PDF
摘要
分类是数据挖掘的一个重要研究方向,使用决策树进行分类是一种常用而且高效的分类方法。目前传统的算法有ID 3、C 4.5、CART等,这些算法都有如下的局限性:必须人工输入归类集合,划分属性,确定最优的分类集合。为了解决这些问题,本文做了如下工作:①提出信息增益排列GEP染色体头部的思想;②给出基于信息增益的GEP构造决策树属性约简算法(IG-GEPDTAR)并用实验进行验证;③实验表明该算法构造的决策树在具有100%准确性的同时,比使用GEP算法构造的决策树减少了冗余分支,其节点数比传统的ID 3算法和P ID算法构造的决策树的节点数分别减少了82.9%和31.2%。
关键词
GEP
/
信息增益
/
决策树归纳
/
熵
Key words
基于信息增益和GEP的决策树属性约简算法[J].
广西师范大学学报(自然科学版), 2010, 28(03): 113-117 DOI:10.16088/j.issn.1001-6600.2010.03.019