1.School of Geographic Sciences,Southwest University,Chongqing 400700,China
2.Nanjiang Hydrogeological Engineering Geological Team,Chongqing;Bureau of Geology and Mineral Exploration and Development,Chongqing 400700,China
Show less
文章历史+
Received
Accepted
Published
2025-02-08
Issue Date
2025-09-30
PDF (2160K)
摘要
目的 研究岩溶坡地生境中不同坡位典型木本植物的水分利用效率,为岩溶坡地制定合理的水土保持和生态修复措施提供指导。 方法 利用气象数据、土壤质量含水率、稳定同位素(δ2 H,δ18 O,δ13C)数据,研究了重庆明月山岩溶槽谷3个不同坡位样地的典型木本植物的水分来源和水分利用效率。 结果 ①雨季土壤含水率高于旱季;坡上的平均土壤含水率较坡中低5.07%~28.41%,较坡下低16.36%~30.49%。 ②表层岩溶带水是不同坡位上木本植物的重要水源,雨季坡上、坡中和坡下的木本植物对其利用比例分别为34.65%,25.58%和20.82%,旱季分别为54.44%,53.60%和43.47%。雨季,坡中和坡下植物对20—40 cm土层土壤水分的利用比例高于坡上;而旱季,坡下植物对20—40 cm土层土壤水分的利用比例高于坡上。 ③乔木和灌木的δ13C值和内在水分利用效率(WUE i )在雨季均低于旱季。在不同坡位中,乔木的WUE i 值均高于灌木,乔木和灌木WUE i 的均值表现为:坡上>坡中>坡下。 结论 岩溶槽谷的土壤含水量从坡上到坡下递增。坡上植物面对水分胁迫时,更多利用表层岩溶带水,且水分利用效率更高。
Abstract
Objective The water use efficiency of typical woody plants at different slope positions in karst slope habitats were analyzed in order to provide guidance for formulating effective soil and water conservation and ecological restoration measures for karst slopes. Methods Using meteorological data, soil mass moisture content, and stable isotope (δ2H, δ 18O, δ13C) data, the water sources and water use efficiency of typical woody plants in three different slope plots in the karst trough valley of Mingyue Mountain, Chongqing were studied. Results ① Soil moisture content was higher during the rainy season than during the dry season. In terms of slope position, the average soil moisture content on the upper slope was lower than that on the middle slope, with a difference ranging from 5.07% to 28.41%, and approximately 16.36% to 30.49% lower than that on the lower slope. ② Water from the surface karst zone serves as a critical water source for woody plants at different slope locations. The utilization rates were 34.65%, 25.58% and 20.82% for the upper, middle and lower slopes respectively, during the rainy season, and increased to 54.44%, 53.60% and 43.47% respectively, during the dry season. During the rainy season, the utilization ratio of soil moisture by plants in the 20—40 cm soil layer on the middle and lower slopes was higher than that on the upper slopes. During the dry season, the proportion of soil moisture utilized by plants in the 20—40 cm soil layer on the lower slopes was higher than that on the upper slopes.③ The δ13C values and intrinsic water use efficiency (WUE i ) of trees and shrubs were lower during the rainy season than during the dry season. Across different slope positions, the WUE i of trees was higher than that of shrubs, with the mean WUE i following the order: upper slope > middle slope > lower slope. Conclusion Owing to differences in slope position, the soil moisture content in the karst trough valley increases from the top to the bottom of the slope. When plants on slopes are exposed to water stress, they make greater use of the water in the surface karst zone and exhibit higher water use efficiency.
文献参数: 吴虹余, 蒋勇军, 吴泽, 等.岩溶山地不同坡位植物水分来源和水分利用效率[J].水土保持通报,2025,45(4):19-28. Citation:Wu Hongyu, Jiang Yongjun, Wu Ze, et al. Water sources and water use efficiency of plants at different slopes in karst mountainous areas [J]. Bulletin of Soil and Water Conservation,2025,45(4):19-28.
对于植物叶片碳同位素识别(Δ13C),主要取决于细胞间和环境CO2浓度的比值(Ci/Ca),而该值受气孔导度(gs)和光合速率(A)的调节[19],植物的δ13C值与WUE i 紧密联系。植物叶片WUEi值作为一项关键指标,常被用于指示植物对碳的吸收能力以及水分利用状况[10,13-14]。因此,本研究通过不同季节对岩溶坡地不同坡位木本植物、土壤、表层岩溶泉及地下河水进行采样,测定土壤含水率,借助稳定同位素(δ13C、δ2 H和δ18 O)和SIMMR模型,分析木本植物水分来源和水分利用效率的时空分异特征,探究坡位对典型木本植物水分利用策略的影响机制,便于深入理解植物与坡位水资源与环境的相互作用关系,为岩溶坡地制定合理的水土保持和生态修复措施提供指导。
不同坡位乔木和灌木叶片WUEi在不同季节具有显著差异(p<0.05),表现为雨季乔木和灌木的WUE i 低于旱季。其中,雨季期间不同坡位植物WUE i 变化范围为81.97~132.62 μmol/mol,均值为102.47 μmol/mol;旱季期间不同坡位植物WUE i 变化范围为109.89~184.41 μmol/mol,均值为153.19 μmol/mol。无论是雨季还是旱季,不同坡位乔木WUE i 存在显著差异(p<0.05),而不同坡位灌木WUE i 差异则不显著,这一结果说明乔木对坡位变化的响应更加敏感。
在不同季节中,3个坡位植物WUE i 表现为坡上>坡中>坡下,乔木WUEi略高于灌木。以上结果表明,在不同季节,坡位土壤水分差异受到生态环境要素季节变化影响,进而影响不同坡位植物δ13C值与水分利用效率。
不同坡位乔木和灌木δ13C值和WUE i 均呈现出负相关趋势,其随土壤含水量增加而降低,表明不同坡位植物δ13C值和WUE i 受到土壤含水量影响较大(表1)。其中,与坡上和坡中对比,坡下乔木和灌木δ13C值和WUE i 与土壤含水量的相关性较高,表明坡下植物对土壤水分含量变化更加敏感。
本研究表明,岩溶坡地植物在旱季的WUE i 普遍高于雨季。雨季土壤水分充足,坡面上植物气孔多呈开放状态并且蒸腾作用强烈[9],植物保持着较低的WUE i。旱季坡面土壤水分减少,植物会通过深根获取表层岩溶带水。然而,表层岩溶带孔隙度随深度增加而减小[33],植物难以从中吸收水分,故植物采取“保守”的水分利用策略,减小叶片气孔开放降低水分蒸发,保持较高的WUE i 来减少水分消耗[10,13-14]。
从不同坡位上看,无论是在旱季还是雨季,岩溶坡地植物叶片WUE i 整体均表现为坡上高于坡中和坡下,不同坡位乔木WUE i 略高于灌木。由于坡上土壤水分更加匮乏,植物多利用深根沿裂隙延伸摄取表层岩溶带水分较多[10],但植物利用深根吸收深层水源会消耗更多的能量,同时面对长期土壤水分较少的条件下植物特别是常绿乔木更倾向于关闭叶片气孔来减少水分散失[10],因此坡上植物特别是乔木提高WUE i 来维持生存。常绿灌木火棘和落叶树种黄荆多为浅细根,特别是直径小于2 mm细根具有较大的吸收土壤水分表面积,能对土壤水分的变化作出快速反应[34],根系从土壤层吸收水分消耗能量较少,相较于乔木采取相对“挥霍”的水分利用策略,因此乔木WUE i 略高于灌木。由此可知,坡上乔木与灌木通过调整根系分布来改变水分吸收模式,影响水分利用效率,进而实现植物共存并适应坡上土壤水分较少的环境,这一研究结果与Cai等的研究结论相似[35]。而坡下的土壤捕获坡上流失的细小沉积物[32],坡下以优先流方式流失水分较少,土壤含水量相对较高,坡下植物能利用水分较多,植物叶片保持较低WUE i。坡中土壤层厚度较坡上厚,破碎岩石为土壤提供遮阴,降雨在坡中以横向流动为主,流经中坡的土壤—地表界面,在低洼地区汇聚[6],坡中土壤水分含量高于坡上,因此坡中植物叶片WUE i 低于坡上。总之,岩溶槽谷区坡上明显的缺水可迫使木本植物采取更加保守的水分利用策略。
FuXinyu, LiuHuamin, YuXiaowen, et al. Water sources and use strategies of plants in lake Daihai wetland [J]. Journal of Arid Land Resources and Environment, 2020,34(12):42-49.
[3]
LiuChangcheng, LiuYuguo, FanDayong, et al. Plant drought tolerance assessment for re-vegetation in heterogeneous karst landscapes of southwestern China [J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2012,207(1):30-38.
[4]
CaiLulu, XiongKangning, LiYuan, et al. Coexisting plants restored in karst desertification areas cope with drought by changing water uptake patterns and improving water use efficiency [J]. Journal of Hydrology, 2025,654:132813.
[5]
JiangGuanghui, GuoFang, LiuFan, et al. Hydrogeological responses of karst compartments to meteorological drought in subtropical monsoon regions [J]. Journal of Hydrology, 2025,655:132940.
ShiChunmao, LuoYa, YangShengtian, et al. Responses of soil moisture at different slope positions to rainfall in dry-hot valley [J]. Chinese Journal of Applied Ecology, 2022,33(5):1352-1362.
[8]
ZhangJun, WangSheng, FuZhiyong, et al. Characterizing rapid infiltration processes on complex hillslopes:Insights from soil moisture response to rainfall events [J]. Journal of Hydrology, 2024,644:132110.
ZhangZongling, ChenJing. Responses of water use efficiency and stem vessel traits of Dodonaea viscosa to slope position of Wenshan rocky desertification areas [J]. Journal of Wenshan University, 2022,35(2):10-16.
JiangDandan, WanFuxu, HuangWenqing. Slope positions effects on photosynthesis and transpiration characteristics of Platycladus orientalis in limestone mountain [J]. China Forestry Science and Technology, 2014(6):59-63.
[13]
LiuWenna, NieYunpeng, LuoZidong, et al. Transpiration rates decline under limited moisture supply along hillslopes in a humid karst terrain [J]. Science of The Total Environment, 2023,894:164977.
[14]
吕同汝.亚热带岩溶槽谷顺/逆层坡适生树种的水分利用策略[D].重庆: 西南大学,2022.
[15]
LvTongru. Water use strategy of suitable tree species on dip/anti-dip slope in subtropical karst trough valley [D]. Chongqing: Southwest University,2022.
[16]
WuZe, BehzadH M, HeQiufang, et al. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China [J]. Journal of Hydrology, 2021,597:126199.
[17]
LiuJiuchan, ShenLicheng, WangZhengxiong, et al. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley [J]. Journal of Hydrology, 2019,571:485-493.
[18]
CaoMin, WuChao, LiuJiuchan, et al. Increasing leaf δ13C values of woody plants in response to water stress induced by tunnel excavation in a karst trough valley:Implication for improving water-use efficiency [J]. Journal of Hydrology, 2020,586:124895.
[19]
WuZe, LvTongru, ZengSibo, et al. Differential responses in water-use strategies of evergreen(Ligustrum lucidum)and deciduous(Robinia pseudoacacia)trees to tunnel excavation in a subtropical karst trough valley[J]. Journal of Hydrology, 2024,636:131323.
[20]
EllsworthP Z, WilliamsD G. Hydrogen isotope fractionation during water uptake by woody xerophytes [J]. Plant and Soil, 2007,291(1):93-107.
[21]
BrunelJ P, WalkerG R, Kennett-SmithA K. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment[J]. Journal of Hydrology, 1995,167:351-368.
ZhaoYing, WangLi, ChunK P, et al. Dynamic hydrological niche segregation:How plants compete for water in a semi-arid ecosystem [J]. Journal of Hydrology, 2024,630:130677.
[24]
FarquharG D, RichardsR A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes [J]. Functional Plant Biology, 1984,11(6):539.
[25]
McColeA A, SternL A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water [J]. Journal of Hydrology, 2007,342(3/4):238-248.
[26]
EvaristoJ, McDonnellJ J, ClemensJ. Plant source water apportionment using stable isotopes:A comparison of simple linear, two-compartment mixing model approaches [J]. Hydrological Processes, 2017,31(21):3750-3758.
[27]
LiuJinke, HanGuilin. Tracing riverine particulate black carbon sources in Xijiang River Basin:Insight from stable isotopic composition and Bayesian mixing model [J]. Water Research, 2021,194:116932.
[28]
O’LearyM H. Carbon isotope fractionation in plants [J]. Phytochemistry, 1981,20(4):553-567.
[29]
FuZ Y, ChenH S, ZhangW, et al. Subsurface flow in a soil-mantled subtropical dolomite karst slope:A field rainfall simulation study [J]. Geomorphology, 2015,250:1-14.
ZhangCaiyun, JiangYongjun, MaLina, et al. Characteristics of runoff and sediment on slope land with different land use in karst trough valley area [J]. Bulletin of Soil and Water Conservation, 2021,41(1):49-55.
[32]
TracyS R, BlackC R, RobertsJ A, et al. Soil compaction:A review of past and present techniques for investigating effects on root growth [J]. Journal of the Science of Food and Agriculture, 2011,91(9):1528-1537.
[33]
GuptaA, Rico-MedinaA, Caño-DelgadoA I. The physiology of plant responses to drought [J]. Science, 2020,368(6488):266-269.
[34]
WuYuanzhi, HuangMingbin, WarringtonD N. Black locust transpiration responses to soil water availability as affected by meteorological factors and soil texture [J]. Pedosphere, 2015,25(1):57-71.
[35]
BehzadH M, ArifM, DuanShihui, et al. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China [J]. Science of The Total Environment, 2023,860:160424.
WuJing, ShengMaoyin, XiaoHailong, et al. Fine root architecture of adaptive plants and its correlation with nutrient stoichiometric characteristics of fine root and rhizosphere soils in karst rocky desertification environments, SW China [J]. Acta Ecologica Sinica, 2022,42(2):677-687.
[38]
何静.川中丘陵区3种植物水分吸收与利用策略[D].四川 雅安:四川农业大学,2022.
[39]
HeJing. Water absorption and utilization strategies of three plants in the hilly area of central Sichuan basin [D]. Yaan, Sichuan: Sichuan Agricultural University, 2022.
LiuShujuan, ZhangWei, WangKelin, et al. Spatiotemporal heterogeneity and its formation causes of soil physical properties in karst peak-cluster depression area of northwest Guangxi, China [J]. Chinese Journal of Applied Ecology, 2010,21(9):2249-2256.
DengYan. Coupling process between vegetation and epikarst water in karst critical zone, southwest typical peak-cluster depression area [D]. Wuhan, Hubei: China University of Geosciences, 2018.
[44]
曾伟康.亚热带常见树种细根功能性状特征分析[D].湖南 长沙:中南林业科技大学,2023.
[45]
ZengWeikang. The research on fine root functional traits and root rconomic space of common subtropical tree species [D]. Changsha, Hunan: Central South University of Forestry & Technology, 2023.
[46]
CaiLulu, XiongKangning, LiuZiqi, et al. Seasonal variations of plant water use in the karst desertification control [J]. Science of The Total Environment, 2023,885:163778.