适宜于黄土高原半干旱区豆禾饲草间套作组合的筛选
Selection of intercropping combinations suitable for alfalfa and Poaceae forages in semi-arid areas of the Loess Plateau
为筛选黄土高原半干旱区适宜种植的饲草间套作组合,于2016-2019年在甘肃省兰州市采用田间试验方法对紫花苜蓿与玉米、甜高粱、燕麦和小黑麦进行间套作,并探究间套作下饲草的生产特性及土地利用特征。研究发现,紫花苜蓿/玉米间套作和紫花苜蓿/甜高粱间套作下的干草产量显著大于紫花苜蓿单作;在2018和2019年时,紫花苜蓿/燕麦间套作和紫花苜蓿/小黑麦间套作下的干草产量和粗蛋白产量分别显著大于燕麦单作和小黑麦单作。同时,紫花苜蓿与甜高粱(玉米)间套作时的群体产量和群体粗蛋白产量明显大于其他种植模式。另外,玉米、燕麦(除种植第2年)和小黑麦在间套作下其粗蛋白含量较其单作显著升高;紫花苜蓿表现相反。4种间套作组合中,土地当量比、区域时间等价率和农田利用效率均大于1;4种禾本科牧草的侵占力均大于0,竞争比率均大于1。其中,紫花苜蓿/小黑麦间套作的土地当量比、区域时间等价率和农田利用效率最高。综上,在西北半干旱区进行饲草间套作种植,以生产性能为目标时,推荐紫花苜蓿/玉米(甜高粱)间套作;以土地利用为目标时,推荐紫花苜蓿/小黑麦间套作。
The research aimed to screen suitable intercropping combinations of forage in semi-arid areas of the Loess Plateau. From 2016 to 2019, a field experiment was conducted in Lanzhou, Gansu province, involving intercropping alfalfa (Medicago sativa) with maize (Zea mays), sorghum (Sorghum bicolor), oat (Avena sativa) and triticale (Triticale). The experiment explored the production characteristics and land use characteristics of forage intercropping. It was found that the hay yield from alfalfa/maize intercropping and alfalfa/sorghum intercropping was significantly higher than that of monoculture alfalfa. In 2018 and 2019, hay yield and crude protein yield of alfalfa/oat intercropping and alfalfa/triticale intercropping were significantly higher than those of corresponding monocultures of gramineous forages. Also, group dry forage yield and crude protein yield of alfalfa/sorghum (maize) was higher than other planting patterns, and the crude protein yields of maize, oat (except the second year of planting) and triticale was significantly increased in intercropping systems compared with their monoculture; alfalfa exhibited the opposite pattern. In the four intercropping combinations, the land equivalent ratio, regional time equivalence rate and land utilization efficiency were all greater than 1; the aggressivity of the four gramineous forages was greater than 0, and the competition ratio was greater than 1 in each case. Among the studied intercropping combinations, the land equivalent ratio, regional time equivalence ratio and land utilization efficiency were the highest in alfalfa/triticale intercropping systems. In summary, to optimize yield, it is recommended to adopt alfalfa/maize and alfalfa/sorghum intercroppings; to optimize land use, it is recommended to adopt alfalfa/triticale intercropping.
intercropping / forage / production performance / land use / selection
| [1] |
Li L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415 . |
| [2] |
李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24(4): 403-415. |
| [3] |
Zhang D S, Du G J, Sun Z X, et al. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018, 94(1): 1-11. |
| [4] |
Ren J H, Zhang L Z, Duan N Y, et al. Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019, 240(6): 168-176. |
| [5] |
Tang X M, Huang Z P, Wu H N, et al. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system. Ecology and Environmental Sciences, 2020, 29(2): 223-230. |
| [6] |
唐秀梅, 黄志鹏, 吴海宁, 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230. |
| [7] |
Zhang Y, Duan Y, Nie J, et al. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225(9): 105778-105787. |
| [8] |
Wang X C, Yang W Y. Review on relationship of source-sink and crop yield under shading stress in intercropping systems. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 292-299. |
| [9] |
王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展.中国油料作物学报, 2019, 41(2): 292-299. |
| [10] |
Xiao J X, Dong Y, Yin X H, et al. Wheat growth is stimulated by interspecific competition after faba bean attains its maximum growth rate. Crop Science, 2019, 59(1): 1-14. |
| [11] |
Liu H, Zan Z M, Wang J T, et al. Effects of large-spike type maize on interspecific competition and intercropping advantage in maize-peanut intercropping system. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1368-1378 . |
| [12] |
刘涵, 昝志曼, 汪江涛, 大穗型玉米对玉米||花生种间竞争与间作优势的影响. 中国生态农业学报, 2023, 31(9): 1368-1378. |
| [13] |
Li G Y, Cong X J, Li G Q, et al. Effect of sowing date of foxtail millet on crop productivity in foxtail millet/peanut intercropping system. Journal of Nuclear Agricultural Sciences, 2022, 36(5): 1008-1016. |
| [14] |
李国瑜, 丛新军, 李国清, 谷子播期对谷子/花生间作系统生产力的影响. 核农学报, 2022, 36(5): 1008-1016. |
| [15] |
Ren X L, Teng Y Y, Wang Y F, et al. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chinese Journal of Eco-Agriculture, 2019, 27(6): 860-869. |
| [16] |
任旭灵, 滕园园, 王一帆, 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报, 2019, 27(6): 860-869. |
| [17] |
Zhang Y T, Ren T Z, Liu H B, et al. Effect and mechanism of maize intercropping with soybean on reducing soil nitrogen residue in wheat-maize rotation. Scientia Agricultura Sinica, 2015, 48(13): 2580-2590. |
| [18] |
张亦涛, 任天志, 刘宏斌, 玉米大豆间作降低小麦玉米轮作体系土壤氮残留的效应与机制. 中国农业科学, 2015, 48(13): 2580-2590. |
| [19] |
Wan R N, Sun Z X, Zhang L Z, et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Research, 2020, 253(4): 107819-107829. |
| [20] |
Bai W L, Zhang M Y, Ren J B, et al. Simulation of crop growth curve and analysis of interspecific interaction in wheat and faba bean intercropping system. Chinese Journal of Applied Ecology, 2018, 29(12): 4037-4046. |
| [21] |
柏文恋, 张梦瑶, 任家兵, 小麦/蚕豆间作作物生长曲线的模拟及种间互作分析. 应用生态学报, 2018, 29(12): 4037-4046. |
| [22] |
Ren Y Y, Wang Z L, Wang X L, et al. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau. Acta Ecologica Sinica, 2015, 35(12) : 4168-4177. |
| [23] |
任媛媛, 王志梁, 王小林, 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制. 生态学报, 2015, 35(12): 4168-4177. |
| [24] |
Zhao J H, Sun J H, Chen L Z, et al. Growth and interspecific competition of crops as affected by maize row spacing in soybean/maize intercropping system. Soybean Science, 2019, 38(2): 229-235. |
| [25] |
赵建华, 孙建好, 陈亮之, 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响. 大豆科学, 2019, 38(2): 229-235. |
| [26] |
Ren J B, Zhang M Y, Xiao J X, et al. Wheat and faba bean intercropping to improve yield and response to nitrogen. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1890-1900. |
| [27] |
任家兵, 张梦瑶, 肖靖秀, 小麦||蚕豆间作提高间作产量的优势及其氮肥响应. 中国生态农业学报, 2020, 28(12): 1890-1900. |
| [28] |
Chen P S, Chun L, Xiao M, et al. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Science of the Total Environment, 2019, 657: 987-999. |
| [29] |
Xue Y F, Xia H Y, Christie P, et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Annals of Botany, 2016, 117(3): 363-377. |
| [30] |
Wang L R, Wang W, Pu X J, et al. Comprehensive evaluation of production performance and feed quality of 19 alfalfa varieties in Qaidam Basin. Acta Agrestia Sinica, 2023, 31(10): 3136-3144. |
| [31] |
王龙然, 王伟, 蒲小剑, 柴达木盆地19个紫花苜蓿品种生产性能和饲用品质综合评价. 草地学报, 2023, 31(10): 3136-3144. |
| [32] |
Liu X, Zhang X, Wang Y, et al. Soil degradation: a problem threatening the sustainable development of agriculture in northeast China. Soil and Environment, 2010, 56(2): 87-97. |
| [33] |
Huang Z C, Shi S L, Wang R, et al. Effects of different forage crop intercropping patterns on aboveground biomass and competitiveness. Pratacultural Science, 2020, 37(11): 2284-2292. |
| [34] |
黄宗昌, 师尚礼, 汪睿, 不同饲草作物间作模式对地上生物量及竞争力的影响. 草业科学, 2020, 37(11): 2284-2292. |
| [35] |
Jiang Z W, Liu G Y, An H Y, et al. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system. Acta Prataculturae Sinica, 2022, 31(7): 157-171. |
| [36] |
蒋紫薇, 刘桂宇, 安昊云, 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响. 草业学报, 2022, 31(7): 157-171. |
| [37] |
Zhao Y J. Study on the advantage of alfalfa/gramineae forage intercropping and the mechanism of nitrogen efficiency and effect of soil microecological. Lanzhou: Gansu Agricultural University, 2020. |
| [38] |
赵雅姣. 紫花苜蓿/禾本科牧草间作优势及其氮高效机理和土壤微生态效应研究. 兰州: 甘肃农业大学, 2020. |
| [39] |
Zhang X N, Chen P, Pang T, et al. The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system. Journal of Sichuan Agricultural University, 2017, 35(4): 484-490. |
| [40] |
张晓娜, 陈平, 庞婷, 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响. 四川农业大学学报, 2017, 35(4): 484-490. |
| [41] |
Wang X, Liu X J, Zhao Y J, et al. Effects of alfalfa/oat intercropping on carbon and nitrogen metabolism and matter accumulation of oat. Acta Agrestia Sinica, 2021, 29(10): 2258-2264. |
| [42] |
汪雪, 刘晓静, 赵雅姣, 紫花苜蓿/燕麦间作对燕麦碳、氮代谢及其物质积累的影响研究. 草地学报, 2021, 29(10): 2258-2264. |
| [43] |
Dong N, Tang M M, Zhang W P, et al. Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Scientific Reports, 2018, 8(1): 3110-3121. |
| [44] |
Gil J. Multiple cropping systems. Nature Food, 2020, 1(10): 593. |
| [45] |
Zhu J H, Song Q, Du W H. Productivity and nutritional quality of silage maize intercropped with soybean in dryland plateau area of east Gansu. Acta Agriculturae Boreali-Occidentalis Sinica, 2024, 33(3): 1-13. |
| [46] |
祝嘉慧, 宋谦, 杜文华. 陇东旱塬区禾‖豆间作的生产性能及营养品质研究. 西北农业学报, 2024, 33(3): 1-13. |
| [47] |
Liu G H, Guo Y P, Yi A M, et al. Research progress in the main technologies for alfalfa intercropping and their benefits in China. Heilongjiang Animal Science and Veterinary Medicine, 2013, 6(11): 38-41. |
| [48] |
刘贵河, 郭郁频, 易爱民, 我国苜蓿主要间作技术及效益研究进展. 黑龙江畜牧兽医, 2013, 6(11): 38-41. |
| [49] |
Wang Y F, Qin Y Z, Feng F X, et al. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agronomica Sinica, 2017, 43(5): 754-762. |
| [50] |
王一帆, 秦亚洲, 冯福学, 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43(5): 754-762. |
| [51] |
Zhang L, Zhang N M, Zhang S Y, et al. Effects of AMF and intercropping on crop yield and soil nitrogen and phosphorus loss by runoff on slope farmland. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 216-224. |
| [52] |
张丽, 张乃明, 张仕颖, AMF和间作对作物产量和坡耕地土壤径流氮磷流失的影响. 农业工程学报, 2019, 35(22): 216-224. |
| [53] |
Liu Z, Meng W W, Nan Z W, et al. Effects of different planting modes on growth and yield formation of millet and peanut in saline-alkali land. Journal of Peanut Science, 2019, 48(2): 31-37. |
| [54] |
刘柱, 孟维伟, 南镇武, 盐碱地不同种植模式对谷子花生生长发育及产量形成的影响. 花生学报, 2019, 48(2): 31-37. |
| [55] |
Cai Q, Sun Z X, Zheng J M, et al. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning Province. Scientia Agricultura Sinica, 2021, 54(5): 909-920. |
| [56] |
蔡倩, 孙占祥, 郑家明, 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响. 中国农业科学, 2021, 54(5): 909-920. |
| [57] |
Yu Y, Stomph T J, Makowski D, et al. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 2015, 184(9): 133-144. |
| [58] |
Zhao J H, Sun J H, Li W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642. |
| [59] |
赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响. 中国生态农业学报, 2018, 26(11): 1634-1642. |
| [60] |
Yin W, Zhao C, Yu A Z, et al. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system. Acta Agronomica Sinica, 2015, 41(4): 633-641. |
| [61] |
殷文, 赵财, 于爱忠, 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. 作物学报, 2015, 41(4): 633-641. |
国家自然科学基金(32171674)
甘肃省重点研发计划项目(2020YF8 NA130)
甘肃省高校青年博士支持项目(2024QB-076)
/
| 〈 |
|
〉 |