基于SA-DBN的超短期电力负荷预测

刘东, 周莉, 郑晓亮

广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (04) : 21 -33.

PDF
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (04) : 21 -33. DOI: 10.16088/j.issn.1001-6600.2020070101

基于SA-DBN的超短期电力负荷预测

    刘东, 周莉, 郑晓亮
作者信息 +

Author information +
文章历史 +
PDF

摘要

针对超短期电力负荷预测,提出一种使用集合经验模态分解与样本熵对原始数据预处理,再用模拟退火算法优化深度置信网络的组合模型进行预测。为了减小时间序列数据因自相关性导致预测值滞后于真实值,对原始序列采用EEMD分解,根据各序列的SE值将序列重构,再使用SA对DBN各隐含层节点数寻优构成的SA-DBN模型对重构后的序列分别预测,将各序列的预测结果叠加得到最终的预测曲线。实验结果表明,相比于其他预测模型,本文模型能消除预测曲线的滞后性,预测的误差指标MAPE、MAE、RMSE分别降为1.959 2%、9.423 9、11.977 1,并且将模型的预测精度提高到96.435%。

关键词

超短期电力负荷预测 / 集合经验模态分解 / 样本熵 / 模拟退火算法 / 深度置信网络

Key words

引用本文

引用格式 ▾
基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(04): 21-33 DOI:10.16088/j.issn.1001-6600.2020070101

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

62

访问

0

被引

详细

导航
相关文章

AI思维导图

/