PDF
摘要
为应对织物疵点目标检测中背景纹理复杂以及硬件资源有限问题,本文提出一种基于改进YOLOv8n的轻量化织物疵点检测算法(GSL-YOLOv8n)。首先,为减少YOLOv8n模型参数量与网络结构复杂度,结合Ghost思想构建C2fGhost模块,并用Ghost卷积层替换YOLOv8n网络结构的普通卷积(Conv);其次,在主干网络末端嵌入无参注意力机制SimAM,去除冗余背景,增强小目标语义信息和全局信息,增强网络特征提取能力;最后,设计轻量化共享卷积检测头LSCDH,运用Scale层对特征进行缩放,在保证模型轻量化的同时尽可能减少精度损失。改进后的算法GSL-YOLOv8n相比原YOLOv8n模型平均精度提升0.60%,达到98.29%,检测速度FPS基本保持不变,模型体积、计算量和参数量分别减少66.7%、58.0%和67.4%,满足纺织工业生产对织物疵点检测的应用要求。
关键词
织物疵点
/
YOLOv8
/
GhostNet
/
注意力机制
/
轻量化
/
目标检测
Key words
基于改进YOLOv8n的轻量化织物疵点检测算法[J].
广西师范大学学报(自然科学版), 2025, 43(02): 83-94 DOI:10.16088/j.issn.1001-6600.2024051302