PDF
摘要
为改进当前瞬变电磁探测系统的局限,提高接地网缺陷识别的效率与精度,提出一种MWOA-Elman神经网络,完成数据由采样到成像的转化过程,快速实现视电阻率成像,精准识别接地网的不同缺陷。首先,通过理论计算完成接地网瞬变场参数样本集,构造Elman神经网络的单映射关系。其次,围绕收敛因子、自适应权重与阈值对鲸鱼算法进行改进,用改进鲸鱼算法(modified whale optimization algorithm, MWOA)优化Elman神经网络的权值和阈值。测试结果表明,MWOA-Elman神经网络在第854步收敛,4项误差指标MAE、MSE、RMSE、MAPE分别为0.103 51、0.040 09、0.126 64和0.333 52%,接地网缺陷识别精度为99.678%,识别效率与精度均优于其他模型。最后,通过分析3×3接地网3种典型缺陷位置的成像结果,验证了MWOA-Elman神经网络应用于接地网缺陷识别的有效性,为嵌入瞬变电磁探测系统的智能算法提供参考。
关键词
接地网缺陷
/
瞬变场参数
/
视电阻率成像
/
Elman神经网络
/
改进鲸鱼算法
Key words
基于MWOA-Elman神经网络的接地网瞬变电磁缺陷识别[J].
广西师范大学学报(自然科学版), 2023, 41(03): 53-66 DOI:10.16088/j.issn.1001-6600.2022061901