基于天气类型及改进的小波神经网络的光伏发电短期预测

陈美珍, 柳扬, 徐胜彬, 郭俊锋, 张永强, 林金阳

贵州大学学报(自然科学版) ›› 2022, Vol. 39 ›› Issue (01) : 70 -77+88.

PDF
贵州大学学报(自然科学版) ›› 2022, Vol. 39 ›› Issue (01) : 70 -77+88. DOI: 10.15958/j.cnki.gdxbzrb.2022.01.10

基于天气类型及改进的小波神经网络的光伏发电短期预测

    陈美珍, 柳扬, 徐胜彬, 郭俊锋, 张永强, 林金阳
作者信息 +

Author information +
文章历史 +
PDF

摘要

本文提出了一种基于天气类型和季节类型,以布谷鸟算法优化小波神经网络的光伏发电短期预测方法。首先,分析气象因子的特征,并利用皮尔逊相关系数计算气象因子与光伏发电之间的相关性,作为预测神经网络的输入向量;其次,为了避免小波网络的结构不稳定以及由于局部极小值容易陷入预测结果误差太大的问题,提出了利用布谷鸟算法优化小波神经网络(CS-WNN)的预测结构;最后,基于天气类型和季节类型构建了布谷鸟算法优化小波神经网络(CS-WNN)预测模型进行仿真实验,并建立了遗传算法优化BP神经网络(GA-BP)、遗传算法优化小波神经网络(GA-WNN)、WNN神经网络、BP神经网络4个模型与本文结构进行对比。仿真实验结果表明,本文描述的预测方法预测精度较高,预测效果好。

关键词

天气类型 / 小波神经网络 / 布谷鸟算法

Key words

引用本文

引用格式 ▾
基于天气类型及改进的小波神经网络的光伏发电短期预测[J]. 贵州大学学报(自然科学版), 2022, 39(01): 70-77+88 DOI:10.15958/j.cnki.gdxbzrb.2022.01.10

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

54

访问

0

被引

详细

导航
相关文章

AI思维导图

/