颅内动脉瘤破裂因素的研究进展

甘荣发 ,  郭少华

赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (01) : 74 -79.

PDF (447KB)
赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (01) : 74 -79. DOI: 10.3969/j.issn.1001-5779.2025.01.012
影像医学与核医学

颅内动脉瘤破裂因素的研究进展

作者信息 +

Research progress on factors causing rupture of intracranial aneurysms

Author information +
文章历史 +
PDF (457K)

摘要

颅内动脉瘤(Intracranial aneurysm,IA)是一种常见的脑血管疾病,IA破裂会引起蛛网膜下腔出血(Subarachnoid hemorrhage,SAH),动脉瘤性SAH严重危害人们的健康。尽管目前SAH的诊断和治疗方法较成熟,但SAH患者的预后仍然很差,死亡率和致残率较高。IA是颅内自发性SAH的一个重要风险因素,据文献估计,高达3%的普通人群患有IA。明确颅内动脉瘤的破裂因素,对未破裂动脉瘤患者进行临床干预至关重要。近年来,国内外学者对颅内动脉瘤破裂的危险因素进行了大量研究,但大部分破裂危险因素在评估颅内动脉瘤破裂风险上存在争议。本文从基因遗传学、形态学及血流动力学等方面阐述颅内动脉瘤破裂的主要原因,为临床对未破裂IA治疗提供参考。

关键词

脑血管疾病 / 颅内动脉瘤 / 蛛网膜下腔出血

Key words

Cerebrovascular disease / Intracranial aneurysm / Subarachnoid hemorrhage

引用本文

引用格式 ▾
甘荣发,郭少华. 颅内动脉瘤破裂因素的研究进展[J]. 赣南医科大学学报, 2025, 45(01): 74-79 DOI:10.3969/j.issn.1001-5779.2025.01.012

登录浏览全文

4963

注册一个新账户 忘记密码

颅内动脉瘤(Intracranial aneurysm,IA)是指局部脑血管壁异常引起的瘤样凸起,人群中发病率约为3%1。目前,由于CT血管造影(Computed tomography angiography,CTA)及磁共振血管成像(Magnetic resonance angiography,MRA)等非侵入影像技术的应用,IA的检出率相比以往有所增加2。大部分IA患者无明显症状,仅有头痛、头晕等非特异性症状,常在体检时被发现。但IA破裂,造成蛛网膜下腔出血,患者则有剧烈头痛、呕吐等急性症状,即使在治疗后,仍有很高的死亡率和致残率3-4。前交通动脉瘤(Anterior communicating aneurysms,AcoAA)和后交通动脉瘤(Posterior communicating aneurysms,PcoAA)分别占IA的23%~40%和15%~20%,是最常见的颅内动脉瘤,且由于其解剖结构和血流动力学特征,比颅内其他部位动脉瘤更容易破裂5。对于破裂IA目前主要治疗为外科手术及介入治疗,但这些治疗都有一定的风险6。对颅内未破裂动脉瘤(Unruptured intracranial aneurysms,UIA)可以进行预防性手术治疗,但预防性手术治疗也有一定的风险,预后可能不及保守治疗7。因此,对UIA是否预防性手术治疗尚未统一。研究发现,IA破裂与多种因素相关,如遗传、年龄、高血压、吸烟、动脉瘤大小和动脉瘤部位8。但目前尚未完全了解导致动脉瘤破裂的确切机制。在IA形成与破裂的病理生理学中,血流动力学扮演着关键角色9。计算流体动力学是目前研究的一大热点,许多学者运用IA的血流动力学评估动脉瘤破裂的风险10。此外,形态学参数可能与IA破裂密切相关11。IA的形态各不相同,由此所引起的血流动力学也十分复杂。因此,对于不同类别IA,应该构建不同的风险因素模型,以预测其破裂风险,提供临床对UIA精准的治疗策略12

1 基因遗传学因素

目前,已有充分的证据表明颅内动脉瘤的基因易感性,家族遗传可导致颅内动脉瘤已成为共识13。在IA患者中,常染色体显性遗传性多囊肾(Autosomal dominant polycystic kidney disease, ADPKD)是最常见的遗传性疾病之一。据报道,ADPKD中IA的发病率是普通人群的4~5倍,约为9%~12%,且这些患者的IA破裂时间通常比普通人群早10年14。ADPKD的风险基因是PKD1PKD2,该基因参与构成瞬时电位受体通道,通过调节细胞内钙离子稳态发挥作用,当该基因发生突变时,将引起上皮细胞表型缺失,导致动脉瘤形成及破裂15。与普通人群相比,ADPKD患者在颅内动脉中也表现出更高的解剖变异率,如开窗、重复等变异。由于动脉变异,导致血流动力学改变,增加动脉瘤形成及破裂的风险16

IA在许多结缔组织疾病中发现,包括与COL3A1突变相关的血管性埃勒斯-丹洛斯综合征(vascular Ehlers-Danlos syndrome,vEDS),与转化生长因子β(Transforming growth factor-beta,TGF-β)途径相关基因的致病突变有关的Loeys-Dietz综合征(Loeys-dietz syndrome,LDS),以及与FBN1突变相关的马方综合征等17。1型神经纤维瘤病(Neurofibromatosis type 1,NF1)、遗传性出血性毛细血管扩张症也与IA有关,但其机制尚不明确。

颅内动脉瘤破裂在家族史中并不少见,也被认为是动脉瘤破裂的危险因素。据统计,在动脉瘤性蛛网膜下腔出血中,有10%患者有家族史18。有家族病史的IA患者也更有可能发展为多发IAs,且其破裂的风险更大;有家族史的破裂IA患者预后也较差19。全基因组关联研究(Genno-wide association studies,GWAS)是迄今为止在IA中识别最多风险基因的方法20。在欧洲、芬兰、日本及法裔加拿大人群等不同种族患者队列中确定了几个风险位点和相关候选基因:4q31.22(EDNRA)、8q11.23(SOX17)、7p21.1(HDAC9)、9p21.3-23.1(CDKN2A-CDKBAS)、11q13(ARHGEF17)、13q13.1(STARD13-KL)、18q11.2(RBBP8)、FHIT(3p14,rs1554600)和CCDC80(rs78125721)21-24。HALE A T等25对来自英国、芬兰和日本的个体进行了一项跨国GWAS,确定了2个新的IA风险位点(SIRT3和AL359922.1)。最近,WU C等26将颅内动脉瘤GWAS与人脑和血浆蛋白质组进行全蛋白质组关联分析(Proteome-wide association study,PWAS),筛选出颅内动脉瘤发生和破裂的高风险基因,并通过孟德尔随机化(Mendelian randomization,MR)和贝叶斯共定位分析进行因果关系验证以及去除基因连锁不平衡,发现了3个与颅内动脉瘤发生相关的风险基因(CNNM2GPRIN3UFL1),其中CNNM2与颅内动脉瘤破裂相关。对IAs基因表达谱研究发现,其基因产物与多种细胞途径相关,如细胞增殖及迁移、细胞外基质沉积、跨膜转运蛋白活性等,以此影响动脉瘤破裂27

许多候选基因也与IA破裂相关,这些基因通过炎症级联反应对IA产生影响,包括基质金属蛋白酶(Matrix metalloproteinases,MMPs)、肿瘤坏死因子-β蛋白和一氧化氮合酶20,从功能上讲,炎症反应会引起血管内皮损伤,进而使血管壁完整性受损,造成颅内动脉瘤形成及破裂。同样,也有证据表明,核因子-κB(Nuclear factor kappa-B,NF-κB)通过其在巨噬细胞募集和激活的炎症反应中作用,在脑动脉瘤形成与破裂中起着关键的介质作用28。FAN W等29研究发现,TNF-α和CD14在IA壁组织中高度表达,TNF-α或CD14会促进血管平滑肌细胞凋亡,引起IA的破裂。

2 形态学

2.1 二维参数

大小:目前,普遍认为IA大小是动脉瘤破裂的重要因素之一。VAN DER KAMP L T等30研究发现,动脉瘤>7 mm其破裂风险增加。然而,在一些研究中发现小动脉瘤(<5 mm)是动脉瘤性蛛网膜下腔出血的常见原因,在动脉瘤性蛛网膜下腔出血中所占比例逐渐增加,将其视为有潜在破裂风险31-32。因此,临床上对小动脉瘤的预防也是必要的。

AR:为最大垂直高度与平均颈部直径的比值。DETMER F J等33研究了1 931个动脉瘤,发现破裂动脉瘤的AR比未破裂动脉瘤大。LIU Q等34研究发现,破裂IA的AR为1.8±0.7,而未破裂IA为1.2±0.5,认为AR值越大,动脉瘤破裂的风险越高。其机制可能为动脉瘤AR越大,瘤颈越窄,动脉瘤内血液流动缓慢,从而引起血流动力学改变,最终导致动脉瘤破裂。

SR:为瘤体长度与载瘤动脉直径的比值。徐艺铭等35发现,前交通动脉瘤组SR值、AR值均比非破裂组大。DODASOMAYAJULA R等36在后交通动脉瘤破裂风险的评估研究中发现,AR、SR及瘤高均为后交通动脉瘤破裂的独立危险因素。SR越大,动脉瘤会更容易发生射流,瘤壁上的剪切应力会相应增加,进而增加动脉瘤破裂风险。

瘤高:为动脉瘤顶与颈部平面的最大垂直距离。SKODVIN T Ø等37发现,瘤度和动脉瘤破裂具有相关性。然而在徐艺铭等35研究中瘤高与前交通动脉瘤的破裂无相关性。因此,瘤高与IA破裂是否相关仍存在争议。

瓶颈因子:为瘤体宽度和瘤颈直径之间的比值。DETMER F J等33发现,瓶颈因子与IA破裂风险之间存在显著相关。但HUANG X等38认为,瓶颈因子与后交通动脉瘤破裂之间无相关性。

子囊:为动脉瘤壁表面观察到的局灶性凸起。刘涛等39在对后交通动脉瘤破裂因素分析性时发现,子囊和动脉瘤泡样凸起为后交通动脉瘤破裂的危险因素。ABBOUD T等40也发现有子囊的动脉瘤相较于无子囊的动脉瘤更容易破裂。子囊被认为是瘤壁局灶性弱化的反映,并可能通过瘤壁受力集中在子囊颈部而降低子囊底部的张力,从而导致动脉瘤破裂。

2.2 三维参数

随着成像技术和计算机技术的不断发展,描述颅内动脉瘤3D的形态计量学得到了探索,动脉瘤形状的3D测量可以量化“不规则性”。因此,对脑动脉瘤“不规则性”的客观测量将是了解颅内动脉瘤破裂的重要方法。

在一项Meta研究中,发现非球形指数、波动指数、伸长率、平整度和球形度与IA破裂具有相关性[41。JUCHLER N等42也发现非球型指数与IA破裂最相关。TIMMINS K M等43研究发现,未破裂颅内动脉瘤的持续生长与表面积和平整度的增加以及形状指数和弯曲度的降低有关。目前,得益于人工智能学习模型,新的形态学参数被发现,IA三维形态学更加完善,可以同时比较几个形态学参数,并辨别每个参数相对于其他参数的贡献,有助于预测脑动脉瘤破裂的变量复杂相互作用44]

3 血流动力学

3.1 Willis环变异

Willis环为颅内前后循环的桥梁,Willis环变异十分普遍,在影像学检查中,完整的Willis环占12%~79%45,与健康人群相比,脑血管疾病患者Willis变异往往更为常见46。几何结构是评估血流动力学的重要因素之一,Willis环变异对颅内血流动力学有显著影响47-48

3.1.1 前循环变异

大脑前动脉A1段发育不良及缺如在临床中较为常见。ZIMELEWICZ OBERMAN D等49研究发现,前交通动脉瘤(Anterior communicating aneurysms,AcoAA)破裂与双侧大脑前动脉A1不对称相关,正常情况下,流入前交通动脉(Anterior communicating aneurysms artery,AcoA)血流量较少,对血管壁应力较小;而在变异情况下,健侧A1段血流将流入对侧A2段,流入AcoA的血流增多,对血管壁应力增高;因此,AcoAA发展被认为是由AcoA血流量增加引起的血流动力学应力升高引起的,这可能会导致动脉瘤形成及破裂50

3.1.2 后循环变异

胚胎型大脑后动脉(Fetal-type posterior cerebral artery,FTP)是Willis环最常见的一种变异。在非FTP患者中,大脑后动脉血液主要由椎基底动脉提供,而不是后交通动脉(Pnterior communicating aneurysms,PcoA);而在FTP患者中,大脑后动脉的血液供应主要或完全来自同侧颈内动脉和PcoA51,同侧PcoA血流量和血压增加,使PcoA 起始处血管壁受到更多的血流动力学影响52,从而增加动脉瘤形成及破裂的概率,提示FTP可能是PcoAA形成的风险因素53。ZHANG Y等54认为,PCA类型与PcomA动脉瘤破裂显著相关,FTP可能是破裂的独立危险因素。

3.2 流体动力学

流体动力学(Computational fluid dynamics,CFD)是通过CTA或MRA得到特异性数据,再由计算机模拟血液在血管流动状态的一种研究方法。通过此方法可以得出血液在IA的流动情况,并可以计算出血液对IA的一些作用参数,如血管内WSS等其他血流参数55

3.2.1 壁面切应力(Wall shear stress,WSS)

WSS是局部血流对血管壁的切向摩擦力56,它主要基于血液流动为层流假设。GAO B L等57研究发现,动脉瘤形成与局部WSS增高密切相关。LIANG F等58研究发现,未破裂组的前交通动脉瘤周围WSS较破裂组低。一项Meta分析发现,高WSS与动脉瘤形成相关,而动脉瘤破裂则与低WSS相关59。丁煜昊等60研究表明,低WSS可能为后交通动脉瘤破裂的独立危险因素之一。但WSS的高低对动脉瘤形成及破裂的关系仍有争议。

3.2.2 壁面切应力梯度(Wall shear stress gradient,WSSG)

WSSG反映了WSS在水平方向和垂直方向上的比值,其大小反映WSS的变化程度。SOLDOZY S等61研究发现破裂IA中的WSSG比未破裂IA大。但ZHANG Y等59未发现WSSG与IAs破裂相关。袁金龙等62认为,较大的WSSG可能会使瘤内血管的血流顺应性降低,易对瘤壁造成冲击,引起动脉瘤破裂。

3.2.3 振荡剪切指数(Oscillatory shear index,OSI)

OSI表示WSS波动幅度,OSI测量血流方向的时间变化,而不是空间变化,因此,OSI越大,血液流动方向越不稳定。LIU Q等34比较破裂和未破裂IA发现,破裂IA的最大OSI和平均OSI明显更大。

3.2.4 低壁剪切应力面积(Low shear area,LSA)

LSA表示动脉瘤壁暴露于WSS值<平均母血管WSS 10%的区域。QIU T等63发现LSA是预测IA破裂的血流动力学因素之一。DODDASOMAYAJULA R等36研究发现,LSA引起的异常血流条件是IA破裂的原因之一。

4 小结与展望

IA破裂的主要因素包括基因遗传学因素、形态学参数和血流动力学因素等,临床上颅内动脉瘤破裂是多种危险因素相互作用的结果。尽管目前对IA破裂的风险因素有了较为深入的了解,但仍存在许多未解决的问题。需进一步研究基因多态性与环境因素(如吸烟、高血压等)的交互作用对IA破裂的影响。目前多模态影像技术的应用,可结合多种影像技术和人工智能算法,有望开发更准确的IA破裂风险预测模型;还可开展多中心、多学科的长期随访研究,以更好地了解IA的自然史和破裂机制,为临床决策提供更有力的支持。

参考文献

[1]

WANG Z MA J YUE H, et al. Vascular smooth muscle cells in intracranial aneurysms[J]. Microvasc Res2023149:104554.

[2]

CALVANESE F AURICCHIO A M POHJOLA A, et al. Changes in treatment of intracranial aneurysms during the last decade in a large European neurovascular center[J]. Acta Neurochir2024166(1):173.

[3]

BROGAN E L KIM J GRIMLEY R S, et al. The excess costs of hospitalization for acute stroke in people with communication impairment: a stroke123 data linkage substudy[J]. Arch Phys Med Rehabil2023104(6):942-949.

[4]

THOMPSON J C CHALET F X MANALASTAS E J, et al. Economic and humanistic burden of cerebral vasospasm and its related complications after aneurysmal subarachnoid hemorrhage: a systematic literature review[J]. Neurol Ther202211(2):597-620.

[5]

CHEN J LI M ZHU X, et al. Anterior communicating artery aneurysms: anatomical considerations and microsurgical strategies[J]. Front Neurol202011:1020.

[6]

ARRESE I GARCÍA-GARCÍA S CEPEDA S, et al. Treatment of unruptured middle cerebral artery aneurysms: systematic review in an attempt to perform a network meta-analysis[J]. Front Surg20229:1005602.

[7]

MARTÍNEZ-GALDÁMEZ M BIONDI A KALOUSEK V, et al. Periprocedural safety and technical outcomes of the new silk vista baby flow diverter for the treatment of intracranial aneurysms: results from a multicenter experience[J]. J Neurointerv Surg201911(7):723-727.

[8]

IKAWA F MORITA A TOMINARI S, et al. Rupture risk of small unruptured cerebral aneurysms[J]. J Neurosurg2019132(1):69-78.

[9]

JAHED M GHALICHI F FARHOUDI M. Fluid-structure interaction of patient-specific circle of Willis with aneurysm: investigation of hemodynamic parameters[J]. Biomed Mater Eng201829(3):357-368.

[10]

KORTE J KLOPP E S BERG P. Multi-dimensional modeling of cerebral hemodynamics: a systematic review[J]. Bioengineering202411(1):72.

[11]

KLEINLOOG R DE MUL N VERWEIJ B H, et al. Risk factors for intracranial aneurysm rupture: a systematic review[J]. Neurosurgery201882(4):431-440.

[12]

DETMER F J CHUNG B J, MUT F, et al. Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics[J]. Int J Comput Assist Radiol Surg201813(11):1767-1779.

[13]

BAKKER M K RUIGROK Y M. Genetics of intracranial aneurysms[J]. Stroke202152(9):3004-3012.

[14]

CAPELLI I ZOLI M RIGHINI M, et al. MR brain screening in ADPKD patients: to screen or not to screen?[J]. Clin Neuroradiol202232(1):69-78.

[15]

BAKKER M K KANNING J P ABRAHAM G, et al. Genetic risk score for intracranial aneurysms: prediction of subarachnoid hemorrhage and role in clinical heterogeneity[J]. Stroke202354(3):810-818.

[16]

GUO X GAO L SHI Z, et al. Intracranial arterial fenestration and risk of aneurysm: a systematic review and meta-analysis[J]. World Neurosurg2018115:e592-e598.

[17]

KIM S T BRINJIKJI W KALLMES D F. Prevalence of intracranial aneurysms in patients with connective tissue diseases: a retrospective study[J]. AJNR Am J Neuroradiol201637(8):1422-1426.

[18]

TAWK R G HASAN T F D'SOUZA C E, et al. Diagnosis and treatment of unruptured intracranial aneurysms and aneurysmal subarachnoid hemorrhage[J]. Mayo Clin Proc202196(7):1970-2000.

[19]

DIETRICH P. Influence of genetics in intracranial aneurysms[J]. Radiologe202060(4):329-333.

[20]

TOADER C, EVA L, BRATU B G, et al. Intracranial aneurysms and genetics: an extensive overview of genomic variations, underlying molecular dynamics, inflammatory indicators, and forward-looking insights[J]. Brain Sci202313(10):1454.

[21]

BILGUVAR K YASUNO K NIEMELÄ M, et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations[J]. Nat Genet200840(12):1472-1477.

[22]

YANG X LI J FANG Y, et al. Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms[J]. Circ Genom Precis Med201811(7):e002099.

[23]

AKIYAMA K NARITA A NAKAOKA H, et al. Genome-wide association study to identify genetic variants present in Japanese patients harboring intracranial aneurysms[J]. J Hum Genet201055(10):656-661.

[24]

ZHOU S GAN-OR Z AMBALAVANAN A, et al. Genome-wide association analysis identifies new candidate risk loci for familial intracranial aneurysm in the French-Canadian population[J]. Sci Rep20188(1):4356.

[25]

HALE A T HE J JONES J. Multinational genome-wide association study and functional genomics analysis implicates decreased SIRT3 expression underlying intracranial aneurysm risk[J]. Neurosurgery202291(4):625-632.

[26]

WU C LIU H ZUO Q, et al. Identifying novel risk genes in intracranial aneurysm by integrating human proteomes and genetics[J]. Brain2024147(8):2817-2825.

[27]

SUN X LIU B CHEN Y, et al. Modifiable risk factors for intracranial aneurysms: Evidence from genetic studies[J]. Int J Stroke202217(10):1107-1113.

[28]

PAWLOWSKA E SZCZEPANSKA J WISNIEWSKI K, et al. NF-κB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role?[J]. Int J Mol Sci201819(4):1245.

[29]

FAN W LIU Y LI C, et al. microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-α and CD14 in intracranial aneurysm[J]. Neuropharmacology2020164:107858.

[30]

VAN DER KAMP L T RINKEL G J E VERBAAN D, et al. Risk of rupture after intracranial aneurysm growth[J]. JAMA Neurol202178(10):1228-1235.

[31]

BENDER M T WENDT H MONARCH T, et al. Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single institution study[J]. Neurosurgery201883(4):692-699.

[32]

KIM B J KANG H G KWUN B D, et al. Small versus large ruptured intracranial aneurysm: concerns with the site of aneurysm[J]. Cerebrovasc Dis201743(3/4):139-144.

[33]

DETMER F J CHUNG B J JIMENEZ C, et al. Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location[J]. Neuroradiology201961(3):275-284.

[34]

LIU Q JIANG P WU J, et al. The morphological and hemodynamic characteristics of the intraoperative ruptured aneurysm[J]. Front Neurosci201913:233.

[35]

徐艺铭,朱红丽,周欣颜,4D—CTA成像对前交通动脉瘤破裂分险的相关性[J].昆明医科大学学报202344(12):133-138.

[36]

DODDASOMAYAJULA R CHUNG B HAMZEI-SICHANI F, et al. Differences in hemodynamics and rupture rate of aneurysms at the bifurcation of the basilar and internal carotid arteries[J]. AJNR Am J Neuroradiol201738(3):570-576.

[37]

SKODVIN T Ø JOHNSEN L H GJERTSEN Ø, et al. Cerebral aneurysm morphology before and after rupture: nationwide case series of 29 aneurysms[J]. Stroke201748(4):880-886.

[38]

HUANG X LIU D YIN X, et al. Morphometry and hemodynamics of posterior communicating artery aneurysms: ruptured versus unruptured[J]. J Biomech201876:35-44.

[39]

刘涛,朱晓锋,马俊,颅内后交通动脉瘤破裂出血的临床特征和形态学的危险因素[J].昆明医科大学学报202142(12):67-73.

[40]

ABBOUD T RUSTOM J BESTER M, et al. Morphology of ruptured and unruptured intracranial aneurysms[J]. World Neurosurg201799:610-617.

[41]

JOHNSON M D PALMISCIANO P YAMANI A S, et al. A systematic review and meta-analysis of 3-dimensional morphometric parameters for cerebral aneurysms[J]. World Neurosurg2024183:214-226.e5.

[42]

JUCHLER N SCHILLING S BIJLENGA P, et al. Shape trumps size: image-based morphological analysis reveals that the 3D shape discriminates intracranial aneurysm disease status better than aneurysm size[J]. Front Neurol202213:809391.

[43]

TIMMINS K M KUIJF H J VERGOUWEN M I, et al. Relationship between 3D morphologic change and 2D and 3D growth of unruptured intracranial aneurysms[J]. AJNR Am J Neuroradiol202243(3):416-421.

[44]

ZAKERI M ATEF A AZIZNIA M, et al. A comprehensive investigation of morphological features responsible for cerebral aneurysm rupture using machine learning[J]. Sci Rep202414(1):15777.

[45]

HINDENES L B HÅBERG A K JOHNSEN L H, et al. Variations in the circle of Willis in a large population sample using 3D TOF angiography: the tromsø study[J]. PLoS One202015(11):e0241373.

[46]

JONES J D CASTANHO P BAZIRA P, et al. Anatomical variations of the circle of Willis and their prevalence, with a focus on the posterior communicating artery: a literature review and meta-analysis[J]. Clin Anat202134(7):978-990.

[47]

HINDENES L B INGEBRIGTSEN T ISAKSEN J G, et al. Anatomical variations in the circle of Willis are associated with increased odds of intracranial aneurysms: the tromsø study[J]. J Neurol Sci2023452:120740.

[48]

SHEN Y MOLENBERG R BOKKERS R P H, et al. The role of hemodynamics through the circle of Willis in the development of intracranial aneurysm: a systematic review of numerical models[J]. J Pers Med202212(6):1008.

[49]

ZIMELEWICZ OBERMAN D PEREZ AKLY M S RABELO N N, et al. Morphologic variations in the circle of Willis as a risk factor for aneurysm rupture in the anterior and posterior communicating arteries[J]. World Neurosurg2021154:e155-e162.

[50]

YANG H CHO K C HONG I, et al. Influence of circle of Willis modeling on hemodynamic parameters in anterior communicating artery aneurysms and recommendations for model selection[J]. Sci Rep202414(1):8476.

[51]

CHUNG J CHEONG J H KIM J M, et al. Is fetal-type posterior cerebral artery a risk factor for recurrence in coiled internal carotid artery-incorporating posterior communicating artery aneurysms? Analysis of conventional statistics, computational fluid dynamics, and random forest with hyper-ensemble approach[J]. Neurosurgery202393(3):611-621.

[52]

YUAN J HUANG C LI Z, et al. Hemodynamic and morphological parameters of ruptured mirror posterior communicating artery aneurysms[J]. Front Neurol202112:653589.

[53]

LV N FENG Z WANG C, et al. Morphological risk factors for rupture of small (<7 mm) posterior communicating artery aneurysms[J]. World Neurosurg201687:311-315.

[54]

ZHANG Y JING L LIU J, et al. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms[J]. J Neurointerv Surg20168(8):808-812.

[55]

GAIDZIK F KORTE J SAALFELD S, et al. Image-based hemodynamic simulations for intracranial aneurysms: the impact of complex vasculature[J]. Int J Comput Assist Radiol Surg202419(4):687-697.

[56]

LONGO M GRANATA F RACCHIUSA S, et al. Role of hemodynamic forces in unruptured intracranial aneurysms: an overview of a complex scenario[J]. World Neurosurg2017105:632-642.

[57]

GAO B L HAO W L REN C F, et al. Greater hemodynamic stresses initiated the anterior communicating artery aneurysm on the vascular bifurcation apex[J]. J Clin Neurosci202296:25-32.

[58]

LIANG F LIU X YAMAGUCHI R, et al. Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network[J]. J Biomech201649(15):3731-3740.

[59]

ZHANG Y YANG X WANG Y, et al. Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation[J]. BMC Neurol201414:253.

[60]

丁煜昊,王剑刃,谢涛,后交通动脉瘤破裂风险因素分析与评估[J].昆明医科大学学报202243(12):47-52.

[61]

SOLDOZY S NORAT P ELSARRAG M, et al. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture[J]. Neurosurg Focus201947(1):E11.

[62]

袁金龙,徐善水,李真保,壁面切应力和颅内动脉瘤复杂的相互关系[J].国际神经病学神经外科学杂志201643(1):44-47.

[63]

QIU T JIN G BAO W, et al. Intercorrelations of morphology with hemodynamics in intracranial aneurysms in computational fluid dynamics[J]. Neurosciences (Riyadh)201722(3):205-212.

AI Summary AI Mindmap
PDF (447KB)

713

访问

0

被引

详细

导航
相关文章

AI思维导图

/