抗氧化基因1与神经退行性疾病:从分子机制到靶向药物研究

郑江 ,  刘家豪 ,  刘若萱 ,  曾亮 ,  钟毅 ,  田原僮

赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (05) : 424 -428.

PDF (536KB)
赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (05) : 424 -428. DOI: 10.3969/j.issn.1001-5779.2025.05.002
心脑血管疾病·基础与临床

抗氧化基因1与神经退行性疾病:从分子机制到靶向药物研究

作者信息 +

Oxidation resistance gene 1 and neurodegenerative diseases: from molecular mechanisms to targeted drug research

Author information +
文章历史 +
PDF (548K)

摘要

抗氧化基因1(Oxidation resistance gene 1, OXR1)作为进化保守的内源性抗氧化防御系统核心调控因子,在维持细胞氧化还原稳态中发挥关键作用。研究显示,OXR1可通过调节抗氧化途径、维持线粒体功能以及稳定逆转运复合体等多种机制,构建多层次的抗氧化防御网络,保护细胞免受氧化损伤;OXR1的异常表达与氧化应激相关疾病(如神经退行性疾病、心血管疾病和恶性肿瘤)的发生发展密切相关,但作用机制较为复杂。本文综述OXR1的结构、作用、功能以及药物研究,为深入理解其在神经退行性疾病中的作用以及靶向OXR1药物的进一步研发奠定理论基础。

Abstract

Oxidation resistance gene 1 (OXR1), as an evolutionarily conserved endogenous antioxidant defense system core regulator, plays a key role in maintaining cellular redox homeostasis. Studies have shown that OXR1 can build a multi-level antioxidant defense network to protect cells from oxidative damage by regulating antioxidant pathways, maintaining mitochondrial function, and stabilizing the reverse transport complex. The abnormal expression of OXR1 is closely related to the occurrence and development of oxidative stress-related diseases (such as neurodegenerative diseases, cardiovascular diseases and malignant tumors), but the mechanism of action is complex. This article reviews the structure, function, role, and pharmacological research of OXR1, providing a theoretical basis for understanding its involvement in neurodegenerative diseases and the development of OXR1-targeting drugs.

Graphical abstract

关键词

抗氧化基因1 / 神经退行性疾病 / 氧化应激 / 活性氧

Key words

Oxidation resistance gene 1 / Neurodegenerative diseases / Oxidative stress / Reactive oxygen species

引用本文

引用格式 ▾
郑江,刘家豪,刘若萱,曾亮,钟毅,田原僮. 抗氧化基因1与神经退行性疾病:从分子机制到靶向药物研究[J]. 赣南医科大学学报, 2025, 45(05): 424-428 DOI:10.3969/j.issn.1001-5779.2025.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

氧化损伤是机体在生理或病理条件下,活性氧(Reactive oxygen species,ROS)过度累积引发的分子级联反应,通过破坏脂质、蛋白质及核酸等生物大分子,诱发细胞功能障碍甚至死亡1。脂质和蛋白质是ROS的主要靶标,ROS通过改变它们的构象和功能作用,促进神经退行性的发生发展2。抗氧化基因1(Oxidation resistance gene 1, OXR1)为内源性抗氧化防御系统的核心调控因子,其在不同生物物种的进化上高度保守,可通过激活下游抗氧化基因表达(如调控Nrf2通路),显著增强细胞清除ROS的能力,从而直接拮抗上述氧化损伤过程3-4。研究表明,OXR1表达失调与神经退行性疾病、心血管疾病和恶性肿瘤等重大疾病密切相关5。因此,深入解析OXR1分子的作用机制、生物学功能及其在神经系统疾病发生发展中的作用,具有重要的理论研究价值与临床转化意义。

1 OXR1的分子特征与亚型功能

人源OXR1(Human oxidation resistance gene 1,hOXR1)位于染色体8q23.1,通过选择性剪接产生4种亚型,分别为hOXR1AhOXR1BhOXR1C和hOXR1D6-8。hOXR1亚型在不同组织存在差异化表达。hOXR1A特异性分布于脑9-10;hOXR1B型和hOXR1D型主要分布于脑、眼睛、肝脏、肺、心脏和肌肉组织7;hOXR1C仅在睾丸组织表达10

OXR1的结构域包括赖氨酸基序(Lysin motif,LysM)、与肌球蛋白相关的GTP酶调节蛋白(GTPase regulator associated with myosin,GRAM)和Tre-2/Bub2/Cdc16催化结构域(Tre-2/Bub2/Cdc16 domain containing,TLDc)11。不同hOXR1亚型的结构域组成不同(图1)。LysM主要参与免疫防御和信号传导12-15;GRAM主要参与膜相关功能和信号传导11;TLDc由167个氨基酸残基组成,位于蛋白的C末端11,是OXR1抗氧化功能的核心15。OXR1在细胞内呈动态分布,主要定位于细胞内线粒体、细胞质和细胞核,调节抗氧化酶表达等多层次抗氧化防御机制,对抗氧化应激损伤,提高细胞耐受性16-18表1)。

2 OXR1的细胞保护机制

2.1 抗氧化应激损伤

OXR1不直接参与ROS的清除,也不具有过氧化氢酶或超氧化物歧化酶的活性,但其可以诱导线粒体自噬,维持细胞稳态19。在酵母细胞中,OXR1结构域中的TLDc结构域通过静电和疏水作用与V-ATPase亚基a(Stv1)结合,抑制其活性,并使V-ATP酶组装伴侣RAVE复合物解体,影响细胞的酸化过程20。在Hela细胞中,OXR1与核因子-E2相关因子-2(Nuclear factor erythroid 2-related factor 2,Nrf2)、细胞周期依赖性蛋白激酶抑制因子1A(Cyclin-dependent kinase inhibitor 1A,p21)等转录因子相互作用,促进Nrf2与抗氧化反应元件(Antioxidant response element,ARE)结合,调控谷胱甘肽过氧化酶4(Glutathione peroxidase 4,GPX4)和血红素加氧酶1(Heme oxygenase 1,HO-1)等抗氧化酶的表达,提高细胞对氧化应激的耐受性10图2)。

2.2 调控细胞周期

OXR1在维持细胞周期稳定性方面具有重要作用。在氧化应激条件下,OXR1缺失导致554个基因表达下调和253个基因表达上调,其中参与调节细胞周期的RPRMCDK6表达上调,p21Cyclin D1表达下调;这些变化导致G2/M期的细胞群体显著增加,表明OXR1缺失扰乱了细胞周期的正常进程21。MATSUI A等22进一步发现,OXR1缺失会导致Cyclin D1的蛋白表达水平升高,并且显著缩短了γ射线诱导的G2/M期停滞的持续时间。这些结果表明,OXR1在细胞周期调控中发挥着重要作用,尤其是在维持G2/M期检查点的稳定性方面。

2.3 抑制细胞凋亡

ROS增加会导致细胞色素C(Cytochrome C,CytC)从线粒体释放到胞质中,CytC结合并激活凋亡蛋白酶活化因子-1(Apoptotic protease activating factor-1,Apaf-1),进而将半胱天冬酶9(Caspase-9,CASP9)裂解成其活性形式,从而触发细胞凋亡21。研究表明,OXR1能够显著抑制CytC和CASP9凋亡蛋白的表达,限制CASP9蛋白的切割成活性形式,并抑制p53通路中ROS-CytC-Caspase轴激活,减少氧化应激诱导的细胞凋亡21Oxr1A能够直接与蛋白质精氨酸甲基转移酶1(Protein arginine methyltransferase 1,PRMT1)和PRMT5相互作用,调节p53的PRMT5依赖性甲基化,抑制细胞凋亡22-24。以上提示,OXR1通过多种机制调控p53相关信号通路,保护细胞免受氧化损伤诱导的凋亡。

3 OXR1的神经保护功能

3.1 促进发育与分化

OXR1在多个物种中高度保守。在果蝇中,OXR1同源基因芥基因(Mustard,mtd)与人类OXR1的TLDc结构域相似度达54%,mtd可编码26个转录本,动态调控幼虫至成虫的发育转化,mtd功能缺失导致蛹期致死性发育停滞,mtd能够维持空泡蛋白分选相关蛋白35的稳定,改善神经酰胺堆积,延缓果蝇衰老825。在脊椎动物中,斑马鱼Oxr1敲除引发全身发育迟滞,进一步证实其发育调控的保守性26。在人脑类器官模型中,OXR1通过增强诱导性多能干细胞的PRMT5甲基转移酶活性,驱动组蛋白H3R2对称性二甲基化的时空特异性修饰,调控神经发育过程中基因表达,有助于早期人脑发育;在诱导多能干细胞向神经元分化过程中,OXR1缺失不仅会导致成熟神经元数量减少,还可使神经元标志物(如微管相关蛋白2和神经元Ⅲ类β-微管蛋白)的表达下调27。因此,OXR1在促进发育与神经分化等方面具有重要作用。

3.2 延缓神经退行性疾病

OXR1的双等位基因功能丧失变异与小脑萎缩相关8。在肌萎缩侧索硬化症(Amyotrophic lateral sclerosis,ALS)小鼠模型中,Oxr1缺失可引发C57BL/6J小鼠小脑共济失调和小脑神经变性828Oxr1过表达可激活经典补体系统和STAT3信号通路,抑制主神经炎症反应,促进神经元细胞的存活,改善运动缺陷,延长ALS小鼠的生存期29。在表达特定Fus和Tdp-43突变体的神经细胞瘤N2a细胞中,增加OXR1水平,能显著改善因Fus和Tdp-43突变导致的胞质错误定位与聚集、线粒体基因的剪接变化以及线粒体缺陷。因此,OXR1可能对ALS及伴随TDP-43病理改变的神经退行性疾病具有潜在的治疗价值30

此外,OXR1在视网膜神经退行性病变中的作用也受到广泛关注。研究显示,Oxr1的表达能够增强视网膜对高氧攻击的抵抗,在高氧诱导光感受器死亡的早期阶段发挥保护作用18。在糖尿病小鼠视网膜病变中,miR-200b表达上调会抑制其靶基因Oxr1的表达,导致视网膜细胞凋亡31

4 靶向OXR1的药物研究

4.1 调节OXR1的药物

研究显示,藏红花素可以上调野百合碱诱导的肺动脉高压大鼠的Oxr1、p21及Nrf2的表达,增强抗氧化酶活性和谷胱甘肽生物合成,显著降低肺动脉压,减少肺组织损伤32。荜茇酰胺(Piperlongumine,PL)通过靶向降解衰老成纤维细胞中的OXR1,削弱其抗氧化能力,促进衰老细胞的凋亡33。PL还可以通过抑制PI3K/Akt/mTOR信号通路,激活细胞凋亡和自噬,显著抑制人宫颈癌细胞的增殖与存活34。PENG C等35合成了一种铱金属复合物,其通过上调Oxr1蛋白的表达,直接或间接清除超氧阴离子和过氧化,保护脊髓神经元,促进其再生,并恢复脊髓损伤小鼠的运动功能。

4.2 基于TLDc的药物设计

尽管目前尚未有靶向OXR1的药物,但结构生物学研究显示,OXR1的TLDc结构域具有独特的三维结构。该结构域由4个α螺旋和10个β链组成,其折叠方式与其他已知蛋白质结构无显著相似性11。近年来TLDc结构域与非编码RNA的相互作用受到了广泛关注,某些microRNA(如miR-200b-3p和miR-32-5p)和长链非编码RNA能够特异性靶向TLDc蛋白,通过与TLDc蛋白相互作用,调节其表达水平36。研究显示,TBC1结构域家族成员24(TBC1 domain family member 24,TBC1D24)中TBC结构域的天冬氨酸136或丝氨酸178位点突变,会使TBC与TLDc结构域间结合亲和力降低,进而损害囊泡运输功能,最终导致听力损伤37-38。因此,解析TLDc结构域与互作结构域的特异性结合界面及动力学特征,是开发靶向OXR1-TLDc结构域小分子药物的一个关键条件。

5 总结与展望

OXR1作为进化保守的内源性抗氧化防御系统核心调控因子,可通过调节抗氧化途径、维持线粒体功能以及稳定逆转运复合体等多种机制,构建多层次的抗氧化防御网络,保护细胞免受氧化损伤。OXR1在基础与临床领域均展现出重要价值,但同时也面临诸多挑战。如OXR1的分子机制复杂,功能分型尚未明确,其核质转运机制及表观遗传调控(如DNA甲基化、组蛋白修饰)缺乏直接证据。未来研究需整合单细胞多组学、高分辨率结构解析及类器官模型,系统揭示OXR1在生理与病理状态下的动态调控规律,并开发针对其关键功能结构域(如TLD结构域)的精准干预策略。

参考文献

[1]

PERLUIGI MDI DOMENICO FBUTTERFIELD D A. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease[J]. Physiological reviews2024104(1):103-197.

[2]

PERLUIGI MDI DOMENICO FBUTTERFIELD D A. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease[J]. Physiological reviews2024104(1): 103-197.

[3]

VOLKERT M RCROWLEY D J. Preventing neurodegeneration by controlling oxidative stress: the role of OXR1[J]. Frontiers in Neuroscience202014:611904.

[4]

VOLKERT M RELLIOTT N AHOUSMAN D E. Functional genomics reveals a family of eukaryotic oxidation protection genes[J]. Proc Natl Acad Sci USA200097(26):14530-14535.

[5]

HSUEH Y JCHEN Y NTSAO Y T, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci202223(3):1255.

[6]

ELLIOTT N AVOLKERT M R. Stress induction and mitochondrial localization of Oxr1 proteins in yeast and humans[J]. Mol Cell Biol200424(8):3180-3187.

[7]

XU HMAO XNIE Z, et al. Oxr1a prevents the premature ovarian failure by regulating oxidative stress and mitochondrial function in zebrafish[J]. Free Radic Biol Med2023203:102-113.

[8]

WANG JROUSSEAU JKIM E, et al. Loss of oxidation resistance 1, OXR1, is associated with an autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction[J]. Am J Hum Genet2019105(6):1237-1253.

[9]

ELLIOTT N AVOLKERT M R. Stress induction and mitochondrial localization of Oxr1 proteins in yeast and humans[J]. Mol Cell Biol200424(8):3180-3187.

[10]

YANG MLUNA LSØRBØ J G, et al. Human OXR1 maintains mitochondrial DNA integrity and counteracts hydrogen peroxide-induced oxidative stress by regulating antioxidant pathways involving p21[J]. Free Radic Biol Med201477:41-48.

[11]

徐浩,苗晓敏,李升,OXR1基因的抗氧化作用及分子机制研究进展[J].生命科学202133(3):374-382.

[12]

OOT R AWILKENS S. Human V-ATPase function is positively and negatively regulated by TLDc proteins[J]. Structure202432(7):989-1000.e6.

[13]

TAKASHIMA TSUNAGAWA RUECHI K, et al. Antifungal activities of LysM-domain multimers and their fusion chitinases[J]. Int J Biol Macromol2020154:1295-1302.

[14]

SUZUKI MNUMAZAKI RNAKAGAWA T, et al. Cytoplasmic interaction of LysM receptors contributes to the formation of symbiotic receptor complex[J]. Plant Biotechnol202037(3):359-362.

[15]

GAO FZHANG B SZHAO J H, et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens[J]. Nat Plants20195(11):1167-1176.

[16]

OLIVER P LFINELLI M JEDWARDS B, et al. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration[J]. PLoS Genet20117(10):e1002338.

[17]

WU YDAVIES K EOLIVER P L. The antioxidant protein Oxr1 influences aspects of mitochondrial morphology[J]. Free Radic Biol Med201695:255-267.

[18]

NATOLI RPROVIS JVALTER K, et al. Expression and role of the early-response gene Oxr1 in the hyperoxia-challenged mouse retina[J]. Invest Ophthalmol Vis Sci200849(10):4561-4567.

[19]

LI SZHUANG YJI Y, et al. BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1[J]. Free Radic Biol Med2024214:54-68.

[20]

KHAN M MLEE SCOUOH-CARDEL S, et al. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner[J]. EMBO J202241(3):e109360.

[21]

YANG MLIN XROWE A, et al. Transcriptome analysis of human OXR1 depleted cells reveals its role in regulating the p53 signaling pathway[J]. Sci Rep20155:17409.

[22]

MATSUI AKOBAYASHI JKANNO S I, et al. Oxidation resistance 1 prevents genome instability through maintenance of G2/M arrest in gamma-ray-irradiated cells[J]. J Radiat Res202061(1):1-13.

[23]

YANG MLIN XSEGERS F, et al. OXR1A, a coactivator of PRMT5 regulating histone arginine methylation[J]. Cell Rep202030(12):4165-4178.e7.

[24]

ZHU FRUI L. PRMT5 in gene regulation and hematologic malignancies[J]. Genes Dis20196(3):247-257.

[25]

WILSON K A, BAR S, DAMMER E B, et al. OXR1 maintains the retromer to delay brain aging under dietary restriction[J]. Nat Commun202415(1):467.

[26]

LI YNING GKANG B, et al. A novel recessive mutation in OXR1 is identified in patient with hearing loss recapitulated by the knockdown zebrafish[J]. Hum Mol Genet202332(5):764-772.

[27]

LIN XWANG WYANG M, et al. A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial-temporal regulation of histone arginine methylation in neurodevelopment[J]. Genome Biol202324(1):216.

[28]

BUCKNOR E M VJOHNSON EEFTHYMIOU S, et al. Neuroinflammation and lysosomal abnormalities characterise the essential role for oxidation resistance 1 in the developing and adult cerebellum[J]. Antioxidants202413(6):685.

[29]

LIU K XEDWARDS BLEE S, et al. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis[J]. Brain2015138(5):1167-1181.

[30]

FINELLI M JLIU K XWU Y, et al. Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations[J]. Hum Mol Genet201524(12):3529-3544.

[31]

MURRAY A RCHEN QTAKAHASHI Y, et al. microRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model[J]. Invest Ophthalmol Vis Sci201354(3):1689-1697.

[32]

SHENG YGONG XZHAO J, et al. Effects of crocin on CCL2/CCR2 inflammatory pathway in monocrotaline-induced pulmonary arterial hypertension rats[J]. Am J Chin Med202250(1):241-259.

[33]

ZHANG XZHANG SLIU X, et al. Oxidation resistance 1 is a novel senolytic target[J]. Aging Cell201817(4):e12780.

[34]

HAN E JCHOI E YJEON S J, et al. Piperlongumine induces apoptosis and autophagy via the PI3K/Akt/mTOR pathway in KB human cervical cancer cells[J]. Food Chem Toxicol2023180:114051.

[35]

PENG CLUO JWANG K, et al. Iridium metal complex targeting oxidation resistance 1 protein attenuates spinal cord injury by inhibiting oxidative stress-associated reactive oxygen species[J]. Redox Biol202367:102913.

[36]

ZUCCHINI CSERPE CDE SANCTIS P, et al. TLDc domain-containing genes in autism spectrum disorder: new players in the oxidative stress response[J]. Int J Mol Sci202324(21):15802.

[37]

TONA RINAGAKI SISHIBASHI Y, et al. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants[J]. J Biol Chem2024300(9):107725.

[38]

OZIĘBŁO DLEJA M LLAZNIEWSKI M, et al. TBC1D24 emerges as an important contributor to progressive postlingual dominant hearing loss[J]. Sci Rep202111(1):10300.

基金资助

国家自然科学基金项目(8236100501)

江西省教育厅科学技术研究项目(GJJ201503)

赣南医科大学研究生创新专项资金校级项目(YC2023-X008)

AI Summary AI Mindmap
PDF (536KB)

645

访问

0

被引

详细

导航
相关文章

AI思维导图

/