基于改进LSTM的多维QAR数据异常检测

欧阳舒歆, 王洺钧, 荣垂田, 孙华波

广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (05) : 49 -60.

PDF
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (05) : 49 -60. DOI: 10.16088/j.issn.1001-6600.2023021303

基于改进LSTM的多维QAR数据异常检测

    欧阳舒歆, 王洺钧, 荣垂田, 孙华波
作者信息 +

Author information +
文章历史 +
PDF

摘要

快速存储记录器QAR(quick access recorder)数据保留了飞行器大量的飞行参数,使得研究飞行器飞行安全、保障飞行品质成为可能。针对多维QAR数据的安全检测要求,本文提出一种基于卷积VAE和多头自注意力-LSTM模型,用于有效且可解释的多维时间序列异常检测。该模型能够捕获多个时间序列数据通道之间的空间信息和时间信息,对序列模式进行可解释的重建从而检测所有类型的异常。实验部分在真实的QAR数据集上与iForest、LSTM、VAE、LSTM-VAE和USAD等已有方法进行对比。结果表明,该模型在3个不同阶段的异常检测中,F1分数分别达到0.891 2、0.942 4、0.953 7,均优于对比模型,能够准确检测出多维QAR数据中存在的异常。

关键词

异常检测 / QAR数据 / 多变量时间序列 / 神经网络

Key words

引用本文

引用格式 ▾
基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(05): 49-60 DOI:10.16088/j.issn.1001-6600.2023021303

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

135

访问

0

被引

详细

导航
相关文章

AI思维导图

/