PDF
摘要
当前鄱阳湖地区鸟类野外自动监测设备的资源有限,致使在野外场景下鸟类快速精准识别存在目标特征不明显、轮廓模糊、尺寸较小等挑战.为了解决这类问题,该文提出了一种基于YOLOv8n的轻量级鸟类检测识别模型YOLOv8-Birds.首先,重新构建模型网络结构,删除深层下采样模块,增加小目标层,以减小模型体量和提升浅层特征权重;其次,融入第3代可变形卷积(DCNv3)设计了C2f_D3模块,提高模糊目标的识别精度;再次,引入分组混洗卷积(GSConv)和加权融合拼接(Concat_BiFPN)模块对颈部网络优化,增强模型特征表达能力,适应不同尺寸目标;最后,应用Slide Loss函数强化困难样本学习.该文以鄱阳湖地区10种珍稀鸟类为研究对象开展模型试验,实验结果表明:精度均值mAP@0.50、mAP@0.75、mAP@0.50∶0.95分别达到93.7%、84.9%、72.8%,测试集鸟类目标平均的正检率提升2.3%,达到89.0%,模型的参数量、体积仅为原模型的50.0%左右.
关键词
鄱阳湖
/
鸟类检测识别
/
YOLOv8n
/
网络结构优化
/
可变形卷积
/
Slide Loss函数
Key words
基于YOLOv8n的鄱阳湖轻量级鸟类目标检测与识别模型研究[J].
江西师范大学学报(自然科学版), 2025, 49(01): 86-94 DOI:10.16357/j.cnki.issn1000-5862.2025.01.11