基于Jackknife互信息的高维非线性回归模型研究

张治飞, 段谦, 刘乃嘉, 黄磊

广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (01) : 43 -56.

PDF
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (01) : 43 -56. DOI: 10.16088/j.issn.1001-6600.2021060910

基于Jackknife互信息的高维非线性回归模型研究

    张治飞, 段谦, 刘乃嘉, 黄磊
作者信息 +

Author information +
文章历史 +
PDF

摘要

确定独立筛选(SIS)方法在处理超高维稀疏线性回归模型的变量选择问题上已得到了广泛的应用,且已被推广到处理广义线性回归模型的变量选择问题。但SIS不能很好地解决非线性回归模型的变量选择问题,关于该问题的现有研究也较少,因此,如何有效地对超高维稀疏非线性回归模型进行变量选择是一个具有研究价值的问题。本文在经典的SIS方法基础上,利用互信息的刀切估计(JMI),提出JMI与SIS相结合的方法,给出具体算法步骤,以实现超高维稀疏非线性回归模型的变量选择问题,并通过一些有代表性的统计模拟试验,验证所提方法的相合性,同时通过2个超高维基因数据的实例分析,对所提方法的可行性以及实用性进行说明。

关键词

超高维空间 / SIS / 非线性回归 / JMI / 相合性

Key words

引用本文

引用格式 ▾
基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(01): 43-56 DOI:10.16088/j.issn.1001-6600.2021060910

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

96

访问

0

被引

详细

导航
相关文章

AI思维导图

/