PDF
摘要
视频卫星能获得高空间分辨率的视频信息,为运动目标的检测和分析提供有效数据支撑.然而,由于卫星视频图像中目标像素比例低、纹理细节不清晰、背景复杂等缺点,从卫星视频中检测运动目标存在很大困难.为此,本文以YOLOv8为骨干网络,提出了一种基于注意力机制与可变卷积神经网络的卫星视频运动目标检测算法.首先,设计C2f-DCN模块替换原模型骨干网络中的C2f模块,以提高模型对不同尺度目标的特征提取能力.其次,在检测头前添加Shuffle Attention轻量级注意力机制,在保证模型计算速度的前提下增强重要特征,加强通道间信息沟通提高模型特征融合能力.最后,为了提高模型的学习能力和推理效率,采用Inner-CIoU损失函数,并引入辅助边界框概念来解决卫星视频图像中目标像素比例小的问题.利用SAT-MTB卫星视频影像数据集进行对比实验,实验结果表明本文算法的精确度、召回率、mAP50:95和F1分数分别为75.3%、62.8%、34.9%和68.48,相较于原始YOLOv8n网络,上述指标分别提高了11.6%、4.2%、3.0%和7.44,验证了本文方法的有效性和优越性.
关键词
卫星视频
/
YOLOv8
/
轻量级注意力机制
/
可变形卷积
/
辅助边框回归
Key words
基于注意力机制与可变卷积神经网络的卫星视频运动目标检测[J].
南京师大学报(自然科学版), 2025, 48(04): 78-86 DOI:CNKI:SUN:NJSF.0.2025-04-008