改进PINNs方法求解边界层对流占优扩散方程

高飞, 郭晓斌, 袁冬芳, 曹富军

广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (06) : 33 -50.

PDF
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (06) : 33 -50. DOI: 10.16088/j.issn.1001-6600.2023032203

改进PINNs方法求解边界层对流占优扩散方程

    高飞, 郭晓斌, 袁冬芳, 曹富军
作者信息 +

Author information +
文章历史 +
PDF

摘要

针对物理信息神经网络(PINNs)在求解边界层附近存在剧烈梯度变化的对流占优扩散方程时无法得到足够精度的问题,本文提出一种具有参数渐进思想的神经网络求解方法。该方法首先近似大扩散参数方程的光滑解,然后逐步减小扩散参数并将大扩散参数下的网络最优参数作为小扩散参数神经网络的初始值进行训练,通过参数循环反复优化物理信息神经网络,提高神经网络的表征能力,从而提升物理信息神经网络逼近对流占优扩散问题的求解精度,最后获得小扩散参数的高精度奇异解。经过对本文方法与PINNs以及gPINNs方法在精度和收敛效率方面的对比分析表明,本文方法在未知边界层位置条件下,能够高效地近似对流占优扩散方程的大梯度解,实现10-3量级的精度。同时,本文方法在收敛速度和稳定性方面比PINNs和gPINNs具有更好的优势和性能。

关键词

扩散方程 / 边界层 / 物理信息神经网络 / 深度学习 / 对流扩散

Key words

引用本文

引用格式 ▾
改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(06): 33-50 DOI:10.16088/j.issn.1001-6600.2023032203

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

150

访问

0

被引

详细

导航
相关文章

AI思维导图

/