PDF (4584K)
摘要
对于图像异常检测问题,查询测试样本在正常样本集中的K近邻距离并估计其异常程度,是一类准确率较高、对复杂分布的效果较稳定的方法。此类方法采用近似最近邻搜索(Approximate Nearest Neighbour Search, ANNS)索引进行K近邻搜索。但由于ANNS查询操作较高的计算开销和现实问题中庞大的数据量,此类方法的计算效率难以应对低时延、高吞吐量的应用场景。该文基于局部敏感哈希和布隆过滤器,提出了一种近似存在性查询(Approximate Membership Query,AMQ)方法,用特征近似存在性预测异常样本。相比于ANNS,AMQ具有更低的计算复杂度且更适合单指令多数据并行,可以有效解决基于特征库检索方法的计算性能瓶颈。在MVTec-AD数据集上的实验结果显示,基于AMQ的方法的异常分割准确率仅比ANNS方法降低1%左右,但推理时延、吞吐量和内存开销显著较优,接近端到端深度学习异常检测模型的计算效率。
关键词
异常检测
/
无监督学习
/
近似存在性查询
/
布隆过滤器
/
局部敏感哈希
Key words
基于近似存在性查询的高效图像异常检测方法[J].
电子科技大学学报, 2024, 53(03): 424-430 DOI: