中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单

吴剑 ,  彭勇 ,  孔少飞 ,  胡尧 ,  覃旭菁 ,  吴铮 ,  祁士华

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3441 -3453.

PDF (1218KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3441 -3453. DOI: 10.3799/dqkx.2025.090

中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单

作者信息 +

Emission Characteristics and Inventory of PCDD/Fs in Fine Particulate Matter from Domestic Biomass and Coal Combustion in China

Author information +
文章历史 +
PDF (1246K)

摘要

基于稀释通道采样系统开展室内模拟燃烧实验,采用同位素稀释高分辨气相色谱‒高分辨质谱法,分析了民用生物质和煤炭燃烧细颗粒物(PM2.5)中二噁英(PCDD/Fs)的排放特征并计算得到其排放因子.结合中国燃料消耗和人口密度数据,基于“自下而上”的方法构建了中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放清单.研究结果表明:(1)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度在0.181~4.700 pg/m3之间,国际毒性当量(I-TEQ)浓度范围为0.081~2.300 pg I-TEQ/m3,其中,2,3,7,8-四氯二苯并对二噁英(2,3,7,8-T4CDD)(P<0.01,R2=0.90)这一单体同系物的质量浓度与总I-TEQ浓度存在强相关性,可作为民用生物质和煤炭燃烧PM2.5中PCDD/Fs毒性的良好指标.(2)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度排放因子分别为(1.82±0.97) ng/kg和(4.09±2.76) ng/kg;I-TEQ浓度排放因子分别为(0.40±0.21) ng I-TEQ/kg和(0.53±0.24) ng I-TEQ/kg.(3)2021年,民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量为90.0 g I-TEQ,从空间上看,PCDD/Fs的高排放区主要集中在东北和华东地区,排放高值大于8 μg I-TEQ/km2.与前人研究相比,垃圾焚烧(22.56 g I-TEQ)和工业燃烧(208 g I-TEQ)PM2.5中PCDD/Fs的排放量分别是民用生物质和煤炭燃烧排放量的0.2倍和1.5倍.这表明,民用生物质和煤炭燃烧是PM2.5中PCDD/Fs排放不容忽视的重要来源.(4)民用生物质和煤炭燃烧PM2.5中PCDD/Fs排放导致的个人吸入的平均健康风险分别为(9.5±7.2)×10-5和(3.1±1.7)×10-5,分别是从事各类工业生产活动的职业工人((2.88±2.45)×10-5)的3.3倍和1.1倍.

Abstract

Indoor simulation combustion experiments were performed using a dilution tunnel sampling system. The emission characteristics of PCDD/Fs in PM2.5 from domestic biomass and coal combustion were analyzed using isotope dilution high-resolution gas chromatography/mass spectrometry (HRGC/HRMS), with subsequent calculation of emission factors. By integrating China’s fuel consumption and population density data, we developed a “bottom-up” emission inventory for PM2.5-bound PCDD/Fs from domestic biomass and coal combustion in China. The key findings are as follows: (1) The mass concentrations of PCDD/Fs in PM2.5 from domestic biomass and coal combustion ranged from 0.181 to 4.700 pg/m3, with international toxic equivalent (I-TEQ) concentrations of 0.081 to 2.300 pg I-TEQ/m3. Congener analysis revealed that 2,3,7,8-T4CDD (P <0.01, R2=0.90) showed strong correlations with I-TEQ concentration, suggesting its potential as reliable toxicity indicators for PM2.5-bound PCDD/Fs from domestic biomass and coal combustion. (2) The mass-based emission factors of PCDD/Fs in PM2.5 were (1.82±0.97) ng/kg for biomass combustion and (4.09±2.76) ng/kg for coal combustion. The corresponding I-TEQ emission factors were (0.40±0.21) ng I-TEQ/kg (domestic biomass) and (0.53±0.24) ng I-TEQ/kg (domestic coal). (3) In 2021, the total emissions of PCDD/Fs in PM2.5 from domestic biomass and coal combustion reached 90.0 g I-TEQ. With spatial analysis showing emission hotspots (>8 μg I-TEQ/km2) concentrated in Northeast and East China. Compared to previous studies, the emissions of PCDD/Fs in PM2.5 from waste incineration (22.56 g I-TEQ) and industrial combustion (208 g I-TEQ) were 0.2 times and 1.5 times those from domestic biomass and coal combustion, respectively. These results highlight that domestic biomass and coal combustion represent non-negligible and substantial sources of PCDD/Fs in PM2.5. (4) The estimated inhalation cancer risks were (9.5±7.2)×10-5 for domestic biomass combustion and (3.1±1.7)×10-5 for domestic coal combustion, representing 3.3-fold and 1.1-fold increases respectively over occupational exposure risks for industrial workers ((2.88±2.45)×10-5).

Graphical abstract

关键词

微粒排放 / 二噁英 / 民用生物质 / 民用煤炭 / 排放特征 / 排放清单 / 大气污染.

Key words

particulate emissions / PCDD/Fs / domestic biomass / domestic coal / emission characteristics / emission inventory / air pollution

引用本文

引用格式 ▾
吴剑,彭勇,孔少飞,胡尧,覃旭菁,吴铮,祁士华. 中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单[J]. 地球科学, 2025, 50(09): 3441-3453 DOI:10.3799/dqkx.2025.090

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

多氯二苯并对二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)统称为二噁英(PCDD/Fs),作为《斯德哥尔摩公约》首批管控的持久性有机污染物(POPs),因其极高的环境持久性和生物累积性而备受关注(Lammel et al., 2013).PCDD/Fs类化合物具有显著的“三致”效应(致癌、致畸、致突变),其中2,3,7,8⁃四氯二苯并二噁英(2,3,7,8⁃T4CDD)被世界卫生组织认定为已知毒性最强的化学物质之一,其毒性当量因子(TEF)被作为评估其他PCDD/Fs类化合物毒性的基准(Grandesso et al., 2011Lei et al., 2021).流行病学研究表明,长期暴露于PCDD/Fs可导致内分泌紊乱、免疫抑制、生殖发育障碍等多种健康危害(Hites et al., 2011Li et al., 2020).由于PCDD/Fs的毒性和环境持久性,它已被列为应被禁止或限制的POPs(Salian et al., 2019).

传统研究表明,PCDD/Fs主要来自垃圾燃烧和工业过程(Quaß et al., 2000).然而,近年来,随着工业源排放控制的不断加强,民用固体燃料燃烧对PCDD/Fs排放的贡献日益凸显.全球范围内,约30亿人口仍在使用生物质和煤炭进行炊事和取暖.在中国农村地区,有超过1.8亿户家庭依赖生物质和煤炭作为主要生活能源(Ward and Hardy, 1991Penner and Dickinson, 1992Andreae and Merlet, 2001Akagi et al., 2011).与集中式工业源相比,这些分散式民用燃烧源燃烧效率低、缺乏污染物控制设施、使用时间长,通常会排放更多的气态和颗粒态污染物(Chen et al., 2011Zhang et al., 2017Meng et al., 2019Ssebugere et al., 2019).颗粒物作为大气中的重要介质(刘福江等,2023),与环境和人体健康密切相关.其中,细颗粒物(PM2.5)巨大的比表面积(通常可达5~20 m2/g)和丰富的表面官能团,使其对PCDD/Fs等疏水性有机污染物具有极强的吸附能力(刘海彪等,2016).Wu et al. (2021a)的研究表明,在民用固体燃料燃烧过程中,颗粒相PCDD/Fs占总毒性当量排放因子的88.7%~91.6%,而气相PCDD/Fs的贡献率仅为8.4%~11.3%.民用固体燃料燃烧会显著增加室内PCDD/Fs浓度(Zhang et al., 2022).在明火和低效炉灶中使用固体燃料会加剧环境中的PCDD/Fs暴露,导致急性呼吸道感染、慢性阻塞性肺病和癌症等健康问题(Pan et al., 2021).因此,开展民用生物质和煤炭PM2.5中PCDD/Fs排放研究对于健康风险防控和相关控制政策制定都具有重要意义.

目前,在民用生物质和煤炭的燃烧排放方面,相关研究更多关注PM2.5中的碳质组分、重金属、水溶性离子和多环芳烃等的排放特性,仅有少数研究对民用生物质燃烧PM2.5中的PCDD/Fs排放进行了实测.对于煤炭燃烧的PCDD/Fs排放研究主要集中在工业燃煤,主要是煤与工业污泥共燃烧、煤与固体废物混合焚烧等(段锋等, 2012; Li et al., 2015b),关于民用煤炭燃烧PM2.5中PCDD/Fs的排放实测严重滞后.在排放清单方面,中国PCDD/Fs排放清单的研究起步相对较晚,且主要集中在垃圾焚烧和工业燃烧源(Zou et al., 2012Wang et al., 2016Zhou et al., 2018Fu et al., 2022),目前,国内关于民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放清单仍未见报道.

本研究通过室内模拟燃烧装置和稀释通道采样系统,采用同位素稀释高分辨气相色谱‒高分辨质谱法,对民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放特征进行分析,获得了其PCDD/Fs排放因子,构建了中国民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放清单,并评估了其健康风险.研究结果为当前的PCDD/Fs排放研究提供了新的认识,同时,也可为中国PCDD/Fs排放的管理及控制提供有效的科学支撑.

1 材料与方法

1.1 燃料采集和分析

本研究从不同省份的农村地区搜集获得了4种民用生物质(木柴、杉木、竹子和荔枝木)和3种民用煤炭,代表了当地居民日常使用的主要燃料类型.燃烧炉具选择了市场中可购买的民用炉具.民用生物质和煤炭样品储存在自然通风的条件下.在实验开始前,将样品在室外晾晒数日并进行自然风干.

采用德国Elementar公司生产的Elemental Analyzer Vario EL III元素分析仪对民用生物质和煤炭样品中C、H、N、S四种元素的含量进行分析,样品量为0.02 mg~1 g,测量精度为C、H、N、S<0.1% abs,即测量值与真实值之间的偏差上限为0.1%.测得的民用生物质和煤炭样品中的元素含量数据如表1所示(覃旭菁等,2025).

1.2 室内模拟燃烧实验

基于稀释通道采样系统(Dekati FPS⁃4000,芬兰)(孔少飞等,2014)开展室内模拟燃烧实验.采样系统图参照Wu et al.(2022).燃烧炉具置于烟尘罩下,调节烟尘罩高度,以适应燃烧炉具.民用生物质样品直接在燃烧室的燃烧炉具内进行燃烧,每次生物质燃烧约2 kg,待生物质完全燃烧后(15~ 20 mins)停止采样.民用煤炭燃烧前先用少量生物质将煤炭引燃,待引燃物完全燃烧(不影响煤炭燃烧产物的测定),再放进燃烧炉具中.每次煤炭燃烧约0.3~0.5 kg,待煤炭完全燃烧后(1~2 h)停止采样.对民用生物质和煤炭燃烧所产生的烟气,使用采样枪进行等速采样,将一定体积的烟气抽至稀释通道采样系统中.采样枪置于烟囱内,比火焰高约2 m.烟气进入采样舱前先经过除湿器进行干燥,随后在采样舱内与一定体积的洁净空气充分混合,并送入稀释舱进行稀释,稀释倍数约为18~20倍.稀释后的烟气经干燥净化冷却至环境温度后,使用PM2.5切割头将烟气中的颗粒物采集到石英纤维滤膜上,采样平均流量约为16.67 L/min,烟气平均流速约为259.6 L/min.将电子秤置于燃烧炉具下方,用以记录生物质和煤炭燃烧前的初始质量和完全燃烧后其残渣的最终质量.

1.3 源采集样品分析

用铝箔包裹滤膜样品并置于600 ℃的马弗炉中加热6 h,确保滤膜表面无折痕后密封保存.样品前处理前,将所有设备使用碱性洗涤剂和水,并用甲醇、正己烷彻底清洗,确保无污染,每批滤膜进行空白试验以确保准确性和洁净度,所有接口处禁止使用油脂.

在提取样品中的PCDD/Fs前,添加四氯代化合物作为内标,内标量为0.4~2.0 ng.将滤膜放入索氏提取器中,用甲苯提取16~24 h.提取后,根据样品中PCDD/Fs的浓度,分取25%~100%的样品溶液作为分析样品,其余冷藏保存.使用旋转蒸发仪将样品溶液浓缩至1~2 mL,并通过多层硅胶柱进行净化.净化后,通过氮吹法进一步浓缩样品,添加0.4~2.0 ng内标.使用高分辨气相色谱‒高分辨质谱仪(HRGC⁃HRMS)(Dindal et al., 2011)对处理后的样品进行定性分析,并采用同位素稀释法定量PM2.5中17种被认为具有显著毒性的PCDD/Fs同系物的质量浓度和I⁃TEQ浓度.

1.4 PM2.5中PCDD/Fs的排放因子

基于民用生物质和煤炭燃烧的烟气流量和PM2.5中PCDD/Fs的质量浓度或I⁃TEQ浓度分别计算得到其基于质量浓度或I⁃TEQ浓度的PCDD/Fs排放因子.排放因子的计算公式如下所示(Chen et al., 2005Wu et al., 2021b):

EFi =v×c×V×nw×Mi

其中,i代表不同的燃料类型;EFi 代表不同燃料PM2.5中PCDD/Fs的质量浓度或I⁃TEQ浓度排放因子;v代表烟气流量;c代表PM2.5中PCDD/Fs的质量浓度或I⁃TEQ浓度;V代表采样体积;n代表稀释倍数;w代表采样流量;Mi 代表燃料i的燃烧质量.

1.5 PM2.5中PCDD/Fs的排放清单

1.5.1 PM2.5中PCDD/Fs的排放量计算和不确定性分析

基于中国民用生物质和煤炭燃烧的燃料消耗量和排放因子对其PCDD/Fs排放量进行了估算.计算公式如下所示:

Ei=Mi ×EFi

其中,Ei 为不同燃料PM2.5中PCDD/Fs的排放量.式中,民用生物质的燃料消耗量收集自Wu et al. (2021b).民用煤炭的燃料消耗量引用自《中国能源统计年鉴》(国家统计局能源统计司,2015).

采用蒙特卡洛模拟分析排放清单的不确定性.活动水平数据的不确定性为20%(Zhao et al., 2011Ni et al., 2015),通过本研究的实测数据可确定排放因子的不确定性(民用生物质和煤炭的分别为21%和24%).活动水平数据和排放因子均假定为正态分布.在构建分布函数后,使用Crystal Ball软件进行20 000次随机数抽取,计算出在95%置信区间下的不确定性范围.将获得的活动水平数据和排放因子的不确定性传递到排放量估算公式中,最终得出排放清单的不确定性分析结果.

1.5.2 PM2.5中PCDD/Fs的排放空间分布

基于人口密度数据(Zhang et al., 2008; 付晶莹,2014),运用ArcGIS软件的空间分析模块,对民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量进行空间分配.通过以下公式进行计算(Wu et al., 2018):

Ei,j =Pi,jPt,j×Et,j

其中,j代表1 km×1 km的网格;t代表不同的省份;Eij 表示PM2.5中PCDD/Fs的网格化排放量;Pij 代表网格中的人口密度;Ptj 代表人口总量;Etj 表示不同省份中燃料i的PCDD/Fs排放量.

1.6 PM2.5中PCDD/Fs的健康风险评估

吸入PCDD/Fs导致的健康风险(ECR)按照以下公式计算(Wu et al., 2021a):

ECR=IR×Cmean×fr/BW× unit cancer risk (UCR),

其中,IR代表成人的吸入速率(20 Nm3/d);Cmean代表I⁃TEQ个人平均暴露浓度;fr代表吸入因子(0.75);BW代表成人的平均体重(女性60 kg,男性70 kg,平均65 kg);UCR代表单位癌症风险,使用美国环保署(USEPA)的推荐值(1.0×10-3 pg I⁃TEQ∙d-1∙kg-1).

ECR值小于1.0×10-6表明健康风险可忽略不计,ECR值在1.0×10-6和1.0×10-5之间表示低健康风险,ECR值在1.0×10-5和1.0×10-4之间表示中等健康风险,ECR值大于1.0×10-4则表明高健康风险.在癌症风险评估中常用的吸入速率和体重的推荐值引自前人研究(Shih et al., 2008Hu et al., 2013).ECR和风险级别分类的估算方法在前人的研究中有详细描述(Petit et al., 2019).

2 结果与讨论

2.1 民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放特征

民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度和I⁃TEQ浓度如表2所示.民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度平均值分别为1.979和1.070 pg/m3,I⁃TEQ浓度平均值分别为0.413和0.134 pg I⁃TEQ/m3,两者具有相同量级.但不同燃料类型的PCDD/Fs浓度存在差异.民用生物质燃烧PM2.5中PCDD/Fs的质量浓度和I⁃TEQ浓度范围分别为0.544~4.700 pg/m3和0.181~0.950 pg I⁃TEQ/m3;民用煤炭燃烧PM2.5中PCDD/Fs的质量浓度和I⁃TEQ浓度范围分别为0.41~2.30 pg/m3和0.081~0.240 pg I⁃TEQ/m3,这可能与燃料特性的差异有关(Chen et al., 2011).与前人研究相比,本研究测得的结果具有可比性(Lavric et al., 2004Lin et al., 2007Zhang et al., 2017).

PCDFs与PCDDs的比值是解析PCDD/Fs来源、生成途径及环境行为的重要指标(Lohmann and Jones, 1998; 胡吉成等,2021).研究表明,PCDDs主要通过前驱物反应生成,而PCDFs则主要来源于从头合成反应(de novo synthesis)(Wikström et al., 2003).这一差异为识别PCDD/Fs的污染源及其环境归趋提供了关键信息.如表2所示,所有样品基于质量浓度的PCDFs/PCDDs比值均>1,这与工业锅炉中木材燃烧的PCDFs/PCDDs比值结果类似(Chen et al., 2011).这表明,本研究PM2.5中的PCDD/Fs以PCDFs为主,主要通过从头合成反应途径生成(Wikström et al., 2003).

民用生物质和煤炭燃烧PM2.5中17种PCDD/Fs同系物的质量浓度和I⁃TEQ浓度分布如图1所示.从质量浓度分布看,85.7%的民用生物质和煤炭样品都具有最高质量浓度的O8CDD或 2,3,7,8⁃T4CDF,这表明O8CDD或2,3,7,8⁃T4CDF或可作为民用生物质和煤炭燃烧PM2.5中PCDD/Fs质量浓度的特征同系物.从I⁃TEQ浓度分布看,民用生物质和煤炭燃料中,2,3,7,8⁃T4CDD对总I⁃TEQ浓度的贡献最大,平均约占17种同系物I⁃TEQ浓度的31%,远超其余16种同系物.

对17种有毒PCDD/Fs单体同系物的质量浓度与总I⁃TEQ浓度进行线性拟合,以表征其相关性差异(图2).其中,2,3,7,8⁃T4CDD(P<0.01, R2=0.90)的质量浓度与总I⁃TEQ浓度相关性较高,表明2,3,7,8⁃T4CDD可作为民用生物质和煤炭燃烧PCDD/Fs毒性的良好指示物.部分单体同系物的质量浓度与总I⁃TEQ浓度的相关性较弱,甚至未表现出明显的关联特征.这一现象可能与数据分布不适用于线性回归模型有关,表明并非所有单体都适合作为PCDD/Fs的指示物.

2.2 民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放因子

民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放因子如图3所示.民用生物质和煤炭燃烧基于质量浓度的PCDD/Fs排放因子范围分别为0.62~3.17和1.19~7.81 ng/kg,平均值分别为(1.82±0.97)和(4.09±2.76) ng/kg.民用生物质和煤炭燃烧基于I⁃TEQ浓度的PCDD/Fs排放因子范围分别为0.19~0.66和0.23~0.82 ng I⁃TEQ/kg,平均值分别为(0.40±0.21)和(0.53±0.24) ng I⁃TEQ/kg.民用煤炭燃烧基于质量浓度和I⁃TEQ浓度的排放因子分别是民用生物质的2.2倍和1.3倍,总体而言,两者的排放因子处于同一量级.

中国不同源类PM2.5中基于I⁃TEQ浓度的PCDD/Fs排放因子测试结果如表3所示.民用生物质燃烧PM2.5中的PCDD/Fs排放因子范围为0.24~1.60 ng I⁃TEQ/kg(陈德翼等,2011;Black et al., 2012Chang et al., 2014Zhang et al., 2022),露天生物质燃烧PM2.5中的PCDD/Fs排放因子范围为0.7~52.6 ng I⁃TEQ/kg(陈德翼等,2011;Black et al., 2012; Chang et al., 2014; Zhang et al., 2022).本研究中民用生物质燃烧的PCDD/Fs排放因子与先前研究结果具有可比性.民用燃煤PM2.5中的PCDD/Fs排放因子尚未有测试结果,本研究与工业燃煤PM2.5中的PCDD/Fs排放因子进行了对比.工业燃煤PCDD/Fs排放因子范围为0.023~ 0.620 ng I⁃TEQ/kg(Chen, 2004Lin et al., 2007Cheng et al., 2015Li et al., 2015a).相较于经过APCDs处理后的工业煤炭燃烧(Li et al., 2015a),民用燃煤燃烧效率更低,并且缺乏对应的净化处理装置,更易造成PCDD/Fs排放.此外,本研究还与垃圾焚烧PM2.5中的PCDD/Fs排放因子进行了对比.中国垃圾焚烧的PCDD/Fs排放因子范围为0.028~473.970 ng I⁃TEQ/kg(Gao et al., 2009Lei et al., 2017,2021Yang et al., 2019Zhang et al., 2019).美国环保署估计的城市垃圾焚烧的排放因子为30 ng I⁃TEQ/kg,经APCDs处理后降至0.5 ng I⁃TEQ/kg(USEPA, 2025).这表明,相较于垃圾焚烧,民用生物质和煤炭燃烧也会产生大量的PCDD/Fs.

2.3 中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放清单

2.3.1 2021年PM2.5中PCDD/Fs的排放量

2021年全国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量为90.0 g I⁃TEQ.其中民用生物质燃烧的排放量为59.1 g I⁃TEQ,民用燃煤的排放量为30.9 g I⁃TEQ.从不同省份来看(图4),PCDD/Fs排放量存在明显的区域差异.河南、山东、黑龙江、河北、湖南、内蒙古、湖北和吉林等省份的排放量最高,占全国PCDD/Fs排放总量的54.4%.这些省份的共同特点是农村人口密集、民用燃料资源丰富,产生较高的PCDD/Fs排放.相比之下,西藏、上海、海南、北京、天津、青海、宁夏、福建、浙江和重庆等省市的PCDD/Fs排放总量较低,均低于1 g I⁃TEQ,仅占全国排放总量的4.5%.这些地区民用生物质和煤炭使用量较低,民用燃烧产生的PCDD/Fs排放较少.从燃烧类型来看,民用生物质燃烧的PCDD/Fs排放主要集中在黑龙江、河南、山东、吉林、江苏、河北、安徽、湖南、四川、内蒙古、湖北和江西等省份,排放量均超过2 g I⁃TEQ.这些地区的秸秆和薪柴等使用量较大,尤其是在冬季取暖和日常烹饪中,燃烧活动较为频繁.民用煤炭燃烧的PCDD/Fs排放主要集中在河北、山东、湖南、内蒙古、贵州和湖北等省份,排放量均超过2 g I⁃TEQ.这种差异主要与各地区煤炭资源分布、燃烧习惯以及气候条件有关.

基于蒙特卡洛模拟对中国民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放的不确定性进行了分析.结果显示,民用生物质和煤炭燃烧PCDD/Fs排放的不确定性分别为-49.9%~60.9%和-88.8%~108.4%.与陈露露等(2020)的研究相比,本研究通过实测数据获取了中国民用生物质和煤炭燃料的PCDD/Fs排放因子,降低了由排放因子引起的不确定性.因此,本研究的结果合理可靠,可为后续相关研究提供更为准确的数据支撑.

2.3.2 2014-2021年中国PM2.5中PCDD/Fs排放的时空变化特征

2014-2021年中国民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放变化如图5所示.研究结果表明,2014-2021年期间,中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量呈现明显下降趋势,由297.2 g I⁃TEQ降低至90.0 g I⁃TEQ,降幅高达69.7%,这与Song et al. (2023)的研究结果一致.具体而言,民用生物质燃烧PM2.5中的PCDD/Fs排放量由202.8 g I⁃TEQ下降至59.1 g I⁃TEQ,民用煤炭燃烧PM2.5中的PCDD/Fs排放量由94.5 g I⁃TEQ降低至30.9 g I⁃TEQ.这主要和可替代能源或清洁能源的使用以及“煤改气”和“煤改电”等政策的实施有关(Chen et al., 2022).

与其他源类PM2.5中的PCDD/Fs排放相比,2020年,中国工业生物质燃烧释放了约208 g I⁃TEQ的PCDD/Fs(Zhang et al., 2022),城市垃圾焚烧释放了22.56 g I⁃TEQ的PCDD/Fs(Wei et al., 2022),分别是本研究民用生物质和煤炭燃烧排放的1.5倍和0.2倍.这表明,相较于工业燃烧和城市垃圾焚烧,民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放量也处于较高水平,是中国PCDD/Fs排放不容忽视的重要来源,需要实行有效控制.

2021年中国民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放空间分布(1 km×1 km)如图6所示.民用生物质和煤炭燃烧PM2.5中的PCDD/Fs排放在东北地区和华东地区较为集中,排放强度大于8 μg I⁃TEQ/km2.这主要归因于该地区丰富的民用燃料以及相对聚集的农村区域.在其他地区,民用生物质和煤炭燃烧的PCDD/Fs排放分布广泛且分散,大部分地区的单位面积排放量低于 1 μg I⁃TEQ/km2.青藏高原和北方干旱及半干旱地区人口密度小,生物质和煤炭资源相对匮乏,排放强度较低.东部沿海经济区和东南沿海经济区人口密度较高,但此区域经济发达,对民用生物质和煤炭燃料的需求较少,因此排放水平也较低.

2.4 中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的健康风险评估

图7所示,本研究中民用生物质和煤炭燃烧导致的个人吸入PM2.5中PCDD/Fs的平均健康风险分别为(9.5±7.2)×10-5和(3.1±1.7)×10-5,分别为美国环保署推荐的参考安全阈值(1.0×10-6)的95倍和31倍.此外,暴露于民用生物质燃烧的个人健康风险约为暴露于民用煤炭燃烧的3.1倍.值得注意的是,这两种燃烧方式导致的个人健康风险水平分别为从事各类工业生产活动的职业工人((2.88±2.45)×10-5)(Wu et al., 2021a)的3.3倍和1.1倍,表明从事民用生物质和煤炭燃烧活动的人群因吸入PCDD/Fs而面临的健康风险同样值得高度关注.

本研究在评估民用生物质和煤炭燃烧产生的PCDD/Fs个人暴露风险时,仅考虑了吸入暴露途径,导致健康风险结果可能存在低估.未来将会开展更多研究以评估多途径下PCDD/Fs排放对人体健康的潜在危害.

3 结论

(1)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度范围为0.41~4.70 pg/m3,I⁃TEQ浓度范围为0.081~0.950 pg I⁃TEQ/m3;所有样品基于质量浓度的PCDFs/PCDDs比值均>1,表明本研究PM2.5中的PCDD/Fs以PCDFs为主,其主要通过从头合成反应途径生成;2,3,7,8⁃T4CDD(P<0.01, R2=0.90)的质量浓度与总I⁃TEQ浓度相关性较高.

(2)民用生物质和煤炭燃烧PM2.5中PCDD/Fs基于质量浓度的平均排放因子分别为(1.82±0.97) ng/kg和(4.09±2.76) ng/kg;基于I⁃TEQ浓度的平均排放因子分别为(0.40±0.21) ng I⁃TEQ/kg和(0.53±0.24) ng I⁃TEQ/kg);相较于垃圾焚烧和工业燃煤,民用生物质和煤炭燃烧也会产生大量的PCDD/Fs.

(3)2021年,中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量为90.0 g I⁃TEQ,其中,民用生物质燃烧PCDD/Fs排放量为59.1 g I⁃TEQ,民用煤炭燃烧PCDD/Fs排放量为30.9 g I⁃TEQ;从空间分布上来看,中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs排放高值主要集中在东北地区和华东地区,排放强度大于8 μg I⁃TEQ/km2.前人研究中,工业燃烧和城市垃圾焚烧释放的PCDD/Fs分别是本研究民用生物质和煤炭燃烧排放的1.5倍和0.2倍.这表明,民用生物质和煤炭燃烧也是中国PCDD/Fs排放的重要来源,需要引起足够重视.

(4)民用生物质和煤炭燃烧导致的个人吸入PCDD/Fs的平均健康风险分别为(9.5±7.2)×10-5和(3.1±1.7)×10-5,分别为从事各类工业生产活动的职业工人((2.88±2.45)×10-5)的3.3倍和1.1倍.

参考文献

[1]

Akagi, S. K., Yokelson, R., Wiedinmyer, C., et al., 2011. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmospheric Chemistry and Physics, 11(9): 4039-4072.

[2]

Andreae, M. O., Merlet, P., 2001. Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles, 15(4): 955-966. https://doi.org/10.1029/2000GB001382

[3]

Black, R. R., Meyer, C. P., Touati, A., et al., 2012. Emission Factors for PCDD/PCDF and Dl⁃PCB from Open Burning of Biomass. Environment International, 38(1): 62-66. https://doi.org/10.1016/j.envint.2011.07.003

[4]

Chang, S. S., Lee, W. J., Holsen, T. M., et al., 2014. Emissions of Polychlorinated⁃p⁃Dibenzo Dioxin, Dibenzofurans (PCDD/Fs) and Polybrominated Diphenyl Ethers (PBDEs) from Rice Straw Biomass Burning. Atmospheric Environment, 94: 573-581. https://doi.org/10.1016/j.atmosenv.2014.05.067

[5]

Chen, C. M., 2004. The Emission Inventory of PCDD/PCDF in Taiwan. Chemosphere, 54(10): 1413-1420. https://doi.org/10.1016/j.chemosphere.2003.10.039

[6]

Chen, D. Y., Peng, P. A., Hu, J. F., et al., 2011. The Emission Characteristics of Dioxins in Biomass Burning. Environmental Chemistry, 30(7): 1271-1279 (in Chinese with English abstract).

[7]

Chen, L. L., Huang, T., Chen, K. J., et al., 2020. Gridded Atmospheric Emission Inventory of PCDD/Fs in China. Environmental Science, 41(2): 510-519 (in Chinese with English abstract).

[8]

Chen, W. S., Shen, Y. H., Hsieh, T. Y., et al., 2011. Fate and Distribution of Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans in a Woodchip⁃Fuelled Boiler. Aerosol and Air Quality Research, 11(3): 282-289. https://doi.org/10.4209/aaqr.2010.11.0098

[9]

Chen, Y. J., Sheng, G. Y., Bi, X. H., et al., 2005. Emission Factors for Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons from Residential Coal Combustion in China. Environmental Science & Technology, 39(6): 1861-1867. https://doi.org/10.1021/es0493650

[10]

Chen, Z. J., Tan, Y. Y., Xu, J., 2022. Economic and Environmental Impacts of the Coal⁃to⁃Gas Policy on Households: Evidence from China. Journal of Cleaner Production, 341: 130608. https://doi.org/10.1016/j.jclepro.2022.130608

[11]

Cheng, Y. Y., Lu, M. F., Lin, J. J. M., 2015. Emission Factors for Dioxin for Coal Burning, Secondary Smelting and Alloying of Aluminum, and Cement Kiln Processes. Advanced Materials Research, 1102: 27-32. https://doi.org/10.4028/www.scientific.net/amr.1102.27

[12]

Dindal, A., Thompson, E., Strozier, E., et al., 2011. Application of GC⁃HRMS and GC×GC⁃TOFMS to Aid in the Understanding of a Dioxin Assay’s Performance for Soil and Sediment Samples. Environmental science & technology, 45(24): 10501-10508.

[13]

Duan, F., Cong, S. Q., Shuang, W., et al., 2012. Co⁃combustion Characteristics of Municipal Sewage Sludge and Different Bituminous Coals. Chinese Journal of Environmental Engineering, 6(8): 2865-2869 (in Chinese with English abstract).

[14]

Energy Statistics Division of the National Bureau of Statistics, 2015. China Energy Statistical Yearbook. China Statistics Press, Beijing, 130-304 (in Chinese).

[15]

Fu, J. Y., 2014. China Kilometer Grid Population Distribution Dataset. http://www.geodoi.ac.cn/webcn/doi.aspx?Id=131 (in Chinese).

[16]

Fu, Z. Q., Lin, S. M., Tian, H. Z., et al., 2022. A Comprehensive Emission Inventory of Hazardous Air Pollutants from Municipal Solid Waste Incineration in China. Science of the Total Environment, 826: 154212. https://doi.org/10.1016/j.scitotenv.2022.154212

[17]

Gao, H. C., Ni, Y. W., Zhang, H. J., et al., 2009. Stack Gas Emissions of PCDD/Fs from Hospital Waste Incinerators in China. Chemosphere, 77(5): 634-639. https://doi.org/10.1016/j.chemosphere.2009.08.017

[18]

Grandesso, E., Gullett, B., Touati, A., et al., 2011. Effect of Moisture, Charge Size, and Chlorine Concentration on PCDD/F Emissions from Simulated Open Burning of Forest Biomass. Environmental Science & Technology, 45(9): 3887-3894. https://doi.org/10.1021/es103686t

[19]

Hites, R. A., 2011. Dioxins: An Overview and History. Environmental Science & Technology, 45(1): 16-20. https://doi.org/10.1021/es1013664

[20]

Hu, J. C., Wu, J., Xu, C. Y., et al., 2021. Characterization and Health Risks of PCDD/Fs, PCBS, and PCNS in the Soil around a Typical Secondary Copper Smelter. Environmental Science, 42(3): 1141-1151 (in Chinese with English abstract).

[21]

Hu, J. C., Zheng, M. H., Liu, W. B., et al., 2013. Occupational Exposure to Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans, Dioxin⁃Like Polychlorinated Biphenyls, and Polychlorinated Naphthalenes in Workplaces of Secondary Nonferrous Metallurgical Facilities in China. Environmental Science & Technology, 47(14): 7773-7779. https://doi.org/10.1021/es4016475

[22]

Kong, S. F., Bai, Z. P., Lu, B., 2014. Comparative Analysis on Emission Factors of Carbonaceous Components in PM2.5 and PM10 from Domestic Fuels Combustion. China Environmental Science, 34(11): 2749-2756 (in Chinese with English abstract).

[23]

Lammel, G., Heil, A., Stemmler, I., et al., 2013. On the Contribution of Biomass Burning to POPs (PAHs and PCDDS) in Air in Africa. Environmental Science & Technology, 47(20): 11616-11624. https://doi.org/10.1021/es401499q

[24]

Lavric, E. D., Konnov, A. A., De Ruyck, J., 2004. Dioxin Levels in Wood Combustion—A Review. Biomass and Bioenergy, 26(2): 115-145. https://doi.org/10.1016/S0961⁃9534(03)00104⁃1

[25]

Lei, M., Hai, J., Cheng, J., et al., 2017. Emission Characteristics of Toxic Pollutants from an Updraft Fixed Bed Gasifier for Disposing Rural Domestic Solid Waste. Environmental Science and Pollution Research International, 24(24): 19807-19815. https://doi.org/10.1007/s11356⁃017⁃9615⁃z

[26]

Lei, R. R., Xu, Z. C., Xing, Y., et al., 2021. Global Status of Dioxin Emission and China’s Role in Reducing the Emission. Journal of Hazardous Materials, 418: 126265. https://doi.org/10.1016/j.jhazmat.2021.126265

[27]

Li, H., Li, Y., Jin, Y., 2015a. Gaseous Emissions from the Co⁃Combustion of Wet Sludge and Coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(19): 2064-2072. https://doi.org/10.1080/15567036.2012.666622

[28]

Li, M., Tang, B., Zheng, J., et al., 2020. PCDD/Fs in Paired Hair and Serum of Workers from a Municipal Solid Waste Incinerator Plant in South China: Concentrations, Correlations, and Source Identification. Environment International, 144: 106064. https://doi.org/10.1016/j.envint.2020.106064

[29]

Li, Y. Q., Chen, T., Zhang, J., et al., 2015b. Mass Balance of Dioxins over a Cement Kiln in China. Waste Management, 36: 130-135. https://doi.org/10.1016/j.wasman.2014.11.027

[30]

Lin, L. F., Lee, W. J., Li, H. W., et al., 2007. Characterization and Inventory of PCDD/F Emissions from Coal⁃Fired Power Plants and Other Sources in Taiwan. Chemosphere, 68(9): 1642-1649. https://doi.org/10.1016/j.chemosphere.2007.04.002

[31]

Liu, F. J., Tang, J. Y., Liu, F. S., et al., 2023. Analysis of Influencing Factors of Aerosol Optical Depth in Beijing. Earth Science, 48(10): 3812-3819 (in Chinese with English abstract).

[32]

Liu, H. B., Kong, S. F., Wang, W., et al., 2016. Emission Inventory of Heavy Metals in Fine Particles Emitted from Residential Coal Burning in China. Environmental Science, 37(8): 2823-2835 (in Chinese with English abstract).

[33]

Lohmann, R., Jones, K. C., 1998. Dioxins and Furans in Air and Deposition: A Review of Levels, Behaviour and Processes. Science of the Total Environment, 219(1): 53-81. https://doi.org/10.1016/S0048⁃9697(98)00237⁃X

[34]

Meng, W. J., Zhong, Q. R., Chen, Y. L., et al., 2019. Energy and Air Pollution Benefits of Household Fuel Policies in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 116(34): 16773-16780. https://doi.org/10.1073/pnas.1904182116

[35]

Ni, H. Y., Han, Y. M., Cao, J. J., et al., 2015. Emission Characteristics of Carbonaceous Particles and Trace Gases from Open Burning of Crop Residues in China. Atmospheric Environment, 123: 399-406. https://doi.org/10.1016/j.atmosenv.2015.05.007

[36]

Pan, S. Y., Liou, Y. T., Chang, M. B., et al., 2021. Characteristics of PCDD/Fs in PM2.5 from Emission Stacks and the nearby Ambient Air in Taiwan. Scientific Reports, 11(1): 8093. https://doi.org/10.1038/s41598⁃021⁃87468⁃5

[37]

Penner, J. E., Dickinson, R. E., 1992. Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science, 256(5062): 1432-1434. https://doi.org/10.1126/science.256.5062.1432

[38]

Petit, P., Maître, A., Persoons, R., et al., 2019. Lung Cancer Risk Assessment for Workers Exposed to Polycyclic Aromatic Hydrocarbons in Various Industries. Environment International, 124: 109-120. https://doi.org/10.1016/j.envint.2018.12.058

[39]

Qin, X. J., Kong, S. F., Wu, J., et al., 2025. Number Concentration Size Distribution and Emission Factors of Submicron Particles from Residential Coal Combustion. China Environmental Science, 45(2): 593-605 (in Chinese with English abstract).

[40]

Quaß, U., Fermann, M. W., Bröker, G., 2000. Steps towards a European Dioxin Emission Inventory. Chemosphere, 40(9-11): 1125-1129. https://doi.org/10.1016/S0045⁃6535(99)00361⁃6

[41]

Salian, K., Strezov, V., Evans, T. J., et al., 2019. Application of National Pollutant Inventories for Monitoring Trends on Dioxin Emissions from Stationary Industrial Sources in Australia, Canada and European Union. PLoS One, 14(10): e0224328. https://doi.org/10.1371/journal.pone.0224328

[42]

Shih, T. S., Lee, W. J., Shih, M., et al., 2008. Exposure and Health⁃Risk Assessment of Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans (PCDD/Fs) for Sinter Plant Workers. Environment International, 34(1): 102-107. https://doi.org/10.1016/j.envint.2007.07.010

[43]

Song, S. J., Chen, K. J., Huang, T., et al., 2023. New Emission Inventory Reveals Termination of Global Dioxin Declining Trend. Journal of Hazardous Materials, 443: 130357. https://doi.org/10.1016/j.jhazmat.2022.130357

[44]

Ssebugere, P., Sillanpää, M., Matovu, H., et al., 2019. Human and Environmental Exposure to PCDD/Fs and Dioxin⁃like PCBS in Africa: A Review. Chemosphere, 223: 483-493. https://doi.org/10.1016/j.chemosphere.2019.02.065

[45]

United States Environmental Protection Agency (USEPA), 2025. PCDD/Fs Emission Factor Database. https://www.epa.gov/air⁃emissions⁃factors⁃and⁃quantification/ap⁃42⁃compilation⁃air⁃emissions⁃factors⁃stationary⁃sources

[46]

Wang, K., Tian, H. Z., Hua, S. B., et al., 2016. A Comprehensive Emission Inventory of Multiple Air Pollutants from Iron and Steel Industry in China: Temporal Trends and Spatial Variation Characteristics. Science of the Total Environment, 559: 7-14. https://doi.org/10.1016/j.scitotenv.2016.03.125

[47]

Ward, D. E., Hardy, C. C., 1991. Smoke Emissions from Wildland Fires. Environment International, 17(2-3): 117-134. https://doi.org/10.1016/0160⁃4120(91)90095⁃8

[48]

Wei, J. X., Li, H., Liu, J. G., et al., 2022. National and Provincial Dioxin Emissions from Municipal Solid Waste Incineration in China. Science of the Total Environment, 851: 158128. https://doi.org/10.1016/j.scitotenv.2022.158128

[49]

Wikström, E., Ryan, S., Touati, A., et al., 2003. Importance of Chlorine Speciation on de Novo Formation of Polychlorinated Dibenzo⁃p⁃Dioxins and Polychlorinated Dibenzofurans. Environmental Science & Technology, 37(6): 1108-1113. https://doi.org/10.1021/es026262d

[50]

Wu, D., Qi, J., Li, Q., et al., 2021a. Extreme Exposure Levels of PCDD/Fs Inhaled from Biomass Burning Activity for Cooking in Typical Rural Households. Environmental Science & Technology, 55(11): 7299-7306. https://doi.org/10.1021/acs.est.1c00469

[51]

Wu, J., Kong, S. F., Wu, F. Q., et al., 2018. Estimating the Open Biomass Burning Emissions in Central and Eastern China from 2003 to 2015 Based on Satellite Observation. Atmospheric Chemistry & Physics, 18(16): 11623-11646. https://doi.org/10.5194/acp⁃18⁃11623⁃2018

[52]

Wu, J., Kong, S. F., Yan, Y. Y., et al., 2022. The Toxicity Emissions and Spatialized Health Risks of Heavy Metals in PM2.5 from Biomass Fuels Burning. Atmospheric Environment, 284: 119178. https://doi.org/10.1016/j.atmosenv.2022.119178

[53]

Wu, J., Kong, S. F., Zeng, X., et al., 2021b. First High⁃Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non⁃Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/acs.est.0c06675

[54]

Yang, L. L., Zheng, M. H., Zhao, Y. Y., et al., 2019. Unintentional Persistent Organic Pollutants in Cement Kilns Co⁃Processing Solid Wastes. Ecotoxicology and Environmental Safety, 182: 109373. https://doi.org/10.1016/j.ecoenv.2019.109373

[55]

Zhang, C. L., Bai, L., Yao, Q., et al., 2022. Emission Characteristics of Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans from Industrial Combustion of Biomass Fuels. Environmental Pollution, 292: 118265. https://doi.org/10.1016/j.envpol.2021.118265

[56]

Zhang, G., Huang, X. X., Liao, W. B., et al., 2019. Measurement of Dioxin Emissions from a Small⁃Scale Waste Incinerator in the Absence of Air Pollution Controls. International Journal of Environmental Research and Public Health, 16(7): 1267. https://doi.org/10.3390/ijerph16071267

[57]

Zhang, M. M., Buekens, A., Li, X. D., 2017. Dioxins from Biomass Combustion: An Overview. Waste and Biomass Valorization, 8(1): 1-20. https://doi.org/10.1007/s12649⁃016⁃9744⁃5

[58]

Zhang, Y. X., Schauer, J. J., Zhang, Y. H., et al., 2008. Characteristics of Particulate Carbon Emissions from Real⁃World Chinese Coal Combustion. Environmental Science & Technology, 42(14): 5068-5073. https://doi.org/10.1021/es7022576

[59]

Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom⁃Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry & Physics, 11(5): 2295-2308. https://doi.org/10.5194/acp⁃11⁃2295⁃201110.5194/acpd⁃10⁃29075⁃2010

[60]

Zhou, Q., Yang, J. X., Liu, M. M., et al., 2018. Toxicological Risk by Inhalation Exposure of Air Pollution Emitted from China’s Municipal Solid Waste Incineration. Environmental Science & Technology, 52(20): 11490-11499. https://doi.org/10.1021/acs.est.8b03352

[61]

Zou, C., Han, J. L., Fu, H. Q., 2012. Emissions of PCDD/Fs from Steel and Secondary Nonferrous Productions. Procedia Environmental Sciences, 16: 279-288. https://doi.org/10.1016/j.proenv.2012.10.039

基金资助

国家自然科学基金青年资助项目(42205116)

科技部国家重点研发计划课题(2023YFC3709900)

博士后科学基金面上项目(2022M712947)

AI Summary AI Mindmap
PDF (1218KB)

142

访问

0

被引

详细

导航
相关文章

AI思维导图

/