连作对纹党生长、生理特性及自毒物质的影响研究
邱亚娟 , 邵晓龄 , 陈莺宇 , 黄钰芳 , 陈红刚 , 杨扶德 , 高素芳 , 袁菊丽 , 高健
草业学报 ›› 2025, Vol. 34 ›› Issue (01) : 107 -117.
连作对纹党生长、生理特性及自毒物质的影响研究
Research on effects of continuous cropping on the growth, physiological characteristics and autotoxic substances of Codonopsis pilosula var. modesta
为探究纹党连作障碍效应及发生机制,以正茬(CK)和连作1年(CC1)、连作2年(CC2)及连作3年(CC3)土壤为试验对象,开展盆栽试验,动态研究连作对纹党生长、抗氧化酶系统及叶绿素的影响,并利用气相色谱-质谱联用技术(GC-MS)分析了不同连作年限土壤中自毒物质的种类及含量。结果显示,苗期、开花期、生长旺盛期及收获期各个生育时期内,连作对纹党的生长均存在抑制作用,且随连作年限的延长作用逐渐加强;同一连作年限,随着生育进程的推进,叶片中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性先增加后下降,过氧化物酶(POD)活性先下降后增加再下降,但在同一生长阶段,3种抗氧化酶活性均随连作年限增加逐年下降,而丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量和相对电导率均逐年增加;从CK、CC1、CC2和CC3中分别鉴定出5、17、13和4种化学物质,主要包括:邻苯二甲酸二(2-乙基己)酯、邻苯二甲酸二丁酯、丙酸乙酯和油酸酰胺等物质,其中邻苯二甲酸二(2-乙基己)酯在各种处理土壤中均存在,其相对含量均较高。连作可以通过破坏纹党植株中抗氧化酶系统,降低叶片叶绿素含量抑制纹党生长,产生连作障碍;连作条件下自毒作用是导致纹党发生连作障碍的主要原因之一。
In order to explore the continuous cropping obstacle effect of Codonopsis pilosula var. modesta and its mechanism, pot experiments were conducted in the soil of normal crop (CK), and continuous cropping 1 year (CC1), continuous cropping 2 years (CC2) and continuous cropping 3 years (CC3) as experimental objects. The effects of continuous cropping on the growth, antioxidant enzyme system and chlorophyll of C. pilosula var. modesta were evaluated, and the types and levels of autotoxic substances in the soil of different continuous cropping years were analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that continuous cropping had an inhibitory effect on the growth of C. pilosula var. modesta at the seedling stage, flowering stage, peak growth stage and harvest stage, and the effect gradually strengthened with increase in the number of continuous cropping years. In the same continuous cropping years, with the advancement of growth process, the activities of catalase (CAT) and superoxide dismutase (SOD) in leaves initially increased and then decreased, and the activities of peroxidase (POD) initially decreased and then increased and then decreased again, but at the same growth stage, the activities of the three antioxidant enzymes all decreased year by year, and but the levels of malondialdehyde (MDA), proline (Pro), soluble sugar and the relative conductivity all increased year by year. The results of GC-MS showed that 5, 17, 13 and 4 chemical substances were identified from CK, CC1, CC2 and CC3, respectively, including di-2-ethylhexyl phthalate, dibutyl phthalate, ethyl propionate and oleamide, among which di-2-ethylhexyl phthalate was found in all treatments with relatively high levels. It can be seen that continuous cropping can inhibit the growth of C. pilosula var. modesta by disrupting the antioxidant enzyme system and reducing the leaf chlorophyll content, resulting in continuous cropping disorders. The autotoxicity under continuous cropping is one of the main causes for continuous cropping disorders in C. pilosula var. modesta.
纹党 / 连作障碍 / 生理生化 / 化感自毒作用 / 气相色谱-质谱分析
Codonopsis pilosula var. modesta / continuous cropping obstacles / physiology and biochemistry / allelopathic autotoxicity / gas chromatography-mass spectrometry
| [1] |
National Pharmacopoeia Committee. Chinese Pharmacopoeia (one). Beijing: China Medical Science and Technology Press, 2020: 281-282. |
| [2] |
国家药典委员会. 中国药典(一部). 北京: 中国医药科技出版社, 2020: 281-282. |
| [3] |
Yang Y, Li H L, Ma K L, et al. Effect of continuous cropping on the physicochemical properties, microbial activity, and community characteristics of the rhizosphere soil of Codonopsis pilosula. Environmental Science, 2023, 44(11): 6387-6398. |
| [4] |
杨阳, 李海亮, 马凯丽, 连作对党参根际土壤理化性质、微生物活性及群落特征的影响. 环境科学, 2023, 44(11): 6387-6398. |
| [5] |
Wu H M, Lin W X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants. Chinese Journal of Eco-Agriculture, 2020, 28(6): 775-793. |
| [6] |
吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视. 中国生态农业学报, 2020, 28(6): 775-793. |
| [7] |
Shen Y L, Cheng L Y, Meng X R, et al. Effects of ginseng continuous soil crop on growth development and antioxidant system of ginseng at different fertility stages. Chinese Journal of Applied Chemistry, 2023, 40(1): 109-115. |
| [8] |
沈彦龙, 程立业, 孟祥茹, 人参连作土壤对不同生育期人参生长发育及抗氧化系统的影响. 应用化学, 2023, 40(1): 109-115. |
| [9] |
An Y, Yang D, Li X, et al. Study on the effect and physiological mechanism of continuous cropping obstruction of Pinellia ternata. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(7): 1017-1022. |
| [10] |
安艳, 杨丹, 李鑫, 半夏连作障碍效应及生理机制研究. 西北农业学报, 2018, 27(7): 1017-1022. |
| [11] |
Wang M, Qu C L, Zhang Y, et al. Identification of autotoxic compounds in root exudates of Atractylodes lancea and their effects on seedling growth. Journal of Hubei University of Chinese Medicine, 2023, 25(2): 47-51. |
| [12] |
王萌, 瞿彩丽, 张燕, 茅苍术根际自毒物质鉴定及其对幼苗生长的影响. 湖北中医药大学学报, 2023, 25(2): 47-51. |
| [13] |
Zhang Z L, Qu W J, Li X F. Experimental guidance in plant physiology (The 4th Edition). Beijing: Higher Education Press, 2009. |
| [14] |
张志良, 瞿伟菁, 李小芳. 植物生理学实验指导(第四版). 北京: 高等教育出版社, 2009. |
| [15] |
Jothimani K, Arulbalachandran D. Physiological and biochemical studies of black gram (Vigna mungo(L.)Hepper) under polyethylene glycol induced drought stress. Biocatalysis and Agricultural Biotechnology, 2020, 29: 101777. |
| [16] |
Qi J W, Lu S S, Huang H X, et al. Identification of superoxide dismutase gene family in Gymnocarpos przewalskii and its response to salt stress. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(5): 856-867. |
| [17] |
齐建伟, 鲁松松, 黄海霞, 裸果木超氧化物歧化酶基因家族鉴定及对盐胁迫的响应分析. 云南农业大学学报(自然科学), 2023, 38(5): 856-867. |
| [18] |
Yang X X, Liu R, Jing M, et al. Variation of root soluble sugar and starch response to drought stress in Foxtail millet. Agronomy, 2023, 13(2): 359. |
| [19] |
Nie M. Research on growth and physiological charateristics of Rehmannia glutinosa Libosch. at different continuous cropping years and allelochemicals of its rhizosphere soil. Zhengzhou: Henan Agricultural University, 2017. |
| [20] |
聂铭. 不同连作年限地黄生长生理特性及其根区土壤化感物质研究. 郑州: 河南农业大学, 2017. |
| [21] |
Wang Z W. The effects of growth development and composition accumulation of Codonopsis pilosula under different soil moisture. Hangzhou: Zhejiang Sci-Tech University, 2018. |
| [22] |
王赞文. 土壤水分对党参生长发育和成分积累的影响. 杭州: 浙江理工大学, 2018. |
| [23] |
Bian H, Cao Y, Ge Y. Study on determination of total flavomycin in feedstuff based on area normalization method. Journal of the Chinese Cereals and Oils Association, 2024, 39(1): 204-211, 217. |
| [24] |
卞华, 曹莹, 葛宇. 基于面积归一化法对饲料中黄霉素总残留量的研究. 中国粮油学报, 2024, 39(1): 204-211, 217. |
| [25] |
Zhao Z L, Li H K, Li X Z, et al. Effects of continuous cropping on the growth and endophyte and rhizosphere microbial community structure of Paulownia fortunei. Journal of Forest and Environment, 2023, 43(4): 407-415. |
| [26] |
赵振利, 李慧珂, 李烜桢, 连作对白花泡桐生长及根内外微生物群落的影响. 森林与环境学报, 2023, 43(4): 407-415. |
| [27] |
Liu S R, Wang H L, Yang P, et al. Effects of continuous cropping on the growth and secondary metabolites of Pinellia ternata. Journal of Chinese Medicinal Materials, 2022, 45(1): 1-6. |
| [28] |
刘诗蓉, 王红兰, 杨萍, 连作对半夏生长及次生代谢产物的影响. 中药材, 2022, 45(1): 1-6. |
| [29] |
Zeng L S, Li P Y, Sun Z J, et al. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
| [30] |
曾令霜, 李培英, 孙宗玖, 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析. 草业学报, 2022, 31(7): 122-132. |
| [31] |
Shi G Y, Sun H Q, Yu Y L, et al. Effect of long-term consecutive cropping on leaf PSⅡ photochemical efficiency and antioxidant enzyme activity of Lanzhou lily. Journal of Desert Research, 2020, 40(2): 206-213. |
| [32] |
师桂英, 孙鸿强, 于彦琳, 连作栽培对兰州百合(Lilium davidii var. unicolor)叶片PSⅡ光化学效率和抗氧化作用的影响. 中国沙漠, 2020, 40(2): 206-213. |
| [33] |
Yang X, Wang X J, Tang Z L, et al. Effects of continuous cropping on plant morphology and physiological characteristics of tartary buckwheat seedlings under hydroponics. Journal of Southern Agriculture, 2023, 54(3): 887-893. |
| [34] |
杨雪, 王晓静, 唐卓磊, 水培条件下连作对苦荞幼苗植株形态和生理特性的影响. 南方农业学报, 2023, 54(3): 887-893. |
| [35] |
Yang K, Liu W Y, Wang W T, et al. Effects of continuous cropping on growth and physiological characteristics of quinoa. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(2): 244-252. |
| [36] |
杨科, 刘文瑜, 王旺田, 连作对藜麦生长和生理特性的影响. 江西农业大学学报, 2021, 43(2): 244-252. |
| [37] |
Chen W, Teng Y, Li Z A, et al. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China. Applied Soil Ecology, 2018, 128: 23-34. |
| [38] |
Liu H, Pan F J, Han X Z, et al. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops. Journal of Integrative Agriculture, 2020, 19(3): 866-880. |
| [39] |
Ju J D, Fu X Y, Jiao H R, et al. Rhizosphere exudate-mediated synergistic harm of soil microorganisms to medicinal plants in continuous cropping. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(20): 92-99. |
| [40] |
鞠吉东, 付心雨, 焦焕然, 根际分泌物介导土壤微生物协同致害连作药用植物的分析与探讨. 中国实验方剂学杂志, 2022, 28(20): 92-99. |
| [41] |
Lu J, Li W X, Yang Y H, et al. The impact of different rotation regime on the soil bacterial and fungal communities in an intensively managed agricultural region. Archives of Microbiology, 2022, 204(2): 142-154. |
| [42] |
Kato N H, Nakamura K, Ohno O, et al. Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Journal of Plant Physiology, 2017, 213: 23-29. |
| [43] |
Arafat Y, Din I U, Tayyab M, et al. Soil sickness in aged tea plantation is associated with a shift in microbial communities as a result of plant polyphenol accumulation in the tea gardens. Frontiers in Plant Science, 2020, 11: 601. |
| [44] |
Ma S Y, Chen G P, Wang N, et al. Identification of potential autotoxic substances in pea soil and analysis of their autotoxic effects. Acta Prataculturae Sinica, 2023, 32(6): 134-145. |
| [45] |
马绍英, 陈桂平, 王娜, 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究. 草业学报, 2023, 32(6): 134-145. |
| [46] |
Zheng F, Chen L, Gao J M, et al. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system. Journal of Plant Physiology, 2018, 230: 33-39. |
国家自然科学基金项目(82160714)
甘肃省自然科学基金项目(21JR1RA271)
国家重点研发计划项目(2018YFC1706305)
甘肃省高等学校产业支撑引导项目(2021CYZC-40)
2023年研究生“创新之星”项目(2023CXZX-764)
敦煌医学与转化教育部重点实验室项目(DHYZX20-13)
/
| 〈 |
|
〉 |