青藏特提斯造山系晚古生代‒中生代洋板块构造‒地层分区及地层格架

宋博文 ,  柯学 ,  何卫红 ,  徐亚东 ,  罗亮 ,  孔令耀 ,  陈奋宁 ,  张克信

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3651 -3678.

PDF (6466KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3651 -3678. DOI: 10.3799/dqkx.2024.053

青藏特提斯造山系晚古生代‒中生代洋板块构造‒地层分区及地层格架

作者信息 +

The Late Paleozoic⁃Mesozoic Ocean Plate Stratigraphy Tectonic⁃Stratigraphic Realms and Framework of the Tethyan Orogenic System in the Qinghai⁃Xizang Plateau

Author information +
文章历史 +
PDF (6620K)

摘要

晚古生代‒中生代(二叠纪‒白垩纪)是青藏特提斯造山系构造‒古地理格局发生重大改组的关键时期.本文将青藏特提斯造山系划分为3个构造‒地层大区,17个构造‒地层区,通过详细分析各个构造‒地层分区中的洋间地块以及与其紧密伴生的陆缘弧、弧前盆地、边缘海盆地、微陆块等的洋板块地层序列、沉积背景、地层接触及对比关系,特别是突出表达各条蛇绿混杂岩带在各个构造‒地层分区中的时空分布,最终建立了青藏特提斯造山系晚古生代‒中生代(二叠纪‒白垩纪)洋板块地层格架.通过系统梳理青藏特提斯造山系蛇绿混杂岩带及与其相关的弧‒盆系的时空分布特征,在此基础上探讨古特提斯洋(龙木错‒双湖洋、昌宁‒孟连洋等)、中特提斯洋(班公湖‒怒江洋)和新特提斯洋(雅鲁藏布洋)的演化历史,进而揭示青藏特提斯造山系晚古生代‒中生代构造‒古地理格局演变过程.

Abstract

The Late Paleozoic-Mesozoic (Permian-Cretaceous) was a crucial period for major reorganization of the tectonic-paleogeographic pattern of the Tethyan Qinghai-Xizang Plateau. Three first-order tectonic-stratigraphic units (super-realms) and seventeen second-order tectonic-stratigraphic units (realms) have been devised. Through detailed research of lithostratigraphic unit and its characteristics of sedimentary background and contact-correlation relationship for the continental blocks and their closely associated continental arcs, forearc basins, marginal sea basins, micro-continents etc. In each tectonic-stratigraphic units, we have finally established the Late Paleozoic-Mesozoic ocean plate stratigraphy (OPS) framework for the Tethyan Qinghai-Xizang Plateau. In particular, the spatiotemporal distribution of the ophiolite mélange zones in different tectonic-stratigraphic units are highlighted. By systematically researching the temporal-spatial features of the ophiolite mélange zones and their associated island arc-basin systems in Tethyan Qinghai-Xizang Plateau, we reviewed the evolution history of the Paleo-Tethys Ocean (Longmuco-Shuanghu Ocean, Changning-Menglian Ocean), the Meso-Tethys Ocean (Bangong-Nujiang Ocean) and Neo-Tethys Ocean (Yarlung Zangbo Ocean), thus revealing the evolution process of the Late Paleozoic-Mesozoic tectonic-paleogeographic pattern of the Tethyan Qinghai-Xizang Plateau.

Graphical abstract

关键词

青藏特提斯 / 洋板块地层(OPS) / 构造‒地层区划 / 洋‒陆转换 / 地层学 / 构造学.

Key words

Tethyan Qinghai⁃Xizang Plateau / ocean plate stratigraphy (OPS) / division of tectonic⁃stratigraphic units / ocean⁃land transformation / stratigraphy / tectonics

引用本文

引用格式 ▾
宋博文,柯学,何卫红,徐亚东,罗亮,孔令耀,陈奋宁,张克信. 青藏特提斯造山系晚古生代‒中生代洋板块构造‒地层分区及地层格架[J]. 地球科学, 2025, 50(09): 3651-3678 DOI:10.3799/dqkx.2024.053

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

中国大陆新元古代以来是由泛华夏陆块群、劳亚和冈瓦纳等大陆边缘与古亚洲洋、特提斯洋、太平洋、古泛大洋等古大洋经过洋陆转换逐渐侧向增生而成的,形成了以华北、塔里木、扬子为核心的3个陆块(地台)区、8个造山带(阿尔泰‒兴蒙、天山‒准噶尔‒北山、秦‒祁‒昆、羌塘‒三江、冈底斯、喜马拉雅、华夏、台东)镶嵌组成的复式大陆(潘桂棠等, 2009, 2013; 张克信等, 2016).张克信等(2016,2020)在系统梳理中国洋板块地层分布及构造演化规律的基础上,进而将中国陆域划分为5大造山系(中亚造山系、秦祁昆造山系、青藏特提斯造山系、华夏造山系、中国东部环西太平洋造山系)和3大陆块(地台)区(塔里木、华北和扬子)(图1).其中青藏特提斯造山系是由来源于劳亚‒泛华夏大陆和南方冈瓦纳大陆的多个微陆块组成的复杂拼合体,保存了一系列大陆裂解、大洋俯冲增生、弧陆‒陆陆碰撞和后碰撞造山全过程的地质记录(Yin and Harrison, 2000;许志琴等,2012;Zhu et al., 2013Zheng et al., 2013;王立全等,2013;潘桂棠等,2013,2020;Li et al., 2018).青藏特提斯造山系的形成经历了~500 Ma以来与东特提斯洋盆演化休戚相关的历史(许志琴等,2007),记录了原特提斯洋、古特提斯洋、中特提斯洋、新特提斯洋和多个弧后洋盆的开启、扩张以及闭合过程(黄汲清和陈炳蔚,1987;莫宣学和潘桂棠,2006;Pan et al., 2012Wan et al., 2019;吴福元等,2020;Metcalfe,2021;Zhu et al., 2022Zhou et al., 2023Gan et al., 2024;张克信等,2025).其中,晚古生代‒中生代是青藏特提斯古地理格局发生重大改组以及青藏特提斯造山系碰撞拼贴并最终形成的关键时期:伴随着龙木错‒双湖洋在晚三叠世完全闭合,南羌塘地块和北羌塘地块最终碰撞拼接(Kapp et al., 2003;李才等,2007;Zhai et al., 2011a);班公湖‒怒江洋在中晚侏罗世‒早白垩世消减闭合,拉萨地块与羌塘地块发生碰撞拼接,西藏高原初始隆升(Zhu et al., 2013Hu et al., 2022);雅鲁藏布洋在古新世‒始新世闭合,印度板块和亚洲板块完成碰撞拼接,青藏高原发生显著隆升(莫宣学等,2003;Zhang et al., 2010Ding et al., 2017,2022Hu et al., 2017).因此,以追溯特提斯洋演化历史为纽带,以洋板块地质思维为指导,建立青藏特提斯造山系晚古生代‒中生代洋板块地层区划及地层对比格架,对于深入理解青藏特提斯造山系洋‒陆转换和构造古地理演化历史具有重要意义.

洋板块地层(ocean plate stratigraphy,简称OPS)是泛指发育在造山带中的洋板块从它最初在洋中脊形成,一直到海沟发生俯冲作用,在洋盆(包括边缘海盆)形成与闭合过程中形成的(增生杂岩)地层(Isozaki et al.,1990).张克信等(2016,2020)在前人研究的基础上,运用大地构造相研究分析法,对洋板块地层类型开展了进一步的划分,进而提出了洋板块地层构造‒地层的区划准则.随着近年来全国新一轮1∶5万区域地质调查工作的开展,特别是在自然资源部和中国地质调查局的大力支持下,李廷栋院士组织了全国地质科研院所、各大区调中心、地学高校、各省(市、区)地质调查院等约50多个单位完成了新一代中国区域地质志省志的更新出版,在青藏特提斯地区晚古生代‒中生代洋板块地层和非洋板块地层分布及构造‒古地理演化方面积累了大量的宝贵资料(李光明等,2020;张予杰等,2021;李廷栋等,2022;刘勇等,2022;西藏自治区地质调查院,2024;青海省地质调查院,2024;四川省地质调查院,2024;云南省地质调查院,2024).沈树忠院士、丁林院士等最近也组织全国相关学者对青藏高原及其周边地区前成冰纪至第四纪的综合地层、生物群与古地理演化开展了系统梳理(Shen et al., 2024a).本文在系统收集梳理前人对青藏特提斯造山系构造‒地层区划及地层格架对比研究的基础上,开展青藏特提斯造山系二叠纪‒白垩纪洋板块构造‒地层分区及地层格架对比研究,以期抛砖引玉,引起共鸣.

1 青藏特提斯晚古生代‒中生代洋板块构造‒地层分区

依据张克信等(2016,2020)先前建立的洋板块地层一级(称“构造‒地层大区”)和二级(称“构造‒地层区”)构造‒地层区划准则,在先前学者们对青藏高原及邻区开展的构造‒地层区划研究的基础上(潘桂棠等,2013;王立全等,2013),笔者本次将青藏特提斯造山系先划分为3个洋板块构造‒地层大区,进而划分了17个构造‒地层区(图1).三个构造‒地层大区的基本特征简述如下:

1.1 北羌塘‒三江构造‒地层大区

该大区位于康西瓦‒南昆仑‒玛多‒玛沁‒勉县‒略阳结合带以南、班公湖‒双湖‒怒江‒昌宁‒孟连对接带的北东和扬子陆块西侧,也称北羌塘‒三江造山带(潘桂棠等,2013;王立全等,2013),是受古特提斯洋向东俯冲制约的晚古生代多岛弧盆系转化形成的造山带(潘桂棠等,2013),其中包含了甜水海、北羌塘、巴颜喀拉、中咱‒中甸、昌都‒兰坪‒思茅、崇山‒临沧等裂离地块和义敦‒理塘弧盆系和西金乌兰湖‒金沙江‒哀牢山结合带.该构造‒地层大区可以划分为甜水海、巴颜喀拉‒松潘、义敦‒理塘、中咱‒中甸、西金乌兰‒金沙江‒哀牢山、昌都‒兰坪‒思茅、乌兰乌拉‒澜沧江、崇山‒临沧和北羌塘9个构造‒地层区(图1).

1.2 龙木错‒双湖‒怒江‒昌宁‒孟连构造‒地层大区

该构造‒地层大区包括龙木错‒双湖、昌宁‒孟连、班公湖‒怒江结合带和南羌塘盆地等构造单元,它们共同组成了原特提斯‒古特提斯大洋和中特提斯大洋(班公湖‒怒江洋)连续演化、持续增生至最终消亡的对接带(潘桂棠等,2013)(图1图2).该对接带是泛华夏大陆南缘晚古生代羌塘‒三江印支造山系与冈瓦纳大陆北缘中生代冈底斯‒喜马拉雅造山带的重要分界(潘桂棠等, 2020),主体由多个蛇绿混杂岩带、增生弧和基底残块、微陆块、高压‒超高压变质带及增生弧盆系所组成(潘桂棠等,2009, 2013;王立全等,2013).该构造‒地层大区可以划分为龙木错‒双湖、南羌塘‒左贡、班公湖‒怒江和昌宁‒孟连4个构造‒地层区(图1).

1.3 冈底斯‒喜马拉雅构造‒地层大区

该大区位于班公湖‒双湖‒怒江‒昌宁‒孟连对接带以南,也称冈底斯‒喜马拉雅造山带,主体是受古特提斯大洋向南俯冲制约的中生代多岛弧盆系转化形成的造山系(潘桂棠等,2013),其中包含了冈底斯‒察隅弧盆系、喜马拉雅地块、雅鲁藏布结合带和保山地块等次级单元.该大区的地层层序记录了冈瓦纳大陆北部边缘(亦即印度陆块北缘)显生宙完整的地质演化过程(王立全等,2013).该构造‒地层大区可以划分为冈底斯‒腾冲、雅鲁藏布、特提斯喜马拉雅和保山4个构造‒地层区(图1).

2 青藏特提斯造山系晚古生代‒中生代洋板块地层格架

2.1 北羌塘‒三江构造‒地层大区

2.1.1 甜水海地块

该地层区早中二叠世发育一套浅海陆棚‒斜坡相碎屑岩‒碳酸盐岩夹硅质岩和玄武岩、火山角砾岩组合,包括恰提尔群(P1Q)、加温达坂组(P1⁃2j)和空喀山口组(P2k)(何国建等,2023)(图3),属于被动边缘裂陷盆地中的沉积序列(潘桂棠等,2013).在甜水海红山湖一带可见中二叠统红山湖组沉积(P2h),为稳定型的浅水台地相碳酸盐岩建造(计文化,2005);在空喀山口断裂以北的喀喇昆仑地区可见神仙湾组(P1⁃2s)和温泉山组(P3w)沉积出露,其中神仙湾组为一套深水相硅质岩夹碎屑岩沉积,而温泉山组为一套台地相碳酸盐岩沉积(崔建堂等,2004;计文化,2005).该地层区三叠系‒侏罗系为一套滨浅海相‒海陆交互相的碎屑岩夹碳酸盐岩建造,包括万泉河群(T1W)、河尾滩组(T2h)、克勒青河组(T3k)、巴工布兰沙群(J1B)、龙山组(J2l)和红其拉普组(J3h)(孙东立和章炳高,1979;童金南等,2021;西藏自治区地质调查院,2024)(图3图4),代表稳定地块上陆表海盆地中的沉积序列(潘桂棠等,2013)(图5).白垩纪该地层区主体为隆起剥蚀区,仅在局部地区发育以铁隆滩群(K2T)为代表的滨浅海‒浅水台地相碳酸盐岩沉积(Gao et al., 2023).

2.1.2 巴颜喀拉‒松潘地块

在巴颜喀拉‒可可西里地区可见二叠系黄羊岭群(PH),为发育在被动陆缘盆地中的一套浅水陆棚‒斜坡相深水复理石碎屑岩夹碳酸盐岩和火山岩建造(崔建堂等,2006;陈守建等,2011;潘桂棠等,2013),其上三叠系为前陆盆地背景下发育的半深海相‒大陆斜坡相的巴颜喀拉山群(TB)巨厚复理石‒浊积岩碎屑岩系(陈守建等,2011;潘桂棠等,2013)(图3图5);在松潘地区可见大关山组(P1d)和叠山组(P2⁃3d)(图3),属于浅水台地相碳酸盐岩夹碎屑岩建造(四川省地质调查院,2024),其上三叠系为一套浅水相碳酸盐岩建造,包括罗让沟组(T1lr)、红星岩组(T1h)和祁让沟组(T2r)(图3);在金沙江‒理塘地区可见冰峰组(P1⁃2b)和赤丹潭组(P3c),均为浅水台地相碳酸盐岩夹碎屑岩建造(四川省地质调查院,2024);在四川炉霍‒道孚‒雅江地区一带可见三道桥组(P1⁃2s)和大石包组(P3d)发育(图3),其中三道桥组为浅水台 地‒斜坡相碳酸盐岩建造,大石包组为具枕状构造玄武岩夹碎屑岩系建造(四川省地质调查院,2024),其上的三叠系出露齐全,也称西康群(TX)(朱占祥等,1993),自下而上为半深海相‒大陆斜坡相的巨厚复理石碎屑岩建造(菠茨沟组(T1b)、扎尕山组(T2j)、杂谷脑组(T2z)、侏倭组(T3zw)和新都桥组(T3x))和浅海陆棚‒海陆交互相沉积序列(两河口组(T3lh)和雅江组(T3y))(四川省地质调查院,2024)(图3),属于残余盆地沉积(潘桂棠等,2013).该地层区侏罗纪‒白垩纪进入后碰撞造山阶段,沉积分布局限,在巴颜喀拉地区可见陆相冲洪积‒河湖相的叶尔羌群(J1⁃2Y)、库孜贡苏组(J3k)、年宝组(J1n)和克孜勒苏组(K1k)发育;在可可西里地区可见冲洪积‒河湖相的风火山群(K2EF);在松潘地区可见海陆过渡相‒陆相碎屑岩‒火山岩序列发育,包括甲秀组(J1j)、朗木寺组(J1⁃2lm)和财宝山组(K1c)(四川省地质调查院,2024)(图4).

2.1.3 义敦‒理塘弧盆系

该弧盆系位于东侧的雅江残余盆地与西侧的中咱‒中甸地块之间,包括甘孜‒理塘蛇绿混杂岩带(D⁃T3)和义敦‒沙鲁里岛弧(T3)(潘桂棠等,2013).甘孜‒理塘蛇绿混杂岩带由早石炭世‒晚三叠世洋脊型拉斑玄武岩、苦橄玄武岩、镁铁质与超镁铁质堆晶岩、辉长岩‒辉绿岩墙、蛇纹岩、含放射虫硅质岩等组成,呈被肢解的构造岩块,与外来的奥陶纪至三叠纪灰岩块、其他沉积岩块体及复理石砂板岩等组成构造混杂岩带(潘桂棠等,2013;王立全等,2013).义敦‒沙鲁里岛弧下三叠统为一套半深海相‒大陆斜坡相的复理石碎屑岩系建造(戴宗明和孙传敏,2008;四川省地质调查院,2024)(图3),包括领麦沟组(T1⁃2l)和党恩组(T1⁃2d),属于被动陆缘裂陷盆地沉积(潘桂棠等,2013);中三叠统为一套稳定的浅海陆棚相碎屑岩夹碳酸盐岩沉积(四川省地质调查院,2024)(图3),包括三珠山组(T2s)和列衣组(T2l);上三叠统为一套浅海相碎屑岩夹碳酸盐岩和中基性‒中酸性火山岩组合(陈明和罗建宁,1999;四川省地质调查院,2024),其中包括以曲嘎寺组(T3q)和图姆沟组(T3t)为代表的火山岛弧及弧间盆地的活动型火山‒沉积建造(潘桂棠等,2013)(图3图5),构成典型的岛弧火山岩带(潘桂棠等,2013;邢光福和冯益民,2015)(图2);其上的喇嘛娅组(T3lm)和英珠娘阿组(T3yz)均为稳定的滨浅海相‒海陆交互相的含煤碎屑岩系建造(四川省地质调查院,2024)(图3),属于残留海盆沉积,标志着甘孜‒理塘洋盆的闭合与弧‒陆碰撞造山作用(潘桂棠等,2013).三叠纪之后义墩‒沙鲁里岛弧为隆起剥蚀区,未接受沉积(图5).侏罗纪仅在甘孜‒理塘局部地区发育滨浅海相碎屑岩‒碳酸盐岩沉积,包括立洲组(J1⁃2l)和瑞环山组(J3r)(潘桂棠等,2013)(图4).

2.1.4 中咱‒中甸地块

该地层区二叠系为一套浅水台地相碳酸盐岩夹碎屑岩和基性火山岩建造,包括冰峰组(P1⁃2b)和冈达概组(P3g)(四川省地质调查院,2024)(图3),属于陆表海盆地中发育的碳酸盐台地沉积(潘桂棠等,2013);其上的三叠系为一套浅变质的滨浅海相碎屑岩‒碳酸盐岩组合(Burchfiel and Chen, 2013;云南省地质调查院,2024;Wu et al., 2024),角度不整合于古生界之上,自下而上依次为布伦组(T1b)、洁地组(T2j)、王吃卡组(T3w)和哈工组(T3h)(图3),属于残留海盆地沉积(潘桂棠等,2013).侏罗纪‒白垩纪主体为隆起剥蚀区,未接受沉积.

2.1.5 西金乌兰‒金沙江‒哀牢山蛇绿混杂岩带

该地层区可见西金乌兰‒金沙江蛇绿混杂岩(D⁃T2)和哀牢山蛇绿混杂岩(D⁃T2)出露(图2),延伸长约1 800 km,为一东西‒南东向的不对称反“S”型构造带,洋壳残块主要由蛇纹石化橄榄岩、方辉橄榄岩、洋脊型基性玄武岩、辉长‒斜长堆晶岩、辉长岩‒辉绿岩岩墙、蛇纹岩和放射虫硅质岩组成,赋存于强烈剪切的硅泥质砂板岩、硅泥质浊积岩和千枚岩等基质中,并混入大小不等的灰岩或大理岩(王立全等,2013;潘桂棠等,2013).区域上二叠系和中下三叠统大多以混杂岩(岩组)的形式存在(王立全等,2013;Wu et al., 2024).晚三叠世该地区广泛发育了一套海陆交互相‒陆相冲洪积相的碎屑岩夹火山岩建造,包括甲丕拉组(T3j)、波里拉组(T3b)、阿堵拉组(T3a)和夺盖拉组(T3d)(童金南等,2021;四川省地质调查院,2024)(图3),其中在金沙江蛇绿混杂岩带可见甲丕拉组(T3j)磨拉石角度不整合于不同时代的混杂岩之上(Wang et al., 2014).该地层区侏罗纪‒白垩纪主体为隆起剥蚀区,仅局部地区发育了一套陆相冲洪积‒河湖相沉积,包括漾江组(J1y)、花开左组(J2h)、坝注路组(J3bz)、错居日组(K1c)、洛力卡组(K1l)和桑恰山组(K2s)(青海省地质调查院,2024;四川省地质调查院,2024)(图4).

2.1.6 昌都‒兰坪‒思茅地块

该地层区西北部的开心岭‒治多‒杂多陆缘弧二叠系为一套碳酸盐岩‒碎屑岩和中基性‒中酸性弧火山岩建造(开心岭群和乌丽群),包括扎日根组(P1z)、诺日巴尕日保(P1lr)、尕笛考组(P1d)、九十道班组(P2js)、那益雄组(P3n)和拉卜查日组(P3l)(青海省地质调查院,2024)(图3),属于火山岛和火山岛缘的滨浅海相‒台地相‒斜坡相沉积(牛志军等,2010);其上的下中三叠统缺失,上三叠统结扎群(T3J)为一套海陆交互相的碎屑岩‒碳酸盐岩夹火山岩建造(潘桂棠等,2013;青海省地质调查院,2024).在昌都地块发育了一套浅水台地相‒滨浅海相‒海陆交互相碳酸盐岩‒碎屑岩系夹火山岩建造(图3图5),包括里查组(P1l)、莽错组(P1m)、交嘎组(P2j)、妥坝组(P3t)和夏牙组(P3x)(西藏自治区地质调查院,2024),属于弧后盆地沉积(潘桂棠等,2013).在兰坪‒思茅地块发育了一套大陆边缘深水斜坡相的碎屑岩‒碳酸盐岩夹火山岩、含放射虫硅质岩建造(贾进华,1995;冯庆来等,2002;Feng et al., 2023),包括龙洞河组(C2P1l)和大新山组(P2⁃3d),属于弧后盆地沉积(潘桂棠等,2013).在兰坪‒思茅地块东缘的江达‒德钦‒维西一带发育了一套深水盆地‒滨浅海‒海陆交互相碳酸盐岩夹碎屑岩和弧火山岩建造(吴根耀等,2000;潘桂棠等,2013;Wang et al., 2014),包括吉东龙组(P1j)、禹功组(P2y)和沙木组(P3s),属于陆缘弧沉积(潘桂棠等,2013).早‒中三叠世昌都‒兰坪‒思茅地块大部为隆起剥蚀区,内部普遍缺失了中下三叠统(图3),以在地块两侧的陆缘弧中广泛发育弧火山岩‒沉积岩沉积为显著特色(图2图3):在兰坪‒思茅地块东缘江达‒德钦‒维西地区发育了一套海陆交互相‒滨浅海相的碎屑岩夹碳酸盐岩和火山岩建造,包括普水桥组(T1p)、色容寺组(T1s)、瓦拉寺组(T2w)(Wang et al., 2014;童金南等,2021),以及滨浅海相的碎屑岩‒流纹质火山岩‒玄武质火山岩建造(Zi et al., 2012Wang et al., 2014; 童金南等,2021),包括上兰组(T1s)、攀天阁组(T1⁃2p)和人支雪山组(T1⁃2r);在兰坪‒思茅地块西缘云县‒景谷地区发育忙怀组(T2m),其上为小定西组(T3xd)和芒汇河组(T3m)(云南省地质调查院,2024),为一套流纹质‒玄武质弧火山岩系夹碎屑岩建造(范蔚茗等,2009;罗亮等,2023);在昌都地块东缘发育马拉松多组(T1⁃2m),为海陆交互相碎屑岩‒火山岩建造(吴喆等,2021;西藏自治区地质调查院,2024;王冬兵等,2024).该地层区上三叠统为一套海陆交互相的含煤碎屑岩‒碳酸盐岩沉积,区域上角度不整合于下伏地层之上:在昌都地块可见甲丕拉组(T3j)、波里拉组(T3b)、阿堵拉组(T3a)、夺盖拉组(T3d)沉积(西藏自治区地质调查院,2024)(图3图5);在兰坪‒思茅地块可见东独组(T3d)、公也弄组(T3g)、洞卡组(T3dk)、波里拉组(T3b)、巴贡组(T3bg)、歪古村组(T3w)、三合洞组(T3sh)、挖鲁八组(T3wl)和麦初箐组(T3mc)(云南省地质调查院,2024)(图3),为弧后前陆盆地沉积(潘桂棠等,2013;张克信等,2017).侏罗纪之后该地层区进入后碰撞造山陆相磨拉石阶段,在局部地区发育了一套海陆交互相‒陆相冲洪积‒河湖相的碎屑岩沉积:在开心岭‒治多‒杂多可见雁石坪群(JY)和风火山群(K2EF)(青海省地质调查院,2024)(图4),以及昌都地区可见汪布组(J1w)、东大桥组(J2d)、小索卡组(J3x)、景星组(K1j)、南新组(K1n)和虎头寺组(K2h)(青海省地质调查院,2024;西藏自治区地质调查院,2024)(图4);在兰坪‒思茅地区可见花开左组(J2h)、坝注路组(J3b)、景星组(K1j)和勐野井组(K2m)(云南省地质调查院,2024;西藏自治区地质调查院,2024)(图4).

2.1.7 乌兰乌拉‒澜沧江蛇绿混杂岩带

该地层区可见乌兰乌拉蛇绿混杂岩(D⁃T2)和澜沧江蛇绿混杂岩(D⁃T2)出露(图2).乌兰乌拉蛇绿混杂岩带是东侧昌都地块及其开心岭‒杂多陆缘弧带与西侧北羌塘地块的重要分界线,带内物质组成复杂,不同时代及不同成因的岩块或构造透镜体大小混杂,混杂岩基质主体是一套强变形构造改造的灰黑色砂板岩夹火山碎屑岩组合(潘桂棠等,2013).澜沧江蛇绿混杂岩带东邻开心岭‒竹卡‒景谷陆缘岩浆弧和昌都‒兰坪地块,呈近南北向空间展布,其中可见保存完好的洋脊型蛇绿岩,主体由堆晶杂岩(橄榄单辉岩‒辉长岩‒钠长花岗岩)、蛇纹岩、变基性火山岩、放射虫硅质岩组成(潘桂棠等,2013;王保弟等,2018).上三叠统结扎群(T3J)角度不整合于不同时代的蛇绿混杂岩之上(图3),为一套海陆交互相的碎屑岩‒碳酸盐岩夹火山岩建造.

2.1.8 崇山‒临沧地块

崇山‒临沧地块二叠纪‒早三叠世地层缺失,中三叠世局部在澜沧江变质岩系和临沧岩浆弧(花岗岩基)之上发育以忙怀组(T2m)为代表的基性火山岩‒喷发沉积(张克信等,2017;尹福光等,2022).崇山‒临沧地块晚三叠世主体为隆起剥蚀区,仅在局部地区发育海陆交互相结扎群(T3J)和陆相冲洪积‒河湖相三岔河组(T3sc)(图3;尹福光等,2022;云南省地质调查院,2024).侏罗纪‒白垩纪该地层区主体为隆起剥蚀区.

2.1.9 北羌塘地块

北羌塘地块早中二叠世发育了一套浅水台地相‒滨浅海相碎屑岩‒碳酸盐岩沉积建造(图3图5),包括长蛇湖组(P1c)和雪源河组(P1⁃3x)沉积,属于稳定地块上的陆表海盆地和被动陆缘盆地沉积(潘桂棠等,2013);北羌塘地块晚二叠世‒中三叠世为一套连续的海陆交互相‒滨浅海相‒碳酸盐台地相碎屑岩‒碳酸盐岩沉积,包括热觉茶卡组(P3r)、康鲁组(T1k)、硬水泉组(T1y)和康南组(T2k)(李才等,2016;西藏自治区地质调查院,2024; Shen et al., 2024b)(图3图5),最新的研究显示北羌塘南缘热觉茶卡地区的该套地层属于弧前盆地沉积(Liang et al., 2020),局部地区为隆起剥蚀区,而普遍缺失了下‒中三叠统;晚三叠世‒早白垩世北羌塘地块沉积特征发生显著转变,沉积了一套半深海‒大陆斜坡相复理石建造和滨浅海相‒海陆交互相碎屑岩‒碳酸盐岩夹火山岩建造(Wang et al., 2008Fu et al., 2010;李才等,2016;王保弟等, 2018;Ma et al., 2023;西藏自治区地质调查院,2024)(图3~图5),包括肖茶卡组(T3x)、藏夏河组(T3z)、那底岗日组(T3nd)、雀莫错组(J1q)、布曲组(J2b)、夏里组(J2x)、索瓦组(J3s)、白龙冰河组(J3b)和雪山组(J3K1x),属于弧后前陆盆地沉积(潘桂棠等,2013).晚白垩世北羌塘地块主体为隆起剥蚀区,仅在局部地区发育以风火山群(K2EF)为代表的陆相冲洪积‒河湖相沉积(西藏自治区地质调查院,2024)(图4).

2.2 龙木错‒双湖‒怒江‒昌宁‒孟连构造‒地层大区

2.2.1 龙木错‒双湖结合带

该地层区可见龙木 错‒双湖蛇绿混杂岩(∈⁃T2)出露(图2),主要由石炭系‒二叠系浅变质岩和强烈变形的中‒高压变质岩系,以及分布其中的超基性岩、堆晶(辉长)岩、榴辉岩、枕状玄武岩、放射虫硅质岩、蓝片岩、大理岩等大小不等的岩块(片)和辉长辉绿岩脉/岩墙组成(李才等,2007,2016;潘桂棠等,2020;王保弟等,2021).该地层区中下三叠统未见,中三叠世末‒晚三叠世受南、北羌塘地块强烈碰撞造山作用隆起,大部地区缺失沉积,在隆起区北侧近陆缘弧的边缘地带,发育上三叠统望湖岭组(T3w)滨浅海相碎屑岩‒火山岩建造,不整合于蛇绿混杂岩和中‒高压变质岩系之上(潘桂棠等,2013, 2020;李才等,2016)(图3).

2.2.2 南羌塘‒左贡增生弧盆系

该地层区二叠纪地层分布十分广泛,在南羌塘地区二叠系为一套半深海相复理石‒大陆斜坡相‒滨浅海相碎屑岩‒碳酸盐岩夹火山岩建造(梁定益等,1983;潘桂棠等,2013;Fan et al., 2015;焦鹏伟等,2017;西藏自治区地质调查院,2024),自下而上依次为展金组(C2P1z)、曲地组(P1q)、吞龙共巴组(P1⁃2t)、龙格组(P2l)、鲁谷组(P2⁃3l)和吉普日阿组(P3j)(图3图5),属于被动陆缘沉积(潘桂棠等,2013);在左贡地区可见中‒上二叠统东坝组(P2d)和沙龙组(P3s),主体为一套滨浅海相碎屑岩‒火山岩夹灰岩组合(图3),发育于与俯冲作用有关的陆缘火山弧环境(潘桂棠等,2013).南羌塘地区早‒中三叠世该地层区大部为隆起剥蚀区,缺失了下‒中三叠统(图3),仅在局部地区可见欧拉组(T1⁃2o)发育,为浅水台地相碳酸盐岩夹火山岩沉积.区域上上三叠统角度不整合覆盖于下伏地层之上,为一套浅海陆棚相‒台地‒斜坡相碎屑岩‒碳酸盐岩夹火山岩组合(李才等,2016;Ma et al., 2023;西藏自治区地质调查院,2024)(图3图5),包括在南羌塘地区发育的肖茶卡群(T3X)(可划归为肖切保组(T3xq)、角木茶卡组(T3jm)和扎那组(T3zn))、日干配错组(T3r)和索布查组(T3s),属于残余海盆地沉积(潘桂棠等,2013).南羌塘地区侏罗纪发育了一套浅海陆棚相‒海陆交互相碎屑岩‒碳酸盐岩组合(Ma et al., 2017,2023;薛伟伟等,2020;西藏自治区地质调查院,2024)(图4图5),包括曲色组(J1q)、色哇组(J2s)、布曲组(J2b)、夏里组(J2x)、114道班组(J2db)、毕洛错组(J2bl))、索瓦组(J3s)和帮爱组(J3b),属于残留(边缘)海盆地沉积(潘桂棠等,2013).侏罗纪之后,南羌塘残留海盆地最终消亡,发育了一套具前陆盆地中的陆相磨拉石沉积特征的美日切错组(K1m)和阿布山组(K2a)沉积(潘桂棠等,2013;Meng et al., 2018;西藏自治区地质调查院,2024)(图4图5).

2.2.3 班公湖‒怒江结合带

该地层区可见班公 湖‒怒江蛇绿混杂岩(P⁃K1)出露(图2),其中蛇绿岩均呈构造块体混杂于古生代‒中生代基质中,在其西段的班公湖和改则洞错地区可见完整的蛇绿岩层序和洋岛‒海山块体发育(潘桂棠等,2020;Hu et al., 2022).在班公湖‒班戈‒丁青地区可见上三叠统不整合覆盖于下伏地层之上,包括确哈拉群(T3Q)和孟阿雄群(T3M)(图3),为一套浅海陆棚相碎屑岩‒碳酸盐岩建造(陈玉禄等,2005;西藏自治区地质调查院,2024).在拉萨地块北缘的那曲‒洛隆‒八宿地区发育中‒上三叠统嘎加组(T2⁃3g),为一套浅海相碎屑岩夹火山岩和含放射虫硅质岩建造(尼玛次仁和谢尧武,2005).该地层区侏罗系‒白垩系分布相对广泛,在西段班公湖‒改则发育木嘎岗日岩群(JK1M)和沙木罗组(J2K1s)(图4),其中木嘎岗日岩群为一套半深海‒深海相浊积岩‒复理石碎屑岩建造(Luo et al.,2020),沙木罗组为一套浅海陆棚‒斜坡相‒海陆过渡相碎屑岩夹碳酸盐岩建造(Luo et al., 2021;西藏自治区地质调查院,2024);在中东段东巧‒丁青‒嘉玉桥等地发育的德极国组(J2djg)、德吉弄组(J2djn)、机末组(J3j)和东巧组(J3d)均为浅海陆棚相‒台地相碎屑岩‒碳酸盐岩建造(王建平等,2002;Ma et al., 2020;西藏自治区地质调查院,2024);在班公湖‒改则和丁青等地区发育去申拉组(K1q)和竞柱山组(K2j)(图4),其中去申拉组为一套陆相碎屑岩夹火山岩建造(康志强等,2010;Luo et al., 2022;西藏自治区地质调查院,2024),竞柱山组为一套陆相冲洪积‒河湖相沉积(Zhang et al., 2011Li et al., 2017;西藏自治区地质调查院,2024).

2.2.4 昌宁‒孟连蛇绿混杂岩带

该地层区可见昌宁‒孟连蛇绿混杂岩(O⁃T2)出露(图2),主要由方辉橄榄岩、堆晶二辉岩‒辉长岩、席状岩墙群、玄武岩、放射虫硅质岩和由外来灰岩块和强烈变形剪切和变质的基质(浊积碎屑岩系)组成(潘桂棠等,2013).该地层区二叠纪成层有序的地层分布相对局限,在耿马地区可见光色组(CPg)、鱼塘寨组(CP1⁃2y)、大名山组(P2dm)和石佛洞组(P3sf)发育(图3),其中光色组为一套远洋盆地相的含放射虫硅质岩夹火山岩建造(段向东,2013;Feng et al., 2023),鱼塘寨组、大名山组和石佛洞组均为浅水台地相‒斜坡相碳酸盐岩建造(段向东,2013),属于洋岛‒海山序列(Feng et al., 2023);在澜沧地区可见拉巴组(Pl),为一套半深海‒斜坡相碎屑岩系夹碳酸盐岩和硅质岩建造(段向东,2013;云南省地质调查院,2024),属于缝合带东部大陆边缘沉积(Feng et al., 2023),而最近的研究显示该组包括了多个不同时代和岩性的岩片(金小赤等,2024).该地层区三叠纪主体为剥蚀区,仅在耿马‒澜沧等地区可见浅海陆棚相怕拍组(T1⁃2p)和陆相冲洪积‒河湖相三岔河组(T3sc)发育(图3Feng et al., 2023;云南省地质调查院,2024).侏罗纪‒白垩纪该地层区为隆起剥蚀区.

2.3 冈底斯‒喜马拉雅构造‒地层大区

2.3.1 冈底斯‒察隅弧盆系

该地层区可见狮泉 河‒申扎‒嘉黎蛇绿混杂岩(T⁃K1)出露(图2),由变质超镁铁质橄榄岩、堆晶辉长岩、席状岩墙、斜长花岗岩、放射虫硅质岩、枕状玄武岩和浊积岩基质组成(潘桂棠等,2020),该套蛇绿混杂岩的大地构造属性目前依然存在较大争议(Kapp et al., 2003Pan et al., 2012;王保弟等,2020;Zeng et al., 2022).该地层区二叠纪地层分布广泛,在措勤‒申扎地区发育了一套浅海陆棚相‒浅水台地相碎屑岩‒碳酸盐岩组合(吴旌等,2014;张以春等,2019;李俊等,2023;西藏自治区地质调查院,2024;Shen et al., 2024b)(图3图5),包括拉嘎组(C2P1l)、昂杰组(P1a)、下拉组(P2⁃3x)和木纠错组(P3T1⁃2m);在拉萨‒察隅地区发育了一套滨浅海相‒浅水台地相碎屑岩‒碳酸盐岩夹火山岩组合,包括旁多群(C2P1P)、乌鲁龙组(P1w)、洛巴堆组(P2lb)、雄恩错组(P2x)、蒙拉组(P3m)和列龙沟组(P3l)(西藏自治区地质调查院,2024)(图3);在云南腾冲地区发育了一套滨浅海 相‒海陆交互相碎屑岩‒碳酸盐岩组合,包括邦读组(P1bd)、空树洞组(P1k)、大东厂组(P1⁃2d)和大坝组(P2d)(云南省地质调查院,2024)(图3图5).该地层区三叠纪地层分布十分广泛,在措勤‒申扎地区发育嘎仁错组(T1⁃2g)、珠龙组(T2⁃3z)、江让组(T3j)和多布日组(T3d)(图3),为滨浅海相碳酸盐岩‒碎屑岩建造(纪占胜等,2007;西藏自治区地质调查院,2024)(图5);在拉萨‒察隅地区发育查曲浦组(T1⁃2c)、麦隆岗组(T3m)和甲拉浦组(T3J1jl)(图3),为浅水台地相‒海陆交互相碳酸盐岩‒碎屑岩夹火山岩建造(西藏自治区地质调查院,2024);在云南腾冲地区中‒下三叠统缺失,上三叠统为一套以先锋营组(T3xf)和大洋火塘组(T3dy)为代表的浅水台地相碳酸盐岩夹碎屑岩建造(云南省地质调查院,2024)(图5).其上侏罗系为一套滨浅海相碎屑岩‒碳酸盐岩和半深海相复理石碎屑岩‒浅海陆棚相碎屑岩沉积,包括马里组(J2ml)、桑卡拉佣组(J2sk)和拉贡塘组(J2⁃3l)(Lai et al., 2022;李奋其等,2022;西藏自治区地质调查院,2024)(图4),构成弧前盆地沉积序列(潘桂棠等,2013);其上的多尼组(K1d)与下伏拉贡塘组(J2⁃3l)呈平行不整合接触,为一套滨浅海‒海陆交互相碎屑岩夹火山岩建造(Sun et al., 2017;西藏自治区地质调查院,2024),该组与其上的郎山组(K1l)和竞柱山组(K2j)共同构成了弧前盆地萎缩消减‒弧陆碰撞造山的进积序列(潘桂棠等,2013).在措勤‒申扎地区侏罗纪‒白垩纪整体沉积了一套巨厚的海陆交互相‒滨浅海相中酸性火山岩‒碎屑岩‒碳酸盐岩组合(朱弟成等,2008;西藏自治区地质调查院,2024;Li et al., 2024)(图4),包括希湖群(J1X)、接奴群(J2⁃3J)、仁多组(J2⁃3r)、则弄群(J3K1Z)和捷嘎组(K1jg),属于活动大陆边缘发育的岛弧边缘海盆地沉积(潘桂棠等,2013).早侏罗世至早白垩世在拉萨‒察隅地区发育了一套以叶巴组(J1⁃2y)和桑日群(J3K1S)为代表的滨海‒浅海陆棚相火山岩系夹碎屑岩和碳酸盐岩建造(西藏自治区地质调查院,2024)(图2图4图5),属于拉萨地块南缘的陆缘弧‒洋内弧沉积(Zhu et al., 2008Kang et al., 2014;黄丰等,2015),而该地区广泛分布的中、上侏罗统和白垩系主体为一套滨浅海相‒海陆交互相碎屑岩‒碳酸盐岩建造(王乃文等,1983;西藏自治区地质调查院,2024;Xi et al., 2024)(图4),包括却桑温泉组(J2q)、多底沟组(J2⁃3d)、林布宗组(K1lb)、楚木龙组(K1c)、塔克拉组(K1t)和设兴组(K2s)(图4),构成弧背(内)盆地沉积序列(潘桂棠等,2013).在拉萨地块南缘的日喀则‒萨嘎一带发育以日喀则群(KR)为代表的弧前盆地沉积(王成善等,1999;潘桂棠等,2013),为一套典型弧前盆地半深海‒深海相复理石碎屑岩‒浅海陆棚相碎屑岩‒碳酸盐岩充填序列,包括桑祖冈组(K1s)、昂仁组(K1⁃2a)、帕达那组(K2p)和曲贝亚组(K2q)(胡修棉等,2017)(图4).

2.3.2 雅鲁藏布结合带

该地层区发育雅鲁藏布蛇绿混杂岩(P⁃K1)带(图2),是印度与欧亚大陆间新特提斯大洋最终消亡和陆‒陆碰撞的结合带,主要由地幔橄榄岩、堆晶辉长岩、辉长‒辉绿岩墙群、枕状玄武岩、放射虫硅质岩、斜坡‒深海盆地相浊积砂板岩和外来岩块组成(潘桂棠等,2013).在缝合带西段的普兰‒札达地区可见中二叠统西兰塔组(P2x)和上二叠统姜叶玛组(P3j)(图3),均为浅水台地相碳酸盐岩夹火山岩(玄武岩)建造,作为岩块产出于蛇绿混杂岩中(西藏自治区地质调查院,2024).位于缝合带西段的仲巴陆块为缝合带中的微陆块(图2),晚古生界‒中生界为一套较稳定的浅海相碎屑岩‒碳酸盐岩沉积序列(陈俊兵等,2002;李祥辉等,2014;西藏自治区地质调查院,2024)(图3图4),自下而上依次为曲嘎群(CPQ)、穷果群(TQ)、沙赛组(T3s)、拉吾且拉组(T3lw)、宁日组(J1n)、扎嘎组(J2z)、底贡组(J3dg)和亚如那嘎组(K1yr).日喀则大竹卡等地区可见下白垩统冲堆组(K1c)整合覆盖于蛇绿混杂岩之上(图4),为一套半深海‒深海相硅质岩夹碎屑岩沉积(胡修棉等,2017;西藏自治区地质调查院,2024).

2.3.3 特提斯喜马拉雅

该地层区北部的江孜‒隆子地区,上古生界(二叠系)主要为一套浅海陆棚相碎屑岩‒碳酸盐岩,自下而上依次为破林浦组(P1p)、比聋组(P1b)、康马组(P2k)和白定浦组(P2b)(西藏自治区地质调查院,2024;Shen et al., 2024b)(图3图5),属于被动边缘盆地沉积(潘桂棠等,2013);其上的三叠系‒侏罗系为一套滨海‒浅海陆棚相碎屑岩夹碳酸盐岩和火山岩建造(西藏自治区地质调查院,2024;Xi et al., 2024)(图3图4),包括吕村组(T1⁃2l)、涅如组(T3n)、日当组(J1r)、遮拉组(J2z)、维美组(J3w)和桑秀组(J3K1s);其上的白垩系包括甲不拉组(K1j)、宗卓组(K2z)和床得组(K2c)(图4图5),其中甲不拉组为一套半深海‒深海相的深水复理石建造(胡修棉等,2017;西藏自治区地质调查院,2024),宗卓组为一套陆棚斜坡相的钙硅质页岩、砂岩夹灰岩透镜体组合,具复杂的滑塌堆积(西藏自治区地质调查院,2024),床得组为一套底层水富氧条件下形成的白垩纪大洋红层(胡修棉等,2017).北喜马拉雅带二叠系‒白垩系表现为被动大陆边缘盆地中发育的一套稳定的以滨浅海相碎屑岩为主夹碳酸盐岩的沉积序列(潘桂棠等,2013;西藏自治区地质调查院,2024;Li et al., 2024)(图3~图5),自下而上依次为基龙组(P1j)、曲布组(P3q)、曲布日嘎组(P3qb)、土隆群(康沙热组(T1ks)、赖布西组(T2lb)、扎木热组(T2zm)和达沙隆组(T3ds))、曲龙共巴组(T3ql)、德日荣组(T3dr)、奇玛拉组(T3qm)、普普嘎组(J1p)、聂聂雄拉组(J2n)、定结组(J2d)、门卡墩组(J2⁃3m)、古错村组(K1g)、岗巴东山组(K1gb)、察且拉组(K1cq)、岗巴村口组(K2g)和宗山组(K2zs).

2.3.4 保山地块

保山地块二叠系为一套发育在被动大陆边缘盆地中的滨浅海相‒浅水台地相‒海陆交互相碎屑岩‒碳酸盐岩组合,中夹火山喷发岩(王伟等,2004;金小赤等,2008;云南省地质调查院,2024;Shen et al., 2024b)(图3图5),包括丁家寨组(P1d)、卧牛寺组(P1w)、永德组(P2y)、丙麻组(P1⁃2b)、大凹子组(P2⁃3d)、河湾街组(P3h)和沙子坡组(P3s),属于被动边缘裂陷‒裂谷盆地(潘桂棠等,2013);其上的中下三叠统喜鹊林组(T1⁃2x)为发育在前陆盆地中的一套局限浅海相碳酸盐岩夹碎屑岩沉积;上三叠统为一套海陆交互相碎屑岩,局部夹中基性‒中酸性火山岩(云南省地质调查院,2024)(图3),包括牛喝塘组(T3nh)、南梳坝组(T3n)和湾甸坝组(T3w);中、晚侏罗世‒早白垩世地层不整合覆于三叠系之上,为一套海陆交互相‒滨浅海相碎屑岩‒碳酸盐岩建造(云南省地质调查院,2024)(图4),包括勐戛组(J2m)、柳湾组(J2lw)、龙海组(J2⁃3l)和弄坎组(K1n).

3 青藏特提斯造山系二叠纪‒白垩纪构造‒古地理演化

3.1 北羌塘‒三江大区

该大区自古生代以来的演化主要受古特提斯洋的控制,早古生代该区属于广阔的古特提斯洋的一部分,发育被动陆缘沉积体系(孔令耀等,2014;张克信等,2017),主要为一套海相稳定‒次稳定台地相碳酸盐岩和碎屑岩组合.进入晚古生代,随着古特提斯洋(龙木错‒双湖洋、昌宁‒孟连洋)向北‒北东方向俯冲,北羌塘‒三江地区开始发育一系列火山弧、弧后洋盆和活动陆缘沉积盆地,形成泛华夏大陆西南边缘晚古生代多岛弧盆系(莫宣学和潘桂棠,2006;潘桂棠等,2013;王立全等,2013):扬子板块西缘晚泥盆世发生显著裂解,金沙江‒哀牢山洋、澜沧江洋和甘孜‒理塘洋均在该时期或之后打开(莫宣学等,1993;李文昌等,2010);早石炭世系列洋盆开始扩张,到晚石炭世‒早二叠世早期达到鼎盛时期,三江地区发育多个陆壳地块与小洋盆相间排列的多岛弧盆系统(莫宣学等,1993;李文昌等,2010;张克信等,2017;王保弟等,2018);早二叠世晚期开始系列洋盆转入俯冲消减阶段,其中金沙江洋盆于早二叠世晚期开始向西俯冲消减于昌都‒兰坪地块之下,于中、晚二叠世‒早、中三叠世形成江达‒德钦‒维西陆缘弧及其火山弧西侧的昌都‒兰坪弧后盆地(陆壳基底)(李文昌等,2010;潘桂棠等,2013;王保弟等,2018;Xu et al., 2020)(图2),形成洋内弧‒陆缘火山弧‒弧后盆地的金沙江弧盆系空间配置结构(Wang et al., 2014),广泛发育一套以沙木组(P3s)、普水桥组(T1p)、马拉松多组(T1⁃2m)、攀天阁组(T1⁃2p)和人支雪山组(T1⁃2r)为代表的弧火山岩‒沉积岩组合(图3图5);受北侧西金乌兰‒金沙江洋和南侧龙木错‒双湖洋早‒中三叠世俯冲‒消减影响,晚三叠世北羌塘盆地由先前的被动陆缘盆地转化为弧后前陆盆地(潘桂棠等,2013),发育了一套以藏夏河组(T3z)和那底岗日组(T3nd)为代表的半深海‒大陆斜坡相复理石‒滨浅海‒海陆交互相碎屑岩系夹火山岩沉积(Fu et al., 2010);随着早‒中三叠世强烈的弧‒弧、弧‒陆碰撞,金沙江‒哀牢山洋、澜沧江洋和甘孜‒理塘洋在中‒晚三叠世关闭,尽管学界目前对于上述洋盆的具体闭合时限依然存在争议(莫宣学等,1993;孙晓猛和简平,2004;莫宣学和潘桂棠, 2006;Zi et al., 2013Peng et al., 2014Tang et al., 2020Yu et al., 2022)(图3);伴随着洋盆关闭,北羌塘地块、昌都‒兰坪‒思茅地块、中咱‒中甸地块、义墩‒沙鲁里岛弧和松潘‒甘孜地块之间开始了显著的碰撞‒拼接,发生了规模宏大的印支碰撞造山事件(许志琴等,2012),使得该地区晚三叠世广泛发育区域性磨拉石(甲丕拉组、歪古村组和东独组)角度不整合(王立全等,2013;王保弟等,2018)(图3),该地区至此主体成为欧亚大陆的组成部分(潘桂棠等,2013).侏罗纪‒白垩纪,该地区整体进入后碰撞陆内造山阶段,大部分处于隆起剥蚀区,在一系列前陆盆地和压陷盆地中普遍发育滨浅海‒海陆交互相碎屑岩‒碳酸盐岩和陆相磨拉石沉积(图4图5).

3.2 龙木错‒双湖‒怒江‒昌宁‒孟连大区

该大区二叠纪‒白垩纪的沉积大地构造演化与古特提斯洋(龙木错‒双湖洋、昌宁‒孟连洋)的闭合以及中特提斯洋(班公湖‒怒江洋)的开启‒闭合演化历史密切相关.晚石炭世‒早二叠世南羌塘地块位于冈瓦纳大陆北缘,广泛发育以擦蒙组(C2c)、展金组(C2P1z)和曲地组(P1q)为代表的稳定大陆边缘沉积(图3图5),其中擦蒙组和展金组中发育玄武岩夹层和冰海相杂砾岩(梁定益等,1983;Fan et al., 2015;李才等,2016),同时期龙木错‒双湖洋的成熟洋壳之上广泛发育洋岛‒海山系统(范建军等,2014;潘桂棠等,2020)(图6);中‒晚二叠世龙木错‒双湖洋经历了显著的北向俯冲(图6),使得北羌塘地块南缘发育了大量的中‒晚二叠世‒早三叠世埃达克岩和岛弧岩浆岩(Yang et al., 2011Xu et al., 2020)(图2);随着北向俯冲作用的继续进行,龙木错‒双湖洋在早‒中三叠世逐渐自东向西逐渐闭合(Hu et al., 2014Xu et al., 2020Liu et al., 2022a):沿龙木错‒双湖缝合带东西向展布的系列晚三叠世(227~202 Ma)中酸性岩浆岩指示晚三叠世南北羌塘发生与俯冲‒碰撞相关的剧烈岩浆事件(Kapp et al., 2003;胡培远等,2010;Xu et al., 2020);羌塘中央隆起带于晚三叠世随着南北羌塘陆陆碰撞而定型(王根厚等,2023),其中高压变质带的研究表明榴辉岩相的峰值变质年龄也被作为南、北羌塘发生碰撞的年龄上限,即南北羌塘最晚于晚三叠世最终碰撞拼合(Pullen et al., 2008Zhai et al., 2011b);南羌塘中央隆起带果干加年山地区,上三叠统望湖岭组(T3w)滨浅海相碎屑岩‒火山岩系沉积不整合于俯冲增生杂岩之上(图3),代表了龙木错‒双湖洋闭合后的残留海沉积(李才等,2007,2016),表明南、北羌塘地块的碰撞‒拼合在晚三叠世前已经完成(图6).晚石炭世‒早二叠世昌宁‒孟连洋依然处于扩张期,伴随着指示远洋沉积的深水相硅质泥岩‒放射虫硅质岩和洋岛‒海山火山‒沉积岩系普遍发育(莫宣学等,1993;王保弟等,2018;潘桂棠等,2020).晚二叠世昌宁‒孟连洋主体进入收缩时期,发生大规模的东向俯冲消减,扬子克拉通一侧形成 沟‒弧‒盆系活动陆缘,形成典型的“多弧盆”古地理格局(尹福光等,2022).早‒中三叠世,昌宁‒孟连洋洋壳继续东向俯冲消减,伴随着强烈的弧‒陆碰撞与对接,昌宁‒孟连地区及思茅地块大部均缺失了下三叠统(图5),在思茅地块西侧的临沧增生弧大量发育与俯冲相关的中三叠世酸性岩浆岩和弧火山岩(范蔚茗等,2009;李文昌等,2010;Peng et al., 2013),洋盆消亡并转化为残留海盆地(王保弟等,2018).至晚三叠世早期,保山地块与思茅地块发生了碰撞‒拼接,伴随着兰坪‒思茅地块西侧高压‒超高压变质带(澜沧岩群)的发育,其中片岩变质锆石U⁃Pb年龄限定的碰撞高峰期为晚三叠世(238~235 Ma)(Wang et al., 2020),之后昌宁‒孟连由残留海盆地消亡转化为磨拉石盆地沉积,以区域上广泛发育上三叠统三岔河组(T3sc)磨拉石与下伏蛇绿混杂岩的角度不整合为标志(王保弟等,2018,2021)(图3),之后转入后碰撞陆内造山阶段,至此泛华夏大陆群最终拼合定型(潘桂棠等,2013;王保弟等,2021)(图6).现今关于班公湖‒怒江洋洋盆的开启方式和时间依然存在争议(Zhu et al., 2011; 张以春等, 2019;Hu et al., 2022),众多研究者认为南羌塘‒保山地块与拉萨地块之间的班公湖‒怒江洋至少在中‒晚二叠世很可能就已经存在(图6),主要认识如下:班公湖‒怒江缝合带东段东巧蛇绿岩堆晶岩年龄为251 Ma(Shi et al., 2012);西段班公湖蛇绿岩方辉橄榄岩年龄为(254±28) Ma,可能代表班公湖‒怒江特提斯洋开始裂解的时间(黄启帅等,2012);古地磁研究显示中二叠世之后拉萨和南羌塘地块之间存在一定的古纬度差(Hu et al., 2022);早二叠世南羌塘、拉萨、保山、腾冲等地块仍普遍发育有冰海杂砾岩,并产冈瓦纳冷水型动物群,显示当时这些地块都位于冈瓦纳大陆北缘,受到晚古生代大冰期的直接影响,此时班公湖‒怒江洋尚未打开(Shen et al., 2024b)(图6),而中‒晚二叠世南羌塘‒保山和拉萨地块的生物古地理特征发生了明显差异(张以春等,2019;Shen et al., 2024b);南羌塘晚二叠世吉普日阿组物源明显区别于不整合之下的石炭纪砂岩,指示了由晚石炭世‒早二叠世被动陆缘(北冈瓦纳)到晚二叠世活动陆缘(南羌塘)的变迁,显示南羌塘在中二叠世从北冈瓦纳裂解,班公湖‒怒江洋初始开启扩张(Fan et al., 2021).三叠纪是班公湖‒怒江洋的主要扩张期(图6),成熟洋壳之上普遍发育早‒中三叠世洋岛‒海山及与洋壳伴生的中‒晚三叠世放射虫硅质岩(王玉净等,2002;Fan et al., 2017),古地磁学研究也显示南羌塘地块在三叠纪时期快速向北漂移,至晚三叠世羌塘地块与拉萨地块之间的古纬度差达18°之多,班公湖‒怒江洋宽度超过4 000 km(Hu et al., 2022).前人研究显示晚三叠世‒早侏罗世班公湖‒怒江洋的俯冲消减就已经开始(Zeng et al., 2016Li et al., 2019Liu et al., 2022b)(图6),而学界目前对于班公湖‒怒江洋的俯冲极性一直存在较大争议,目前的主流观点包括两个:一是班公湖‒怒江洋向北俯冲消减,二是班公湖‒怒江洋分别向羌塘地体和拉萨地体下方俯冲消减(Zhu et al., 2016Li et al., 2019Hu et al., 2022).中‒晚侏罗世洋壳俯冲加剧,在南羌塘地块南缘和拉萨地块北缘广泛发育与班公湖‒怒江洋俯冲有关的中‒晚侏罗世岛弧岩浆岩(朱弟成等,2008; Zhu et al., 2016Li et al., 2018),同时在班怒带紧邻南羌塘地区出现汇聚构造变形,形成了规模宏大、延伸范围广的木嘎岗日杂岩(Hu et al., 2022).目前学者对于班公 湖‒怒江洋的最终闭合时间同样存在较大争议,而越来越多的研究显示班公湖‒怒江洋很可能具有自东向西穿时闭合的特点(Li et al., 2019;Hu et al., 2022):班公湖‒怒江缝合带东段中侏罗统德极国组(J2djg)、上侏罗统东巧组(J3d)和上侏罗统‒下白垩统沙木罗组(J2K1s)不整合沉积于下伏蛇绿混杂岩和木噶岗日岩群之上(王建平等,2002;Pan et al., 2012;王立全等,2013;Zhu et al., 2016Ma et al., 2020)(图3),代表了班公湖‒怒江洋东段闭合后残余海盆的沉积;班公湖‒怒江缝合带中段尼玛地区记录了早白垩世中晚期(~125 Ma)海相浊积岩与非海相地层(~118 Ma)之间的不整合,代表了班公湖‒怒江缝合带中段的洋‒陆转换事件(Kapp et al.,2007);班公湖‒怒江缝合带西段改则地区早白垩世末期(107~100 Ma)去申拉组陆相河湖相沉积与下伏蛇绿岩和木噶岗日岩群的沉积不整合代表了班公湖‒怒江洋主洋盆在这之前已经消亡(Liu et al., 2017Luo et al., 2022)(图3图5),之后普遍发育以阿布山组和竟柱山组为代表的陆相磨拉石建造(图4),进入陆内后碰撞造山演化阶段.

3.3 冈底斯‒喜马拉雅大区

冈底斯‒腾冲地区早二叠世发育冰海相杂砾岩,以拉嘎组(C2P1l)、旁多群(C2P1P)、邦读组(P1bd)和空树洞组(P1k)为代表(Jin, 2002;纪占胜等,2005;Shen et al., 2024b)(图3),具有明显的亲冈瓦纳特征.而在喜马拉雅‒保山地区早二叠世沉积中同样普遍可见冰海相杂砾岩(陈俊兵等,2002;罗亮等,2018;Shen et al., 2024b),以基龙组(P1j)、破林浦组(P1p)、比聋组(P1b)和丁家寨组(P1d)为代表(图3).以上特征表明在早二叠世时期,冈底斯‒腾冲和喜马拉雅‒保山均依旧位于冈瓦纳大陆北缘,发育了一系列被动大陆边缘海相沉积(潘桂棠等, 2013;王立全等, 2013)(图5).该大区晚二叠世至白垩纪的沉积大地构造演化与雅鲁藏布结合带即雅鲁藏布洋的整个开启‒闭合演化历史密切相关.目前学界关于雅鲁藏布洋洋盆的开启时间依然存在分歧,主要有二叠纪和三叠纪两种主要观点.支持雅鲁藏布洋至少在中二叠世就已经开启的主要认识如下: Fan et al.(2023)在藏南昂仁地区报道了中二叠世的OIB型玄武岩及其上的碳酸盐岩盖层沉积,两者构成成熟的海山;至少在早二叠世晚期即空谷期晚期,拉萨地块与冈瓦纳北缘西澳大利亚等地区存在明显的古生物地理分异(张以春等, 2019;Shen et al., 2024b);古地磁研究显示,拉萨地块早二叠世已经从冈瓦纳大陆北缘裂开(Ran et al., 2012).而支持雅鲁藏布洋在早三叠世开启的主要认识如下:Liu et al.(2023)在藏南仲巴混杂岩中厘定了约253 Ma的洋岛型玄武岩岩块,认为其可能形成于大陆岩石圈张裂至海底扩张初期,据此认为新特提斯洋雅江段的打开应主要发生于早三叠世(约250~243 Ma),不晚于中三叠世早期;Liu et al.(2021)在藏南雅鲁藏布江缝合带西段公珠错地区发现了中三叠世的海山玄武岩(约245 Ma);藏南泽当蛇绿混杂岩中产出有中三叠世安尼期(~240 Ma)的放射虫硅质岩(Chen et al., 2019).总之,早‒中三叠世应该是雅鲁藏布洋的主要扩张期,同时期在拉萨地块也发生了显著的岛弧造山作用,以查曲浦组(T1⁃2c)中广泛分布的弧火山岩为代表(潘桂棠等,2013)图3图5).早‒中侏罗世至晚侏罗世,雅鲁藏布洋洋壳显著向北俯冲于拉萨地块之下,在冈底斯带东段南侧发育具有双峰式火山活动特征的叶巴火山弧和桑日火山弧(潘桂棠等,2006;朱弟成等, 2008;Kang et al., 2014;黄丰等,2015;Wei et al., 2017)(图2和图6).冈底斯北部在晚侏罗世发育有则弄火山弧,使得该时期冈底斯地区呈现出复杂的多岛弧盆系格局(潘桂棠等,2006).早白垩世早期(瓦兰今期),以措美大火成岩省为标志(Zhu et al., 2009),印度陆块从冈瓦纳大陆北缘裂解,之后不断向北漂移,雅鲁藏布洋逐渐萎缩消减,开始其闭合过程(Zhu et al.,2022Xi et al., 2024).早白垩世中期(~120 Ma),随着雅鲁藏布洋洋壳的持续北向俯冲,日喀则弧前盆地开始发育(Wang et al., 2017),其后持续不断地接受冈底斯岩浆弧的物质供应,以日喀则群(KR)为代表,表现出由海底扇相的深水浊积岩到陆棚或三角洲相过渡的向上变浅的层序(An et al., 2012;胡修棉等,2017).古新世时期,印度板块与欧亚板块发生初始碰撞,雅鲁藏布江周缘前陆盆地形成(65~60 Ma)(Ding et al., 2017,2022),欧亚板块来源的碎屑物质首次出现在前陆盆地系统的前渊沉积中(60~59 Ma) (DeCelles et al., 2014Hu et al., 2017),这与基于古地磁的古纬度研究限定的印度‒欧亚板块初始碰撞时间一致(65~60 Ma)(Yi et al., 2011).伴随着印度板块与欧亚板块的持续碰撞拼合,在冈底斯岩浆弧大量发育同碰撞期的岩浆岩:林子宗火山岩系(64~40 Ma)和南冈底斯花岗岩类(51~ 49 Ma)(莫宣学等,2003).约40 Ma新特提斯残留海全面向西退去,该带连同冈底斯陆缘弧的大部分地区被构造抬升为剥蚀区(Zhang et al., 2010).

4 结论

(1)基于本课题组先前建立的洋板块地层一级(称“构造‒地层大区”)和二级(称“构造‒地层区”)构造‒地层区划准则,本文将青藏特提斯造山系划分为3个构造‒地层大区,包括北羌塘‒三江、龙木错‒双湖‒怒江‒昌宁‒孟连和冈底斯‒喜马拉雅,进而再细分为17个构造‒地层区.

(2)在青藏特提斯造山系构造‒地层区划的基础上,通过详细分析各个构造‒地层分区中的洋间地块以及与其紧密伴生的陆缘弧、弧后盆地、边缘海盆地、微陆块等的洋板块地层序列、沉积背景、地层接触及对比关系,特别是突出表达各条蛇绿混杂岩带在各个构造‒地层分区中的时空分布,最终建立了青藏特提斯造山系晚古生 代‒中生代(二叠纪‒白垩纪)洋板块地层格架.

(3)系统梳理了青藏特提斯蛇绿混杂岩带及与其密切相关的弧‒盆系的时空分布特征,在此基础上探讨古特提斯洋(龙木错‒双湖洋、昌宁‒孟连洋等)、中新特提斯洋(班公湖‒怒江洋)和新特提斯洋(雅鲁藏布洋)的演化历史,进而揭示青藏特提斯造山系晚古生代‒中生代构造‒古地理格局演变过程.

需要强调的是,目前青藏特提斯造山系晚古生代‒中生代洋板块构造‒地层分区及地层格架是笔者课题组前期工作的阶段性成果,依然存在很多问题尚需今后更深入地探讨,包括复杂造山带中洋板块地层的准确识别和恢复、岩石地层单位时代的精确标定和其古沉积背景的重建等,特别是青藏特提斯造山系在许多大地构造问题上依然存在很大争议,如古特提斯洋、中特提斯洋和新特提斯洋的关系、开启和闭合时限,古特提斯洋(龙木错‒双湖洋)和中特提斯洋(班公湖‒怒江洋)的俯冲极性等科学问题,今后学界还需开展更深入系统的研究工作以取得共识.

参考文献

[1]

An, W., Hu, X. M., Garzanti, E., et al., 2012. Xigaze Forearc Basin Revisited (South Tibet): Provenance Changes and Origin of the Xigaze Ophiolite. GSA Bulletin, 126(11-12):1595-1613. https://doi.org/10.1130/B31020.1

[2]

Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America, Boulder. https://doi.org/10.1130/MEM210

[3]

Chen, D. S., Luo, H., Wang, X. H., et al., 2019. Late Anisian Radiolarian Assemblages from the Yarlung⁃Tsangpo Suture Zone in the Jinlu Area, Zedong, Southern Tibet: Implications for the Evolution of Neotethys. Island Arc, 28(4): e12302. https://doi.org/10.1111/iar.12302

[4]

Chen, J. B., Xu, X. Y., Li, W. Q., et al., 2002. New Advances in Research of Permian⁃Carboniferous in the Kangmar Region, Southern Tibet. Geoscience, 16(3): 237-242 (in Chinese with English abstract).

[5]

Chen, M., Luo, J. N., 1999. Sedimentary Characteristics and Evolution of the Yidun Foreland Basin, Western Sichuan during the Early Late Triassic. Tethyan Geology, (23): 108-120 (in Chinese with English abstract).

[6]

Chen, S. J., Li, R. S., Ji, W. H., et al., 2011. Lithostratigraphy Character and Tectonic⁃Evolvement of Permian⁃Trias in the Bayankala Tectonic Belt. Earth Science, 36(3): 393-408 (in Chinese with English abstract).

[7]

Chen, Y. L., Zhang, K. Z., Li, G. Q., et al., 2005. Discovery of an Uniformity between the Upper Triassic Quehala Group and Its Underlying Rock Series in the Central Segment of the Bangong Co⁃Nujiang Junction Zone, Tibet, China. Regional Geology of China, 24(7): 621-624 (in Chinese with English abstract).

[8]

Cui, J. T., Bian, X. W., Wang, J. C., et al., 2006. The Discovery of the Permian Fossils from the Formerly Upper Triassic Keleqinghe Group in the Dahongliutan Region, Western Kunlun. Sedimentary Geology and Tethyan Geology, 26(4): 47-50 (in Chinese with English abstract).

[9]

Cui, J. T., Wang, J. C., Bian, X. W., et al., 2004. The Sporopollen Fossils from the Permian Barren Strata in the Chalukou Region, Karakorum, Xinjiang. Sedimentary Geology and Tethyan Geology, 24(2): 41-44 (in Chinese with English abstract).

[10]

Dai, Z. M., Sun, C. M., 2008. Evolution of Triassic Volcanic⁃Sedimentary Basins in the Central Segment of the Yidun Island Arc of the Songpan⁃Garzê Orogenic Belt, Western Sichuan, China. Geological Bulletin of China, 27(6): 799-813 (in Chinese with English abstract).

[11]

DeCelles, P. G., Kapp, P., Gehrels, G. E., et al., 2014. Paleocene⁃Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal: Implications for the Age of Initial India⁃Asia Collision. Tectonics, 33(5): 824-849. https://doi.org/10.1002/2014tc003522

[12]

Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017⁃022⁃00318⁃4

[13]

Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4): 635-651. https://doi.org/10.1007/s11430⁃016⁃5244⁃x

[14]

Duan, X. D., 2013. The Basin Evolution Studies of the Changning⁃Menglian Zone in the Gengma Area, Southwestern Yunnan (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[15]

Fan, J. J., Li, C., Wang, M., et al., 2015. Features, Provenance, and Tectonic Significance of Carboniferous⁃Permian Glacial Marine Diamictites in the Southern Qiangtang⁃Baoshan Block, Tibetan Plateau. Gondwana Research, 28(4): 1530-1542. https://doi.org/10.1016/j.gr.2014.10.015

[16]

Fan, J. J., Li, C., Wang, M., et al., 2017. Remnants of a Late Triassic Ocean Island in the Gufeng Area, Northern Tibet: Implications for the Opening and Early Evolution of the Bangong⁃Nujiang Tethyan Ocean. Journal of Asian Earth Sciences, 135: 35-50. https://doi.org/10.1016/j.jseaes.2016.12.015

[17]

Fan, J. J., Niu, Y. L., Luo, A. B., et al., 2021. Timing of the Meso⁃Tethys Ocean Opening: Evidence from Permian Sedimentary Provenance Changes in the South Qiangtang Terrane, Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110265. https://doi.org/10.1016/j.palaeo.2021.110265

[18]

Fan, J. J., Li, C., Peng, H., et al., 2014. The Discovery of Late Carboniferous⁃Early Permian Oceanic Island in the Lungmu Co⁃Shuanghu⁃Lancang River Suture Zone. Geological Bulletin of China, 33(11): 1690-1695 (in Chinese with English abstract).

[19]

Fan, W. M., Peng, T. P., Wang, Y. J., et al., 2009. Triassic Magmatism in the Southern Lancangjiang Zone, Southwestern China and Its Constraints on the Tectonic Evolution of Paleo⁃Tethys. Earth Science Frontiers, 16(6): 291-302 (in Chinese with English abstract).

[20]

Fan, X. L., Li, X. H., Mattern, F., et al., 2023. Lithofacies, Geochemistry, and Sequences of Basalt and Carbonate Rocks of a Middle Permian Composite Seamount (Central Yarlung Zangbo Suture Zone, Tibet): Implications to the Incipient Opening of the Neo⁃Tethys Ocean. Lithos, 448: 107175. https://doi.org/10.1016/j.lithos.2023.107175

[21]

Feng, Q. L., Liu, G. C., Gan, Z. Q., et al., 2023. Tethyan Evolution from Early Paleozoic to Early Mesozoic in Southwest Yunnan. Science China Earth Sciences, 66(12): 2728-2750. https://doi.org/10.1007/s11430⁃022⁃1122⁃7

[22]

Feng, Q. L., Shen, S. Y., Liu, B. P., et al., 2002. Study on Radiolaria, Siliceous Rocks and Basalts in the Daxinshan Formation in the Lancangjiang Structural Belt, Southwestern Yunnan. Science in China (Series D), 32(3): 220-226 (in Chinese with English abstract).

[23]

Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift⁃Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135-144. https://doi.org/10.1016/j.gr.2009.04.010

[24]

Gan, Z. Q., Feng, Q. L., Wei, Y. H., et al., 2024. Detrital Zircon of Devonian Sandstones in Changning⁃Menglian Suture Zone, Yunnan, SW China: Implications for the Early Evolution of Paleo⁃Tethys. Journal of Earth Science, 35(3): 786-796. https://doi.org/10.1007/s12583⁃021⁃1470⁃7

[25]

Gao, B. T., Zhang, Q. H., Ding, L., et al., 2023. Age of the Latest Marine Sedimentation in the Western Kunlun Area Constrained by Planktic Foraminifera. Palaeoworld, 32(3): 490-508. https://doi.org/10.1016/j.palwor.2022.10.002

[26]

He, G. J., Chen, J. Z., Zhang, M. L., et al., 2023. The Discovery of Early Permian Ammonite Fossils in Galvan, West Kunlun, Xinjiang and Its Significance of Lithofacies and Palaeogeography. Geological Bulletin of China, 42(1): 76-83 (in Chinese with English abstract).

[27]

Hu, P. Y., Li, C., Li, J., et al., 2014. Zircon U⁃Pb⁃Hf Isotopes and Whole⁃Rock Geochemistry of Gneissic Granites from the Jitang Complex in Leiwuqi Area, Eastern Tibet, China: Record of the Closure of the Paleo⁃Tethys Ocean. Tectonophysics, 623: 83-99. https://doi.org/10.1016/j.tecto.2014.03.018

[28]

Hu, P. Y., Li, C., Yang, H. T., et al., 2010. Characteristic, Zircon Dating and Tectonic Significance of Late Triassic Granite in the Guoganjianianshan Area, Central Qiangtang, Qinghai⁃Tibet Plateau, China. Geological Bulletin of China, 29(12): 1825-1832 (in Chinese with English abstract).

[29]

Hu, X. M., Ma, A. L., Xue, W. W., et al., 2022. Exploring a Lost Ocean in the Tibetan Plateau: Birth, Growth, and Demise of the Bangong⁃Nujiang Ocean. Earth⁃ Science Reviews, 229: 104031. https://doi.org/10.1016/j.earscirev.2022.104031

[30]

Hu, X. M., Wang, J. G., An, W., et al., 2017. Constraining the Timing of the India⁃Asia Continental Collision by the Sedimentary Record. Science China Earth Sciences, 60(4): 603-625. https://doi.org/10.1007/s11430⁃016⁃9003⁃6

[31]

Hu, X. M., Li, J., An, W., et al., 2017. The Redefinition of Cretaceous⁃Paleogene Lithostratigraphic Units and Tectonostratigraphic Division in Southern Tibet. Earth Science Frontiers, 24(1): 174-194 (in Chinese with English abstract).

[32]

Huang, F., Xu, J. F., Chen, J. L., et al., 2015. Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group: Products of Continental Marginal Arc and Intra⁃Oceanic Arc during the Subduction of Neo⁃Tethys Ocean? Acta Petrologica Sinica, 31(7): 2089-2100 (in Chinese with English abstract).

[33]

Huang, J. Q., Chen, B. W., 1987. The Evolution of the Tethys in China and Adjacent Regions. Geological Publishing House, Beijing (in Chinese).

[34]

Huang, Q. S., Shi, R. D., Ding, B. H., et al., 2012. Re⁃Os Isotopic Evidence of MOR⁃Type Ophiolite from the Bangong Co for the Opening of Bangong⁃Nujiang Tethys Ocean. Acta Petrologica et Mineralogica, 31(4): 465-478 (in Chinese with English abstract).

[35]

Isozaki, Y., Maruyama, S., Furuoka, F., 1990. Accreted Oceanic Materials in Japan. Tectonophysics, 181(1-4): 179-205. https://doi.org/10.1016/0040⁃1951(90)90016⁃2

[36]

Ji, W. H., 2005. The Late Paleozoic⁃Early Mesozoic Tectonic Frame in the Western Kunlun⁃Karakorum Area (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[37]

Ji, Z. S., Yao, J. X., Wu, G. C., et al., 2005. On the Stratigraphic Sequence, Lithological Characteristics and Origin of the Lower Permian Pangduo Group in Linzhou County, Northern Lhasa, Tibet. Acta Geologica Sinica, 79(4): 433-443, 577-579 (in Chinese with English abstract).

[38]

Ji, Z. S., Yao, J. X., Wu, G. C., 2007. Stratigraphic Division of the Marine Triassic in the Coqên Area, Western Gangdise, Tibet, China. Geological Bulletin of China, 26(8): 947-952 (in Chinese with English abstract).

[39]

Jia, J. H., 1995. Sedimentary Characteristics and Tectonic Palaeogeographyof Longdonghe Formation in Lancajiang Zone, Southwestern Yunnan. Mineralogy and Petrology, 15(2):35-40 (in Chinese with English abstract).

[40]

Jiao, P. W., Liang, X., Wang, G. H., et al., 2017. Redefinition of the Lower Permian Qudi Formation in Yadan Area, Rongma Town, Northern Tibet, and Its Tectonic Significance. Geological Bulletin of China, 36(S1): 181-189 (in Chinese with English abstract).

[41]

Jin, X. C., 2002. Permo⁃Carboniferous Sequences of Gondwana Affinity in Southwest China and Their Paleogeographic Implications. Journal of Asian Earth Sciences, 20(6): 633-646. https://doi.org/10.1016/S1367⁃ 9120(01)00084⁃0

[42]

Jin, X. C., Huang, H., Shen, Y., et al., 2008. Subdivision and Correlation of Mid⁃Late Permian Successions of the Baoshan Block, Western Yunnan: Status and Problems. Acta Geoscientica Sinica, 29(5): 533-541 (in Chinese with English abstract).

[43]

Jin, X. C., Zheng, J. B., Huang, H., et al., 2024. Permian Siliciclastic Strata in the Changning⁃Menglian Belt, Western Yunnan, China: Problems and Research Progress. Acta Geologica Sinica, 98(3): 692-711 (in Chinese with English abstract).

[44]

Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co⁃Nujiang Tethy’s Southward Subduction. Acta Petrologica Sinica, 26(10): 3106-3116 (in Chinese with English abstract).

[45]

Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo⁃Tethys and Gangdese Magmatic Arc. Lithos, 200: 157-168. https://doi.org/10.1016/j.lithos.2014.04.019

[46]

Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa⁃Qiangtang and Indo⁃Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933. https://doi.org/10.1130/b26033.1

[47]

Kapp, P., Yin, A., Manning, C. E., et al., 2003. Tectonic Evolution of the Early Mesozoic Blueschist⁃Bearing Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22(4): 1043. https://doi.org/10.1029/2002TC001383

[48]

Kong, L. Y., Yao, H. Z., Xu, Y. D., et al., 2014. Evolution of Sedimentary Basins in Qiangtang⁃Sanjiang from Paleozoic to Mesozoic. Earth Science, 39(8): 1217-1229 (in Chinese with English abstract).

[49]

Lai, W., Hu, X. M., Ma, A. L., et al., 2022. From the Southern Gangdese Yeba Arc to the Bangong⁃Nujiang Ocean: Provenance of the Upper Jurassic⁃Lower Cretaceous Lagongtang Formation (Northern Lhasa, Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology, 588: 110837. https://doi.org/10.1016/j.palaeo.2022.110837

[50]

Li, C., Xie, C. M., Wang, M., et al., 2016. Geology in the Qiangtang Region. Geological Publishing House, Beijing (in Chinese).

[51]

Li, C., Zhai, Q. G., Chen, W., et al., 2007. Geochronology Evidence of the Closure of Longmu CoShuanghu Suture, Qinghai⁃Tibet Plateau: Ar⁃Ar and Zircon SHRIMP Geochronology from Ophiolite and Rhyolite in Guoganjianian. Acta Petrologica Sinica, 23(5): 911-918 (in Chinese with English abstract).

[52]

Li, F. Q., Zhang, S. Z., Li, J., et al., 2022. Definition of Mid⁃Late Jurassic Peripheral Foreland Basin in the Northern Margin of Lhasa Block. Earth Science, 47(2): 387-404 (in Chinese with English abstract).

[53]

Li, G. M., Zhang, L. K., Wu, J. Y., et al., 2020. Reestablishment and Scientific Significance of the Ocean Plate Geology in the Southern Tibet Plateau, China. Sedimentary Geology and Tethyan Geology, 40(1): 1-14 (in Chinese with English abstract).

[54]

Li, J., Liu, H., Huang, J. Y., et al., 2023. Age Revision of the Xiala Formation in Konglong Area, Nangren County, Tibet, and Its Constraints on the Sedimentary Evolution of the Gangdese Belt in the Middle and Late Permian. Geological Bulletin of China, 42(S1): 252-259 (in Chinese with English abstract).

[55]

Li, J. G., Rao, X., Mu, L., et al., 2024. Jurassic Integrative Stratigraphy, Biotas, and Paleogeographical Evolution of the Qinghai⁃Tibetan Plateau and Its Surrounding Areas. Science China Earth Sciences, 67(4): 1195-1228. https://doi.org/10.1007/s11430⁃023⁃1211⁃4

[56]

Li, S., Guilmette, C., Ding, L., et al., 2017. Provenance of Mesozoic Clastic Rocks within the Bangong⁃Nujiang Suture Zone, Central Tibet: Implications for the Age of the Initial Lhasa⁃Qiangtang Collision. Journal of Asian Earth Sciences, 147: 469-484. https://doi.org/10.1016/j.jseaes.2017.08.019

[57]

Li, S., Yin, C. Q., Guilmette, C., et al., 2019. Birth and Demise of the Bangong⁃Nujiang Tethyan Ocean: A Review from the Gerze Area of Central Tibet. Earth⁃ Science Reviews, 198: 102907. https://doi.org/10.1016/j.earscirev.2019.102907

[58]

Li, T. D., Liu, Y., Ding, X. Z., et al., 2022. Ten Advances in Regional Geological Research of China in Recent Years. Acta Geologica Sinica, 96(5): 1544-1581 (in Chinese with English abstract).

[59]

Li, W. C., Pan, G. T., Hou, Z. Q., et al., 2010. The Multi⁃Island Arc Basin⁃Collisional Orogenic Metallogenic Theory and Exploration Technology of “Three Rivers” in Southwest China. Geological Publishing House, Beijing (in Chinese).

[60]

Li, X. H., Wang, C. S., Li, Y. L., et al., 2014. The Disaggregation of the Permian Quga Formation in Zhongba Area, Southwestern Tibet. Geological Bulletin of China, 33(5): 614-628 (in Chinese with English abstract).

[61]

Li, X. K., Chen, J., Wang, R. C., et al., 2018. Temporal and Spatial Variations of Late Mesozoic Granitoids in the SW Qiangtang, Tibet: Implications for Crustal Architecture, Meso⁃Tethyan Evolution and Regional Mineralization. Earth⁃Science Reviews, 185: 374-396. https://doi.org/10.1016/j.earscirev.2018.04.005

[62]

Liang, D. Y., Nie, Z. T., Guo, T. Y., et al., 1983. Permo⁃Carboniferous Gondwana⁃Tethys Facies in Southern Karakoran Ali, Xizang (Tibet). Earth Science, 8(1): 9-27 (in Chinese with English abstract).

[63]

Liang, X., Sun, X. H., Wang, G. H., et al., 2020. Sedimentary Evolution and Provenance of the Late Permian⁃Middle Triassic Raggyorcaka Deposits in North Qiangtang (Tibet, Western China): Evidence for a Forearc Basin of the Longmu Co⁃Shuanghu Tethys Ocean. Tectonics, 39(1): e2019TC005589. https://doi.org/10.1029/2019TC005589

[64]

Liu, F., Dilek, Y., Yang, J. S., et al., 2021. A Middle Triassic Seamount within the Western Yarlung Zangbo Suture Zone, Tibet: The Earliest Seafloor Spreading Record of Neotethys to the North of East Gondwana. Lithos, 388-389: 106062. https://doi.org/10.1016/j.lithos.2021.106062

[65]

Liu, T., Liu, C. Z., Wu, F. Y., et al., 2023. Timing and Mechanism of Opening the Neo⁃Tethys Ocean: Constraints from Mélanges in the Yarlung Zangbo Suture Zone. Science China Earth Sciences, 66(12): 2807-2826. https://doi.org/10.1007/s11430⁃023⁃1175⁃5

[66]

Liu, Y., Li, T. D., Xiao, Q. H., et al., 2022. Progress in Geological Study of Oceanic Plates. Earth Science Frontiers, 29(2): 79-93 (in Chinese with English abstract).

[67]

Liu, Y. M., Li, S. Z., Zhai, Q. G., et al., 2022b. Jurassic Tectonic Evolution of Tibetan Plateau: A Review of Bangong⁃Nujiang Meso⁃Tethys Ocean. Earth⁃Science Reviews, 227: 103973. https://doi.org/10.1016/j.earscirev.2022.103973

[68]

Liu, Y. M., Wang, M., Li, C., et al., 2017. Cretaceous Structures in the Duolong Region of Central Tibet: Evidence for an Accretionary Wedge and Closure of the Bangong⁃Nujiang Neo⁃Tethys Ocean. Gondwana Research, 48: 110-123. https://doi.org/10.1016/j.gr.2017.04.026

[69]

Liu, Y. M., Zhai, Q. G., Hu, P. Y., et al., 2022a. Evolution of the Paleo⁃Tethys Ocean: Constraints from Detrital Zircons of the Paleozoic to Triassic Clastic Rocks in the Qiangtang Terrane, Tibetan Plateau. Journal of Asian Earth Sciences, 232: 105226. https://doi.org/10.1016/j.jseaes.2022.105226

[70]

Luo, A. B., Fan, J. J., Hao, Y. J., et al., 2020. Aptian Flysch in Central Tibet: Constraints on the Timing of Closure of the Bangong⁃Nujiang Tethyan Ocean. Tectonics, 39(12): e2020TC006198. https://doi.org/10.1029/2020TC006198

[71]

Luo, A. B., Fan, J. J., Zhang, B. C., et al., 2021. From Arc⁃Continent Collision to Ocean Closure: Lower Cretaceous Shamuluo Formation in the Western Segment of the Bangong⁃Nujiang Suture Zone, Central Tibet. Geoscience Frontiers, 12(5): 101207. https://doi.org/10.1016/j.gsf.2021.101207

[72]

Luo, A. B., Fan, J. J., Zhang, B. C., et al., 2022. Cretaceous Uplift History of the Tibetan Plateau: Insights from the Transition of Marine to Terrestrial Facies in Central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111103. https://doi.org/10.1016/j.palaeo.2022.111103

[73]

Luo, L., Wang, D. B., Chu, D. L., 2023. Age Constraints on the Manghuihe Formation in the Jiukang Area, Western Yunnan: Evidence from Zircon U⁃Pb Age and Bivalve Fossils. Geological Bulletin of China, 42(S1): 239-251 (in Chinese with English abstract).

[74]

Luo, L., Wang, D. B., Yin, F. G., et al., 2018. Depositional Sequence and Carbon Isotope Chemostratigraphy of the Lower Carboniferous Xiangshan and Lower Permian Dingjiazhai Formations in Baoshan Block, Yunnan: Paleogeographic Implications. Acta Sedimentologica Sinica, 36(2): 291-301 (in Chinese with English abstract).

[75]

Ma, A. L., Hu, X. M., Garzanti, E., et al., 2017. Sedimentary and Tectonic Evolution of the Southern Qiangtang Basin: Implications for the Lhasa⁃Qiangtang Collision Timing. Journal of Geophysical Research: Solid Earth, 122(7): 4790-4813. https://doi.org/10.1002/2017JB014211

[76]

Ma, A. L., Hu, X. M., Garzanti, E., et al., 2023. Paleogeographic and Tectonic Evolution of Mesozoic Qiangtang Basins (Tibet). Tectonophysics, 862: 229957. https://doi.org/10.1016/j.tecto.2023.229957

[77]

Ma, A. L., Hu, X. M., Kapp, P., et al., 2020. Pre⁃Oxfordian (>163 Ma) Ophiolite Obduction in Central Tibet. Geophysical Research Letters, 47(10): e2019GL086650. https://doi.org/10.1029/2019gl086650

[78]

Meng, J., Zhao, X. X., Wang, C. S., et al., 2018. Palaeomagnetism and Detrital Zircon U⁃Pb Geochronology of Cretaceous Redbeds from Central Tibet and Tectonic Implications. Geological Journal, 53(5): 2315-2333. https://doi.org/10.1002/gj.3070

[79]

Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012

[80]

Mo, X. X., Lu, F. X., Shen, S. Y., et al., 1993. Tethys Volcanism and Mineralization in the Sanjiang Area. Geological Publishing House, Beijing (in Chinese).

[81]

Mo, X. X., Pan, G. T., 2006. From the Tethys to the Formation of the Qinghai⁃Tibet Plateau: Constrained by Tectono⁃Magmatic Events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract).

[82]

Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the india⁃Asia Collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract).

[83]

Nimaciren, Xie, R. W., 2005. Discovery of Middle Triassic Strata in the Nagqu Area, Northern Tibet, China, and Its Geological Implications. Regional Geology of China, 24(12): 1141-1149 (in Chinese with English abstract).

[84]

Niu, Z. J., Duan, Q. F., Wang, J. X., et al., 2010. Early Permian (Cisuralian) Lithostratigraphical Succession in Volcanic⁃Sedimentary Setting from Southern Qinghai. Earth Science, 35(1): 11-21 (in Chinese with English abstract).

[85]

Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial⁃Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract).

[86]

Pan, G. T., Wang, L. Q., Geng, Q. R., et al., 2020. Space⁃Time Structure of the Bangonghu⁃Shuanghu⁃Nujiang⁃Changning⁃Menglian Mega⁃Suture Zone: A Discussion on Geology and Evolution of the Tethys Ocean. Sedimentary Geology and Tethyan Geology, 40(3): 1-19 (in Chinese with English abstract).

[87]

Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai⁃Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018

[88]

Pan, G. T., Wang, L. Q., Zhang, W. P., et al., 2013. Geotectonic Maps and Instructions for the Qinghai⁃Tibet Plateau and Adjacent Areas (l∶1 500 000). Geological Publishing House, Beijing (in Chinese).

[89]

Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28 (in Chinese with English abstract).

[90]

Peng, T. P., Wilde, S. A., Wang, Y. J., et al., 2013. Mid⁃Triassic Felsic Igneous Rocks from the Southern Lancangjiang Zone, SW China: Petrogenesis and Implications for the Evolution of Paleo⁃Tethys. Lithos, 168: 15-32. https://doi.org/10.1016/j.lithos.2013.01.015

[91]

Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2014. Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive Rocks from the Yidun Terrane, Eastern Tibetan Plateau: Petrogenesis and Their Bearings with Cu Mineralization. Journal of Asian Earth Sciences, 80: 18-33. https://doi.org/10.1016/j.jseaes.2013.10.028

[92]

Pullen, A., Kapp, P., Gehrels, G. E., et al., 2008. Triassic Continental Subduction in Central Tibet and Mediterranean⁃Style Closure of the Paleo⁃Tethys Ocean. Geology, 36(5): 351. https://doi.org/10.1130/g24435a.1

[93]

Qinghai of Geological Institute Survey, 2024. Regional Geology of Qinghai Province. Geological Publishing House, Beijing (in Chinese).

[94]

Ran, B., Wang, C. S., Zhao, X. X., et al., 2012. New Paleomagnetic Results of the Early Permian in the Xainza Area, Tibetan Plateau and Their Paleogeographical Implications. Gondwana Research, 22(2): 447-460. https://doi.org/10.1016/j.gr.2011.11.014

[95]

Shen, S. Z., Ding, L., Zhu, M. Y., et al., 2024a. Preface to Integrative Stratigraphy, Biotas, and Paleogeographical Evolution of the Qinghai⁃Tibetan Plateau and Its Surrounding Areas. Science China Earth Sciences, 67(4): 895-898. https://doi.org/10.1007/s11430⁃023⁃1222⁃1

[96]

Shen, S. Z., Zhang, Y. C., Yuan, D. X., et al., 2024b. Permian Integrative Stratigraphy, Biotas, Paleogeographical and Paleoclimatic Evolution of the Qinghai⁃ Tibetan Plateau and Its Surrounding Areas. Science China Earth Sciences, 67(4): 1107-1151. https://doi.org/10.1007/s11430⁃023⁃1126⁃3

[97]

Shi, R. D., Griffin, W. L., O’Reilly, S. Y., et al., 2012. Melt/Mantle Mixing Produces Podiform Chromite Deposits in Ophiolites: Implications of Re⁃Os Systematics in the Dongqiao Neo⁃Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1): 194-206. https://doi.org/10.1016/j.gr.2011.05.011

[98]

Sichuan of Geological Institute Survey, 2024. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese).

[99]

Sun, D. L., Zhang, B. G., 1979. Several Problems of Marine Jurassic System in the Karakoram⁃Tangula Mountain Areas. Acta Stratigraphica Sinica, 3(4): 317-321 (in Chinese).

[100]

Sun, G. Y., Hu, X. M., Sinclair, H. D., 2017. Early Cretaceous Palaeogeographic Evolution of the Coqen Basin in the Lhasa Terrane, Southern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 101-118. https://doi.org/10.1016/j.palaeo.2017.06.006

[101]

Sun, X. M., Jian, P., 2004. The Wilson Cycle of the Jinshajiang Paleo⁃Tethys Ocean, in Western Yunnan and Western Sichuan Provinces. Geological Review, 50(4): 343-350 (in Chinese with English abstract).

[102]

Tang, Y., Qin, Y. D., Gong, X. D., et al., 2020. Discovery of Eclogites in Jinsha River Suture Zone, Gonjo County, Eastern Tibet and Its Restriction on Paleo⁃Tethyan Evolution. China Geology, 3(1): 83-103. https://doi.org/10.31035/cg2020003

[103]

Tong, J. N., Chu, D. L., Miao, X., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Triassic in China. Journal of Stratigraphy, 45(3): 340-363 (in Chinese with English abstract).

[104]

Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One⁃Way Continental Rupture⁃Drift in the Tethyan Evolution: Subduction⁃Driven Plate Tectonics. Science China Earth Sciences, 62(12): 2005-2016. https://doi.org/10.1007/s11430⁃019⁃9393⁃4

[105]

Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial⁃Temporal Framework of Shiquanhe⁃Laguoco⁃ Yongzhu⁃Jiali Ophiolite Mélange Zone, Qinghai⁃Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784 (in Chinese with English abstract).

[106]

Wang, B. D., Wang, L. Q., Chen, J. L., et al., 2014. Triassic Three⁃Stage Collision in the Paleo⁃Tethys: Constraints from Magmatism in the Jiangda⁃Deqen⁃Weixi Continental Margin Arc, SW China. Gondwana Research, 26(2): 475-491. https://doi.org/10.1016/j.gr.2013.07.023

[107]

Wang, B. D., Wang, L. Q., Wang, D. B., et al., 2018. Tectonic Evolution of the Changning⁃Menglian Proto⁃Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8): 2527-2550 (in Chinese with English abstract).

[108]

Wang, B. D., Wang, L. Q., Zhou, D. Q., et al., 2021. Co⁃Shuanghu⁃Changning⁃Menglian Suture Zone: The Boundary between Gondwanaland and Pan⁃Cathaysia Mainland in the Qinghai⁃Tibet Plateau. Geological Bulletin of China, 40(11): 1783-1798 (in Chinese with English abstract).

[109]

Wang, C. S., Liu, Z. F., Li, X. H., et al., 1999. Xigaze Forearc Basin and Yarlung Zangbo Suture Zone, Tibet. Geological Publishing House, Beijing (in Chinese).

[110]

Wang, D. B., Tang, Y., Luo, L., et al., 2024. Timing of Closure of the Jinshajiang Paleo⁃Tethys Ocean in Eastern Tibet: Constraints from the Early⁃Middle Triassic Unconformity and Collision⁃Related Igneous Rock in the Eastern Margin of Qamdo Block. Acta Petrologica Sinica, 40(12): 3801-3816 (in Chinese with English abstract).

[111]

Wang, G. H., Li, D., Liang, X., 2023. Structure, Composition and Evolution of the Indosinian South Qiantang Accretionary Complex. Earth Science Frontiers, 30(3): 242-261 (in Chinese with English abstract).

[112]

Wang, H. N., Liu, F. L., Santosh, M., et al., 2020. Subduction Erosion Associated with Paleo⁃Tethys Closure: Deep Subduction of Sediments and High Pressure Metamorphism in the SE Tibetan Plateau. Gondwana Research, 82: 171-192. https://doi.org/10.1016/j.gr.2020.01.001

[113]

Wang, J., Fu, X. G., Chen, W. X., et al., 2008. Chronology and Geochemistry of the Volcanic Rocks in Woruo Mountain Region, Northern Qiangtang Depression: Implications to the Late Triassic Volcanic⁃Sedimentary Events. Science in China Series D: Earth Sciences, 51(2): 194-205. https://doi.org/10.1007/s11430⁃008⁃0010⁃y

[114]

Wang, J. G., Hu, X. M., Garzanti, E., et al., 2017. The Birth of the Xigaze Forearc Basin in Southern Tibet. Earth and Planetary Science Letters, 465: 38-47. https://doi.org/10.1016/j.epsl.2017.02.036

[115]

Wang, J. P., Liu, Y. M., Li, Q. S., et al., 2002. Stratigraphic Division and Geological Significance of the Jurassic Cover Sediments in the Eastern Sector of the Bangong Lake⁃Dêngqên Ophiolite Belt in Tibet. Regional Geology of China, 21(7): 405-410 (in Chinese with English abstract).

[116]

Wang, L. Q., Pan, G. T., Ding, J., et al., 2013. Geotectonic Maps and Instructions for the Qinghai⁃Tibet Plateau and Adjacent Areas (1∶1 500 000). Geological Publishing House, Beijing (in Chinese).

[117]

Wang, N. W., Wang, S. E., Liu, G. F., et al., 1983. The Juro⁃Cretaceous Marine⁃Terrestrial Alternating Formations in Lhasa Area, Xizang(Tibet). Acta Geological Sinica, 57(1): 83-95 (in Chinese with English abstract).

[118]

Wang, W., Dong, Z. Z., Wang, C. Y., 2004. The Conodont Ages of the Dingjiazhai and Woniusi Formations in the Baoshan Area, Western Yunnan. Acta Micropalaeontologica Sinica, 21(3): 273-282 (in Chinese with English abstract).

[119]

Wang, Y. J., Wang, J. P., Pei, F., 2002. A Late Triassic Radiolarian Fauna in the Dingqing Ophiolite Belt, Xizang (Tibet). Acta Micropalaeontologica Sinica, 19(4): 323-336 (in Chinese with English abstract).

[120]

Wei, Y. Q., Zhao, Z. D., Niu, Y. L., et al., 2017. Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tibet: Initiation of Back⁃Arc Rifting and Crustal Accretion in the Southern Lhasa Terrane. Lithos, 278: 477-490. https://doi.org/10.1016/j.lithos.2017.02.013

[121]

Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract).

[122]

Wu, G. C., Ji, Z. S., Lash, G. G., et al., 2024. Triassic Integrative Stratigraphy, Biotas, and Paleogeographical Evolution of the Qinghai⁃Tibetan Plateau and Its Surrounding Areas. Science China Earth Sciences, 67(4): 1152-1194. https://doi.org/10.1007/s11430⁃023⁃1188⁃5

[123]

Wu, G. Y., Wang, X. P., Zhong, D. L., et al., 2000. Two Arc Volcanics Suites of Permian Early Triassic Bordering Sichuan, Yunnan and Xizang, China. Chinese Journal of Geology, 35(3): 350-362 (in Chinese with English abstract).

[124]

Wu, J., Xu, Y. D., An, X. Y., et al., 2014. Evolution of Neoproterozoic⁃Mesozoic Sedimentary Basins in Gangdese Area, Tibetan Plateau. Earth Science, 39(8): 1052-1064 (in Chinese with English abstract).

[125]

Wu, Z., Ji, J. P., Wang, B. D., et al., 2021. Zircon U⁃Pb Age, Geochemical Characteristics and Constraints on the Jinshajiang Paleo⁃Tethys Collision of Early⁃Middle Triassic Malasongduo Formation Volcanic Rocks from the Gongjue Area, Eastern Tibet. Geological Bulletin of China, 40(11): 1877-1891 (in Chinese with English abstract).

[126]

Xi, D. P., Li, G. B., Jiang, S. J., et al., 2024. Cretaceous Integrative Stratigraphy, Biotas, and Paleogeographical Evolution of the Qinghai⁃Tibetan Plateau and Its Surrounding Areas. Science China Earth Sciences, 67(4): 1229-1289. https://doi.org/10.1007/s11430⁃023⁃1303⁃2

[127]

Xizang of Geological Institute Survey, 2024. Regional Geology of Xizang Autonomous Region. Geological Publishing House, Beijing (in Chinese).

[128]

Xing, G. F., Feng, Y. M., 2015. Volcanic Tectonic Map of China (1 : 2 500 000). Geological Publishing House, Beijing (in Chinese).

[129]

Xu, W., Liu, F. L., Dong, Y. S., 2020. Cambrian to Triassic Geodynamic Evolution of Central Qiangtang, Tibet. Earth⁃Science Reviews, 201: 103083. https://doi.org/10.1016/j.earscirev.2020.103083

[130]

Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2007. Orogenic Plateau: Terrane Amalgamation, Collision and Uplift in the Qinghai⁃Tibet Plateau. Geological Publishing House, Beijing (in Chinese).

[131]

Xu, Z. Q., Yang, J. S., Li, H. Q., et al., 2012. Indosinian Collision⁃Orogenic System of Chinese Continent and Its Orogenic Mechanism. Acta Petrologica Sinica, 28(6): 1697-1709 (in Chinese with English abstract).

[132]

Xue, W. W., Ma, A. L., Hu, X. M., 2020. The Redefinition of the Jurassic⁃Cretaceous Lithostratigraphic Framework in the Qiangtang Basin, Xizang Plateau. Geological Review, 66(5): 1114-1129 (in Chinese with English abstract).

[133]

Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011. Permo⁃Triassic Arc Magmatism in Central Tibet: Evidence from Zircon U⁃Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3-4): 270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006

[134]

Yi, Z. Y., Huang, B. C., Chen, J. S., et al., 2011. Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China: Implications to Onset of the India⁃Asia Collision and Size of Greater India. Earth and Planetary Science Letters,309: 153-165. https://doi.org/10.1016/j.epsl.2011.07.001

[135]

Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan⁃Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211

[136]

Yin, F. G., Luo, L., Ren, F., 2022. Reconstructing the Tectonics and Paleogeography during the Ocean⁃Land Transition of the “Sanjiang” Orogenic Belt in Southwest China. Geological Bulletin of China, 41(11): 1899-1914 (in Chinese with English abstract).

[137]

Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo⁃Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021GL096902. https://doi.org/10.1029/2021GL096902

[138]

Yunnan of Geological Institute Survey, 2024. Regional Geology of Yunnan Province. Geological Publishing House, Beijing (in Chinese).

[139]

Zeng, M., Zhang, X., Cao, H., et al., 2016. Late Triassic Initial Subduction of the Bangong⁃Nujiang Ocean beneath Qiangtang Revealed: Stratigraphic and Geochronological Evidence from Gaize, Tibet. Basin Research, 28(1): 147-157. https://doi.org/10.1111/bre.12105

[140]

Zeng, X. W., Wang, M., Li, H., et al., 2022. Early Jurassic Intra⁃Oceanic Subduction Initiation along the Bangong Meso⁃Tethys: Geochemical and Geochronological Evidence from the Shiquanhe Ophiolitic Complex, Western Tibet. Lithos, 416: 106657. https://doi.org/10.1016/j.lithos.2022.106657

[141]

Zhai, Q. G., Jahn, B. M., Zhang, R. Y., et al., 2011a. Triassic Subduction of the Paleo⁃Tethys in Northern Tibet, China: Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370. https://doi.org/10.1016/j.jseaes.2011.07.023

[142]

Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011b. Triassic Eclogites from Central Qiangtang, Northern Tibet, China: Petrology, Geochronology and Metamorphic P⁃T Path. Lithos, 125(1-2): 173-189. https://doi.org/10.1016/j.lithos.2011.02.004

[143]

Zhang, K. X., He, W. H., Jin, J. S., et al., 2020. Application of OPS to Division of Tectonic⁃Strata Regions in Orogenic Belts. Earth Science, 45(7): 2305-2325 (in Chinese with English abstract).

[144]

Zhang, K. X., He, W. H., Luo, M. S., et al., 2017. The Sedimentary Construction and Tectonic of China. Geological Publishing House, Beijing (in Chinese).

[145]

Zhang, K. X., He, W. H., Xu, Y. D., et al., 2016. Palaeogeographic Distribution and Tectonic Evolution of OPS in China. Earth Science Frontiers, 23(6): 24-30 (in Chinese with English abstract).

[146]

Zhang, K. X., He, W. H., Xu, Y. D., et al., 2021. Reconstruction of Main Types for Oceanic Plate Strata in the Subductionaccretionary Complex and Feature of Sequence for each Type: An Example from the Qinghai⁃Tibet Tethyan Permian Strata. Sedimentary Geology and Tethyan Geology, 41(2): 137-151 (in Chinese with English abstract).

[147]

Zhang, K. X., Song, B. W., He, W. H., et al., 2025. Distribution and Evolution of the Tethyan OPS in the Central⁃Southern Qinghai⁃Xizang Region. Earth Science, 50(3): 1162-1200 (in Chinese with English abstract).

[148]

Zhang, K. X., Wang, G. C., Ji, J. L., et al., 2010. Paleogene⁃Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai⁃Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271-1294. https://doi.org/10.1007/s11430⁃010⁃4048⁃2

[149]

Zhang, Q. H., Ding, L., Cai, F. L., et al., 2011. Early Cretaceous Gangdese Retroarc Foreland Basin Evolution in the Selin Co Basin, Central Tibet: Evidence from Sedimentology and Detrital Zircon Geochronology. Geological Society, London, Special Publications, 353(1): 27-44. https://doi.org/10.1144/sp353.3

[150]

Zhang, Y. C., Zhang, Y. J., Yuan, D. X., et al., 2019. Stratigraphic and Paleontological Constraints on the Opening Time of the Bangong⁃Nujiang Ocean. Acta Petrologica Sinica, 35(10): 3083-3096 (in Chinese with English abstract).

[151]

Zhang, Y. J., Zhang, Y. C., Wang, D. B., et al., 2021. Precambrian⁃Paleozoic Strata and Their Ages in the Central and Southern Tibetan Plateau. Geological Bulletin of China, 40(11): 1814-1835 (in Chinese with English abstract).

[152]

Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001

[153]

Zhou, Y., Zhao, Y. S., Cai, Y. F., et al., 2023. Permian⁃Triassic Magmatism in the Qin⁃Fang Tectonic Belt, SW China: New Insights into Tectonic Evolution of the Eastern Paleo⁃Tethys. Journal of Earth Science, 34(6): 1704-1716. https://doi.org/10.1007/s12583⁃020⁃1111⁃6

[154]

Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei⁃Bunbury Large Igneous Province: Remnants Identified in Present⁃Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1

[155]

Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023

[156]

Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020⁃6814.50.5.442

[157]

Zhu, D. C., Pan, G. T., Wang, L. Q., et al., 2008. Spatial⁃Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China. Geological Bulletin of China, 27(4): 458-468 (in Chinese with English abstract).

[158]

Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1

[159]

Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre⁃Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002

[160]

Zhu, R. X., Zhao, P., Zhao, L., 2022. Tectonic Evolution and Geodynamics of the Neo⁃Tethys Ocean. Science China Earth Sciences, 65(1): 1-24. https://doi.org/10.1007/s11430⁃021⁃9845⁃7

[161]

Zhu, Z. X., Wang, L. Z., Zhao, Y. N., et al., 1993. A New Stratigraphic Sequence of the Xikang Group in Sichuan. Regional Geology of China, 12(1): 18-27 (in Chinese with English abstract).

[162]

Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo⁃Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144: 145-160. https://doi.org/10.1016/j.lithos.2012.04.020

[163]

Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2013. Late Permian⁃Triassic Magmatic Evolution in the Jinshajiang Orogenic Belt, SW China and Implications for Orogenic Processes Following Closure of the Paleo⁃Tethys. American Journal of Science, 313(2): 81-112. https://doi.org/10.2475/02.2013.02

基金资助

中国地质调查局项目(DD20221645)

中国地质调查局项目(DD20190370)

国家自然科学基金项目(41772107)

AI Summary AI Mindmap
PDF (6466KB)

67

访问

0

被引

详细

导航
相关文章

AI思维导图

/