联合结构重参数和YOLOv5的航拍红外目标检测

邵延华, 张兴平, 张晓强, 楚红雨, 吴亚东

电子科技大学学报 ›› 2024, Vol. 53 ›› Issue (03) : 382 -389.

PDF (1880KB)
电子科技大学学报 ›› 2024, Vol. 53 ›› Issue (03) : 382 -389.

联合结构重参数和YOLOv5的航拍红外目标检测

    邵延华, 张兴平, 张晓强, 楚红雨, 吴亚东
作者信息 +

Author information +
文章历史 +
PDF (1924K)

摘要

无人机进行红外航拍目标检测在交通、农业和军事等方面有着广泛应用。该领域的主要挑战有目标较小、相互遮挡、非刚体形变大以及红外成像纹理信息少、边缘特征弱等。针对以上问题,基于YOLOv5和结构重参数化优化思想,提出了一种针对航拍场景的目标检测模型Rep-YOLO。首先,在主干网络中引入RepVGG模块,提升模型特征提取能力;在模型推理时对RepVGG模块的多分支进行结构重参数化,减少网络分支和结构复杂度。其次,结合数据特征,改进检测网络颈部的路径聚合网络,提升检测算法在机载平台的精度-速度均衡能力。最后,在两个公开红外数据集进行对比实验,表明该算法的有效性。以南航ComNet航拍数据集为例,统计结果显示主要检测指标各类平均精度(mean Average Precision,mAP)提升5.9%,同时参数量和模型大小分别减少约29.7%和23.2%。另外,对Rep-YOLO在典型机载平台Jetson Nano上进行了模型部署验证,为航拍场景的检测算法改进和实际应用提供了可靠的技术支撑。

关键词

深度学习 / 红外图像 / 航拍目标检测 / YOLOv5 / 结构重参数化

Key words

引用本文

引用格式 ▾
联合结构重参数和YOLOv5的航拍红外目标检测[J]. 电子科技大学学报, 2024, 53(03): 382-389 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF (1880KB)

124

访问

0

被引

详细

导航
相关文章

AI思维导图

/