et al.(2007)所测剖面的更北面,所获厚度在400 m以上(图6中的剖面12),但未到底,其厚度与Fang et al.(2007)的基本一致.(3)前文所述,本文与前人所测剖面的具体位置并不一致,因而导致其底界年龄和厚度出现不一致,这是由山前洪冲积物的来源及其推进的程度而导致岩石地层的穿时性引起的,今后需进一步加强各条剖面间更精细的相变与穿时性对比研究.

4 结论

(1)本文在重新梳理柴达木盆地七个泉组的划分沿革的基础上,根据青海省茫崖市七个泉子地区的七个泉组建组剖面(Z和Y剖面)的岩性岩相特征,将七个泉子组下部以粉砂和泥为主的细粒沉积序列归为七个泉组一段,上部以砾和粗砂为主的粗粒沉积序列归为七个泉组二段.

(2)前人在Z剖面据古地磁年龄认为七个泉组的沉积时代是早-中更新世,但缺乏可靠的同位素测年数据或高精度的哺乳动物化石带佐证;本文首次在七个泉子Y剖面自下向上获得的4个ESR年龄,为562±64 ka、511±90 ka,、438±32 ka和379±33 ka,进一步证实七个泉组的上部存在中更新世沉积.

(3)依据古流向,研究区早更新世的沉积物源来自东昆仑祁曼塔格山,中更新世的沉积物源来自阿尔金山,由此推演了早-中更新世期间东昆仑祁曼塔格山和阿尔金山的构造隆升史.

(4)建立了七个泉组一段和二段与柴达木盆地其他同期地层间的对比关系,为区域第四纪岩相古地理分析及第四纪钾盐等重要矿产勘查,提供了新的地层学基础材料.

参考文献

[1]

All China Commission of Stratigraphy, 1963. Compilation of Academic Reports of the National Stratigraphic Conference: Cenozoic in China. Science Press,Beijing (in Chinese).

[2]

Bureau of Geological Exploration & Development of Qinghai Province, 2007. Geological Map of Qinghai Province (1∶1 000 000) and Instruction. Geological Publishing House, Beijing (in Chinese).

[3]

Bureau of Geology and Minerals of Qinghai Province, 1991.Regional Geology of Qinghai Province. Geological Publishing House, Beijing(in Chinese).

[4]

Chen, A.D., Zheng, M.P., Song, G., et al., 2020. Evaporite Deposits in the Qaidam Basin and Their Response to Quaternary Glacial Climates since Marine Oxygen Isotope Stage 6 (MIS6). Geological Review, 66(3): 611-624 (in Chinese with English abstract).

[5]

Chen, Y., Xia, X.M., Li, Y.N., et al., 2024. Lacustrine Sedimentary Characteristics of the Pliocene Xiayoushashan Formation in Xianshuiquan Area, Western Qaidam Basin: A Case Study from Cored Interval of Well Xiandong 1. Acta Sedimentologica Sinica, 42(2): 619-631 (in Chinese with English abstract).

[6]

Fan, X.L., Yu, P.H., Zeng, L., et al., 2016. The Biostratigraphic and Chronological Research of Cenozoic in the Qaidam Basin, Northwest China. Acta Micropalaeontologica Sinica, 33(4): 363-378 (in Chinese with English abstract).

[7]

Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. https://doi.org/10.1016/j.epsl.2007.03.042

[8]

Grün, R., 1989. Electron Spin Resonance (ESR) Dating. Quaternary International, 1: 65-109. https://doi.org/10.1016/1040-6182(89)90010-4

[9]

Guo, X., Shen, J. X., Liu, L., et al., 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538 (in Chinese with English abstract).

[10]

Hou, Y. F., Song, B. W., Li, X.F., et al., 2024 First Record of Cyclocarya from the Early Oligocene Qaidam Basin, North Tibet: Implications for the Paleogeography and Paleoecology. Journal of Earth Science, 35(1):201-211. https://doi.org/10.1007/s12583-121-1580-2

[11]

Huang, Q., Meng, Z.Q., Liu, H.L., 1990. Preliminary Study on Paleoclimate Fluctuation Model in Qarhan Lake Area of Qaidam Basin. Science in China(Ser.B), 20(6): 652–663 (in Chinese).

[12]

Li, J., L., Fang, X. M., Ma, H. Z., et al., 1996. Geomorphological and Environmental Evolution in the Upper Reaches of the Yellow River during the Late Cenozoic. Science China Earth Sciences, 39(4): 380-390. https://doi.org/10.1360/YD1996-39-4-380

[13]

Li, J.Y., Zhang, J., 2015. Map of Large-Scale Structural Deformation of China (1∶2 500 000) and Instruction. Geological Publishing House, Beijing (in Chinese).

[14]

Lin, P.X., Zhang, X., Lin, C.M., et al., 2018. Formation Mechanism and Factors on the Accumulations of the Quaternary Biogenic Gas in the Nuobei Area in the Sanhu Depression, Qaidam Basin. Geological Journal of China Universities, 24(6): 810-821 (in Chinese with English abstract).

[15]

Liu, C.R., Yin, G.M., Gao, L., et al., 2011. Research Advances in ESR Geochronology of Quaternary Deposits. Seismology and Geology, 33(2): 490-498 (in Chinese with English abstract).

[16]

Liu, C.R., Yin, G.M., Grün, R., 2013. Research Progress of the Resetting Features of Quartz ESR Signal. Advances in Earth Science, 28(1): 24-30 (in Chinese with English abstract).

[17]

Liu, C.R., Yin, G.M., Han, F., et al., 2016. ESR Dating Methodology and Its Application in Dating Quaternary Terrestrial Sediments. Quaternary Sciences, 36(5): 1236-1245 (in Chinese with English abstract).

[18]

Liu, Z.C., Sun, S.Y., Yang, F., et al., 1990. Quaternary Stratigraphy and Its Chronological Analysis in Sanhu Area of Qaidam Basin. Science in China(Ser.B), 20(11): 1202-1212 (in Chinese).

[19]

Luan, S.L., 2020. Sedimentary Characteristics and Model of Quaternary Qigequan Formation in Quanji Section of Qaidam Basin. Natural Gas Geoscience, 31(6): 800-808 (in Chinese with English abstract).

[20]

Luo, Z., Su, Q. D., Wang, Z., et al., 2018. Orbital Forcing of Plio-Pleistocene Climate Variation in a Qaidam Basin Lake Based on Paleomagnetic and Evaporite Mineralogic Analysis. Palaeogeography,Palaeoclimatology,Palaeoecology, 510: 31-39. https://doi.org/10.1016/j.palaeo.2017.09.022

[21]

Miao, Q., 2021. Carbon and Oxygen Isotope Records and Paleoenvironment Research in Dalangtan Area of Qaidam Basin since Pliocene(Dissertation).Hebei GEO University,Shijiazhuang (in Chinese with English abstract).

[22]

Odom, A. L., Rink, W. J., 1989. Natural Accumulation of Schottky-Frenkel Defects: Implications for a Quartz Geochronometer.Geology, 17(1): 55. https://doi.org/10.1130/0091-7613(1988)0170055: naosfd>2.3.co;2

[23]

Pan, J.W., Li, H.B., Sun, Z.M., et al., 2015. Tectonic Responses in the Qaidam Basin Induced by Cenozoic Activities of the Altyn Tagh Fault. Acta Petrologica Sinica, 31(12): 3701-3712 (in Chinese with English abstract).

[24]

Shen, Z.S., 1993. Continent-Ocean Comparison of Climatostratigraphic Sequence in Qaidam Basin. Management & Strategy of Qinghai Land & Resources, (2): 48-56 (in Chinese with English abstract).

[25]

Shen, Z.S., 1993. The Division and Sedimentary Environment of Quaternary Salt-Bearing Strata in Qaidam Basin. Geological Publishing House, Beijing (in Chinese).

[26]

Shi, Y., Liu, W.H., Qiu, L.W., et al., 2024. Tectonic-Sedimentary Evolution of the Shizigou and Qigequan Formations in Qigequan Anticline in Qaidam Basin: Implications for the Mineralization of Sandstone-Type Uranium Deposits. Journal of Palaeogeography, 26(3): 700-713 (in Chinese with English abstract).

[27]

Song, B.W., Zhang, K.X., Xu, Y.D., et al., 2022. Neogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 47(4): 1143-1161 (in Chinese with English abstract).

[28]

Stratigraphic Table of Qinghai Province Preparation Team, 1980. Regional Stratigraphic Table of Northwest China, Qinghai Volume.Geological Publishing House,Beijing (in Chinese).

[29]

Sui, L. W., Fang, S. H., Sun, Y. H., et al.,2014.The Tectonic Evolution and Accumulation Controlling Characteristics of Shizigou-Yingdong Structural of Western Qaidam Basin. Earth Science Frontiers,21(1): 261-270 (in Chinese with English abstract).

[30]

Sun, L., Deng, C.L., Hao, Q.Z., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Quaternary in China. Journal of Stratigraphy, 45(3): 440-459 (in Chinese with English abstract).

[31]

Sun, Z.C., Qiao, Z.Z., Jing, M.C., et al., 2006. Qigequan Formation and Quaternary-Neogene Boundary in Qaidam Basin. Oil & Gas Geology, 27(3): 422-432 (in Chinese with English abstract).

[32]

Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29-44. https://doi.org/10.1007/s11430-010-4110-0

[33]

Wang, J., Xi, P., Liu, Z.C., et al., 1996. Cenozoic Climatic and Topographical Changes in the Western Qaidam Basin. Geological Review, 42(2): 166-173 (in Chinese with English abstract).

[34]

Wang, W.T., Zhang, P.Z., Duan, L., et al., 2022. Cenozoic Stratigraphic Chronology and Sedimentary-Tectonic Evolution of the Qaidam Basin. Chinese Science Bulletin, 67(S2): 3452-3475 (in Chinese).

[35]

Wang, Y., Zheng, M.P., Ling, Y., et al., 2024. Quaternary Integrative Stratigraphy, Biotas, and Paleogeographical Evolution of the Qinghai-Tibetan Plateau and Its Surrounding Areas. Scientia Sinica (Terrae), 54(4): 1379-1410 (in Chinese).

[36]

Wang, Y.H., 2016. Study on Quaternary Sedimentary Environment of Mahai Salt Lake in Qaidam Basin of Qinghai Province(Dissertation). China University of Geosciences,Beijing (in Chinese with English abstract).

[37]

Wei, X.J., Shao, C.D., Wang, M.L., 1993. Material Constituents, Depositional Features and Formation Conditions of Potassium-Rich Salt Lakes in Western Qaidam Basin. Geological Publishing House,Beijing (in Chinese).

[38]

Yan, W.Q., 2020. Sedimentary Environment and Provenance Analysis of Neogene-Quaternary in Yuejin-Qigequan Area, Western Qaidam Basin (Dissertation).Chengdu University of Technology,Chengdu (in Chinese with English abstract).

[39]

Yang, F., Sun, Z.C., Qiao, Z.Z., et al., 2004. Revision of the Diagnosis of the Genus Qinghaicypris Huang, 1979 (Ostracoda) and the Environmental Significance of Its Type Species. Acta Micropalaeontologica Sinica, 21(4): 367-381 (in Chinese with English abstract).

[40]

Yang, P., Jiang, X.Q., Tie, C.W., et al., 2013. Miocene Fossil Cyprideis Succession from the Western Qaidam Basin and Its Paleoecological Features and High-Resolution Sequence Stratigraphic Subdivision. Acta Micropalaeontologica Sinica, 30(1): 42-48 (in Chinese with English abstract).

[41]

Zeller, E.J., Levy, P.W., Mattern, P.L., 1967. Geologic Dating by Electron Spin Resonance.Radioactive Dating and Methods of Low-Level Counting. International Atomic Energy Agency, Vienna, 531-540.

[42]

Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Main Cenozoic Uplift Events of Qinghai-Tibet Plateau: Sedimentary Response and Thermochronological Records. Science in China (Series D), 38(12): 1575-1588 (in Chinese).

[43]

Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene. Earth Science, 32(5): 583-597 (in Chinese with English abstract).

[44]

Zhang, K.X., Wang, G.C., Hong, H.L., et al., 2013a. The Study of the Cenozoic Uplift in the Tibetan Plateau: A Review. Geological Bulletin of China, 32(1): 1-18 (in Chinese with English abstract).

[45]

Zhang, K.X., Wang, G.C., Luo, M.S., et al., 2013b. Palaeogeographic Map and Description of Cenozoic Tectonic Lithofacies in Qinghai-Tibet Plateau and Its Adjacent Areas: 1∶ 3 000 000.Geological Publishing House,Beijing,299(in Chinese).

[46]

Zhang, K. X., Wang, G. C., Ji, J. L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271-1294. https://doi.org/10.1007/s11430-010-4048-2

[47]

Zhang, W. L., Fang, X. M., Song, C. H., et al., 2013. Late Neogene Magnetostratigraphy in the Western Qaidam Basin (NE Tibetan Plateau) and Its Constraints on Active Tectonic Uplift and Progressive Evolution of Growth Strata. Tectonophysics, 599: 107-116. https://doi.org/10.1016/j.tecto.2013.04.010

[48]

Zhou, M.L., Min, L.R., et al., 2000. The China Stratigraphy: Quaternary. Geological Publishing House, Beijing (in Chinese).

基金资助

青海省地质矿产勘查开发局地质勘查项目(青地矿科[2022]32号)

中国地质调查局项目(DD20221645)

AI Summary AI Mindmap
PDF (12888KB)

111

访问

0

被引

详细

导航
相关文章

AI思维导图

/