栗钙土田菜用架芸豆根系的建成
Phaseolus vulgaris root system formation in chestnut soil
水土资源匮乏背景下的农田精准水肥管理,需要以作物根系时空建成规律为基础。本研究结合分层挖掘与扫描成像分析技术,对两种栗钙土田菜用架芸豆不同生育时期的根系生物量、长度、表面积、体积和直径进行了监测和分析。结果表明:两种栗钙土田菜用架芸豆根系生物量的建成规律一致,大致分为缓慢增长、线性增长和缓慢下降3个时期,线性增长期为初花期~结荚盛期,此阶段轻壤质栗钙土田芸豆根系鲜重与干重的日增长速率分别为2.46 与0.24 g·2株-1,沙壤质栗钙土田分别为1.79与0.20 g·2株-1;芸豆根系长度、表面积、体积与根系鲜干重间呈正相关增长。从垂直分布上看,沙壤质栗钙土田芸豆根系分布较浅,82.68%以上的根系分布在0~30 cm土层内;轻壤质栗钙土田芸豆在结荚初期之后86.24%以上的根系分布在0~60 cm土层。从侧向分布上看,轻壤质栗钙土田芸豆全生育期内77%以上的根系分布在植株两侧30 cm范围内,而沙壤质栗钙土田该范围内根系占比随生育期推移呈下降趋势,至结荚末期降至66%以上。根系的等值线图表明,轻壤质栗钙土田芸豆根系的总体分布呈“瘦长型”,沙壤质栗钙土田呈“扁宽型”。本研究为坝上地区菜用架芸豆依根创新水肥高效利用技术奠定了基础。
Precision water and fertilizer management in farmland when water is scarce needs to take account of the development patterns of the crop root system within the soil and over time. Here, Phaseolus vulgaris root biomass, length, surface area, volume and diameter was monitored in two differing light loamy or sandy chestnut soil fields at different growth stages using stratified excavation to extract root samples and image analysis techniques to quantify root parameters. The results showed that the root biomass of P. vulgaris in the two fields was similar, and roughly divided into three stages: slow growth, linear growth and slow decline. The linear growth period was from the initial flowering stage to the full pod stage. At this stage, the daily growth rates of fresh and dry weight of P. vulgaris root systems were 2.46 and 0.24 g·2 plants-1 in light loamy chestnut soil fields, while they were 1.79 and 0.20 g·2 plants-1 in sandy chestnut soil fields. The root system parameters, such as root length, surface area and volume, were all positively correlated with root fresh and dry weight. From a vertical distribution perspective, the root distribution of P. vulgaris in sandy chestnut soil was shallower than in loamy chestnut soil. In the sandy soil, more than 82.68% of the roots were distributed in the 0-30 cm soil horizon. In the light loamy soil, more than 86.24% of the roots were distributed in the 0-60 cm soil horizon, after the initial pod stage. From a lateral distribution perspective, over 77% of the P. vulgaris root systems in light loamy chestnut soil were distributed within a 30 cm radius on both sides of the plant during the entire growth period, while the proportion of root systems in sandy chestnut soil showed a decreasing trend with growth development, and decreased to over 66% at the end of podding. The contour map of the root systems showed that, P. vulgaris roots in light loamy chestnut soil exhibited narrow and deep placement, while in sandy chestnut soil placement was wide and shallow. This research lays a foundation for development of innovative and efficient water and fertilizer utilization technology for P. vulgaris in the Bashang area.
stratified excavation / drip irrigation / Phaseolus vulgaris / root system / spatiotemporal distribution
| [1] |
Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13. |
| [2] |
Fort F, Cruz P, Catrice O, et al. Root functional trait syndromes and plasticity drive the ability of grassland Fabaceae to tolerate water and phosphorus shortage. Environmental and Experimental Botany, 2015, 110(2): 62-72. |
| [3] |
Bardgett R D, Mommer L, De Vries F T. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 2014, 29(12): 692-699. |
| [4] |
Zhang Z Y, Fan B M, Song C, et al. Advances in root system architecture: functionality, plasticity, and research methods. Journal of Resources and Ecology, 2023, 14(1): 15-24. |
| [5] |
Chen Y J, Dong Q M, Zhou Q P. The impact of different soil moisture and sterilization treatments on root architecture and rhizosheath formation of Kengyilia hirsute at the seedling stage. Acta Prataculturae Sinica, 2020, 29(3): 60-69. |
| [6] |
陈有军, 董全民, 周青平. 不同水分和土壤处理对糙毛以礼草苗期根系构型和根鞘形成的影响. 草业学报, 2020, 29(3): 60-69. |
| [7] |
Qiu X Q, Gao Y, Huang L, et al. Temporal and spatial distribution of root morphology of winter wheat. Scientia Agricultura Sinica, 2013, 46(11): 2211-2219. |
| [8] |
邱新强, 高阳, 黄玲, 冬小麦根系形态性状及分布. 中国农业科学, 2013, 46(11): 2211-2219. |
| [9] |
Yang Z S, Yan S H, Wang J J, et al. Root growth and distribution of different types of winter wheat. Journal of Triticeae Crops, 2000, 20(1): 47-50. |
| [10] |
杨兆生, 阎素红, 王俊娟, 不同类型小麦根系生长发育及分布规律的研究. 麦类作物学报, 2000, 20(1): 47-50. |
| [11] |
Wang J C, Xu Y L, Gao S, et al. The physiological characteristics and root spatial distribution of spring wheat in drip irrigation field. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 21(5): 65-70. |
| [12] |
王冀川, 徐雅丽, 高山, 滴灌小麦根系生理特性及其空间分布. 西北农业学报, 2012, 21(5): 65-70. |
| [13] |
Liu R H, Zhu Z X, Fang W S, et al. Distribution pattern of winter wheat root system. Chinese Journal of Ecology, 2008, 27(11): 2024-2027. |
| [14] |
刘荣花, 朱自玺, 方文松, 冬小麦根系分布规律. 生态学杂志, 2008, 27(11): 2024-2027. |
| [15] |
Yang Q H, Gao E M, Ma X M. Study on growing dynamic of maize root system in Shajiang black soil. Acta Agronomica Sinica, 2000, 26(5): 587-593. |
| [16] |
杨青华, 高尔明, 马新明. 砂姜黑土玉米根系生长发育动态研究. 作物学报, 2000, 26(5): 587-593. |
| [17] |
Zhao B Q, Zhang F S, Li Z J, et al. Vertical distribution and its change of root quantity and activity of inter-cropped summer maize. Plant Nutrition and Fertilizer Science, 2003, 9(1): 81-86. |
| [18] |
赵秉强, 张福锁, 李增嘉, 套作夏玉米根系数量与活性的空间分布及变化规律. 植物营养与肥料学报, 2003, 9(1): 81-86. |
| [19] |
Li C H, Li S L, Wang Q, et al. Effect of different textural soils on root dynamic growth in corn. Scientia Agricultura Sinica, 2004, 37(9): 1334-1340. |
| [20] |
李潮海, 李胜利, 王群, 不同质地土壤对玉米根系生长动态的影响. 中国农业科学, 2004, 37(9): 1334-1340. |
| [21] |
Zhang Y Q, Yang H S, Gao J L, et al. Root characteristics of super high-yield spring maize. Acta Agronomica Sinica, 2011, 37(4): 735-743. |
| [22] |
张玉芹, 杨恒山, 高聚林, 超高产春玉米的根系特征. 作物学报, 2011, 37(4): 735-743. |
| [23] |
Chu G H, Zhang J X, Gao Y, et al. Effects of nitrogen application rate on temporal and spatial distribution characteristics of super-high yield spring maize root and yield under drip irrigation. Agricultural Research in the Arid Areas, 2018, 36(3): 156-160. |
| [24] |
楚光红, 章建新, 高阳, 施氮量对滴灌超高产春玉米根系时空分布及产量的影响. 干旱地区农业研究, 2018, 36(3): 156-160. |
| [25] |
Qi W Z, Liu H H, Li G, et al. Temporal and spatial distribution characteristics of super-high-yield summer maize root. Plant Nutrition and Fertilizer Science, 2012, 18(1): 69-76. |
| [26] |
齐文增, 刘惠惠, 李耕, 超高产夏玉米根系时空分布特性. 植物营养与肥料学报, 2012, 18(1): 69-76. |
| [27] |
Li S K, Wang C T, Wang C Y, et al. A study on the distributing pattern and construction of high-yield cotton root system in North Xinjiang. Cotton Science, 2000, 12(2): 67-72. |
| [28] |
李少昆, 王崇桃, 汪朝阳, 北疆高产棉花根系构型与动态建成的研究. 棉花学报, 2000, 12(2): 67-72. |
| [29] |
Zhang L Z, Cao W X, Zhang S P, et al. Characterizing root growth and spatial distribution in cotton. Chinese Journal of Plant Ecology, 2005, 29(2): 266-273. |
| [30] |
张立桢, 曹卫星, 张思平, 棉花根系生长和空间分布特征. 植物生态学报, 2005, 29(2): 266-273. |
| [31] |
Chen W L, Jin M G, Liu Y F, et al. Monitoring cotton root growth dynamics under mulched drip irrigation using minirhizotron technique. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 87-93. |
| [32] |
陈文岭, 靳孟贵, 刘延锋, 微根管法监测膜下滴灌棉花根系生长动态. 农业工程学报, 2017, 33(2): 87-93. |
| [33] |
Wei C Z, Ma F Y, Lei Y W, et al. Study on cotton root development and spatial distribution under film mulch and drip irrigation. Cotton Science, 2002, 14(4): 209-214. |
| [34] |
危常州, 马富裕, 雷咏雯, 棉花膜下滴灌根系发育规律的研究. 棉花学报, 2002, 14(4): 209-214. |
| [35] |
Yang R, Tian C Y, Mai W X. Characteristics of root development in cotton suffering presenility under drip irrigation and film mulch in Xinjiang Autonomous Region. Plant Nutrition and Fertilizer Science, 2016, 22(5): 1384-1392. |
| [36] |
杨荣, 田长彦, 买文选. 新疆膜下滴灌棉花早衰的根系生长发育特征. 植物营养与肥料学报, 2016, 22(5): 1384-1392. |
| [37] |
Meng F. Simulation of root distribution in two paddy rice cultivars under water stress. Nanjing: Nanjing University of Information Science & Technology, 2009. |
| [38] |
孟芳. 水稻根系分布规律与模拟研究. 南京: 南京信息工程大学, 2009. |
| [39] |
Zhu C S. Study on the morphological characteristics of root and their relation with upland parts among different types rice. Changsha: Hunan Agricultural University, 2005. |
| [40] |
朱春生. 不同类型水稻根系形态特性及其与地上部关系的研究. 长沙: 湖南农业大学, 2005. |
| [41] |
Zhang Y Q, Yang H S, Zhang R F, et al. Effects of water and nitrogen application on root attenuation characteristics and yield of spring maize under shallow buried drip irrigation. Acta Agronomica Sinca, 2023, 49(11): 3074-3089. |
| [42] |
张玉芹, 杨恒山, 张瑞富, 浅埋滴灌下水氮运筹对春玉米根系衰减特性及产量的影响. 作物学报, 2023, 49(11): 3074-3089. |
| [43] |
Zou H Y, Zhang F C, Zhang Y X, et al. Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 145-155. |
| [44] |
邹海洋, 张富仓, 张雨新, 适宜滴灌施肥量促进河西春玉米根系生长提高产量. 农业工程学报, 2017, 33(21): 145-155. |
| [45] |
Kang S Z, Zhang J H, Liang Z S, et al. The controlled alternative irrigation——A new approach for water saving regulation in farm land. Agricultural Research in the Arid Areas, 1997, 15(1): 1-6. |
| [46] |
康绍忠, 张建华, 梁宗锁, 控制性交替灌溉——一种新的农田节水调控思路. 干旱地区农业研究, 1997, 15(1): 1-6. |
| [47] |
Liang Z S, Kang S Z, Shi P Z, et al. Effect on water use efficiency and water-saving by controlled root-divided alternative irrigation. Scientia Agricultura Sinica, 1998, 31(5): 88-90. |
| [48] |
梁宗锁, 康绍忠, 石培泽, 控制性分根交替灌水对作物水分利用率的影响及节水效应. 中国农业科学, 1998, 31(5): 88-90. |
| [49] |
Jia H T, Luo L Q, Su G. Discuss on feasibility of alternate furrow irrigation under mulch in Xinjiang. Chinese Cotton, 2003, 30(7): 8-9. |
| [50] |
贾宏涛, 罗立权, 苏刚. 新疆棉花膜下交替沟灌技术的可行性探讨. 中国棉花, 2003, 30(7): 8-9. |
| [51] |
Qiao L J, Shen S X, Zhao B H. Effective vegetable supply in Hebei province under the background of Beijing-Tianjin-Hebei integration initiative. Journal of Hebei Agricultural University (Social Sciences), 2020, 22(1): 36-40. |
| [52] |
乔立娟, 申书兴, 赵邦宏. 京津冀协同背景下河北省蔬菜有效供给研究. 河北农业大学学报(社会科学版), 2020, 22(1): 36-40. |
| [53] |
Zhao Y F, Luo Z X, Yu Y J, et al. Spatio-temporal changes of groundwater level and its driving factors in a typical region of Beijing-Tianjin-Hebei region, China. Journal of Natural Resources, 2020, 35(6): 1301-1313. |
| [54] |
赵玉峰, 罗专溪, 于亚军, 京津冀西北典型区域地下水位时空演变及驱动因素. 自然资源学报, 2020, 35(6): 1301-1313. |
| [55] |
Gu B Q, Liu X L, Zhang W, et al. Research of water consumption pattern and water saving irrigation schedule on facilities bean in Bashang Area. Beijing Water, 2021(6): 26-30. |
| [56] |
顾宝群, 刘晓亮, 张玮, 坝上地区设施架豆耗水规律及节水灌溉制度试验研究. 北京水务, 2021(6): 26-30. |
| [57] |
Gao F L. Research on water-saving production technology for greenhouse kidney bean fields in the Bashang cold and arid area of northwest Hebei Province. Baoding: Hebei Agricultural University, 2023. |
| [58] |
高伏龙. 冀西北坝上寒旱区大棚芸豆田节水生产技术研究. 保定: 河北农业大学, 2023. |
| [59] |
Yang Z S, Zhang L Z, Yan S H, et al. Primary study on wheat root system growth,development and distribution of later season. Acta Agriculturae Boreali-Sinica, 1999, 14(1): 28-31. |
| [60] |
杨兆生, 张立桢, 闫素红, 小麦开花后根系衰退及分布规律的初步研究. 华北农学报, 1999, 14(1): 28-31. |
| [61] |
Wei Z W, Ma G H. Studies on characteristics of root system of super-high-yielding hybrid rice combination Chaoyou 1000. Hybrid Rice, 2016, 31(5): 51-55. |
| [62] |
魏中伟, 马国辉. 超高产杂交水稻超优1000的根系特征研究. 杂交水稻, 2016, 31(5): 51-55. |
| [63] |
Tang W B, Deng H B, Xiao Y H, et al. Root characteristics of high-yield C Liangyou rice combinations of two-line hybrid rice. Scientia Agricultura Sinica, 2010, 43(14): 2859-2868. |
| [64] |
唐文帮, 邓化冰, 肖应辉, 两系杂交水稻C两优系列组合的高产根系特征. 中国农业科学, 2010, 43(14): 2859-2868. |
| [65] |
Yang Q H, Gao E M, Ma X M, et al. Study on growing dynamic of maize root system in various soils. Acta Agriculturae Boreali-Sinica, 2000, 15(3): 88-93. |
| [66] |
杨青华, 高尔明, 马新明, 不同土壤类型玉米根系生长发育动态研究. 华北农学报, 2000, 15(3): 88-93. |
| [67] |
Song Q, Xia K, Yang B, et al. Distribution characteristic of penetration resistance and determination of plough layer thickness of typical soils in dry farming area. Journal of Soil and Water Conservation, 2021, 35(3): 369-377. |
| [68] |
宋强, 夏可, 杨斌, 旱作区典型土类穿透阻力分布特征及耕层厚度确定. 水土保持学报, 2021, 35(3): 369-377. |
| [69] |
Qiao L, Huang M J, Zhang W P, et al. Spatial pattern of cultivated layer thickness and its influencing factors in typical area of Shanxi province. Soil and Fertilizer Sciences in China, 2020(2): 75-82. |
| [70] |
乔磊, 黄明镜, 张吴平, 山西省典型县域农田耕作层厚度空间格局及影响因素. 中国土壤与肥料, 2020(2): 75-82. |
| [71] |
Liang L, Sun H T, Xu G M, et al. Soil infiltration of rice-wheat rotation field under long-term mechanical treatment based on field in situ experiments. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(7): 110-118. |
| [72] |
梁磊, 孙浩田, 徐高明, 田间原位试验分析长期机械作业稻麦轮作地块土壤入渗性能. 农业工程学报, 2023, 39(7): 110-118. |
| [73] |
Jeřábek J, Zumr D, Dostál T. Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance. Soil and Tillage Research, 2017, 174(12): 231-240. |
| [74] |
Wei J T. Effect of depth of plough bottom on cotton growth under drip irrigation under film. Shihezi: Shihezi University, 2022. |
| [75] |
魏建涛. 膜下滴灌条件下犁底层深度对棉花生长的影响研究. 石河子: 石河子大学, 2022. |
| [76] |
Zhai Z. The effect and its related mechanism of plow pan on crop production and environmental benefit. Beijing: Chinese Academy of Agricultural Sciences, 2018. |
| [77] |
翟振. 犁底层对作物生产与环境效应的影响及其机制研究. 北京: 中国农业科学院, 2018. |
国家重点研发计划项目(2021YFD1901104-5)
/
| 〈 |
|
〉 |