细叶百合LpDREB9基因克隆及耐旱性分析
贺龙义 , 谭萌萌 , 车海涛 , 张红鹰 , 朱雨欣 , 张彦妮
草业学报 ›› 2025, Vol. 34 ›› Issue (01) : 161 -173.
细叶百合LpDREB9基因克隆及耐旱性分析
Cloning and analysis of drought tolerance function of the LpDREB9 in Lilium pumilum
AP2/ERF转录因子是植物特有的一类转录因子,其中DREB亚家族蛋白被广泛报道可以提高植物对非生物胁迫的抵抗能力。为了开发细叶百合DREB家族的功能基因资源,验证DREB转录因子与耐旱调控相关性,本研究以细叶百合根部cDNA为模板,克隆得到LpDREB9基因,对其进行生物信息学分析、亚细胞定位,并通过该基因转化模式植物烟草,开展LpDREB9转录因子耐旱机制方面的研究。结果表明:LpDREB9基因的开放阅读框(ORF)为462 bp,编码153个氨基酸,蛋白的相对分子量为17.054 kDa,脂肪系数为73.46,pI值为4.89,为不稳定且具亲水性的蛋白。亚细胞定位结果表明LpDREB9蛋白定位于细胞核,同源比对结果表明LpDREB9蛋白与岷江百合的同源基因进化关系最为密切。另外通过对野生烟草种子(WT)和转基因LpDREB9烟草种子、幼苗进行脱落酸(abscisic acid,ABA)和干旱胁迫以及对成苗进行自然干旱胁迫及复水后的表型和生理指标的测定,发现LpDREB9基因增强了转基因烟草的耐旱性,并且随着干旱胁迫时间的增加,LpDREB9转基因烟草中超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)活性、叶绿素以及脯氨酸(proline,Pro)含量明显高于WT(P<0.05),而丙二醛(malondialdehyde,MDA)含量则显著低于WT(P<0.05),表明转基因烟草中的膜脂过氧化反应程度较低,活性氧清除能力相对较高,从而提高了其耐旱性。因此,LpDREB9基因在增强转基因烟草耐旱机制方面具有关键作用,这为进一步从分子水平探究细叶百合的抗逆性奠定了基础。
The AP2/ERF transcription factors are plant-specific transcription factors. Among them, those in the DREB subfamily have been widely reported to improve plant resistance to abiotic stresses. To explore the roles of DREB family members in Lilium pumilum, we identified correlations between the transcript levels of DREB transcription factor genes and drought tolerance. We isolated the cDNA of the LpDREB9 gene from the roots of L. pumilum, and then conducted bioinformatics and subcellular localization analyses. This gene was then introduced into the model plant Nicotiana tabacum to elucidate its role in drought tolerance. The open reading frame (ORF) of LpDREB9 gene was 462 bp, encoding a protein of 153 amino acids with a relative molecular weight of 17.054 kDa, the fat index of 73.46, and a pI value of 4.89. It was an unstable and hydrophilic protein. Subsequent analysis revealed the nuclear localization of the LpDREB9 protein. In an alignment analysis, the LpDREB9 gene showed the closest evolutionary relationship with its homologs in Lilium regale. Seeds and seedlings of wild-type (WT) tobacco and transgenic tobacco expressing LpDREB9 were exposed to abscisic acid and drought stress. Phenotypic and physiological parameters of the seedlings after natural drought stress and subsequent rehydration were determined. The results indicated that the LpDREB9 gene enhanced drought tolerance in transgenic tobacco plants, particularly under prolonged drought stress. The activities of superoxide dismutase, peroxidase, and catalase, as well as chlorophyll and proline levels, were significantly higher in the LpDREB9 transgenic tobacco than in WT (P<0.05). The malondialdehyde content was markedly lower in transgenic tobacco plants than in WT (P<0.05), indicative of a lower level of membrane lipid peroxidation. These findings underscore the heightened capacity to scavenge reactive oxygen species in transgenic tobacco expressing LpDREB9, leading to enhanced drought tolerance. Hence, the LpDREB9 gene plays a pivotal role in augmenting the drought tolerance of transgenic tobacco. These findings provide the basis for further research on stress resistance at the molecular level in L. pumilum.
细叶百合 / 转录因子 / LpDREB9 / 生物信息学分析 / 表型 / 耐旱性
Lilium pumilum / transcription factor / LpDREB9 / bioinformatics analysis / phenotypes / drought resistance
| [1] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. |
| [2] |
Liang Y, Li X, Yang R, et al. BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis. Plant Science, 2021, 313(2021): 111047. |
| [3] |
Chai M, Cheng H, Yan M, et al. Identification and expression analysis of the DREB transcription factor family in pineapple [Ananas comosus (L.) Merr.]. PeerJ, 2020, 8(6): e9006. |
| [4] |
Yoh S, Qiang L, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. |
| [5] |
Yang H H, Sun Y G, Wang H X, et al. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biology, 2021, 21(1): 72. |
| [6] |
Most A S, Mohammed N, Kouji S, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant and Cell Physiology, 2021, 52(2): 344-360. |
| [7] |
Liu S, Wang X, Wang H, et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genetics, 2013, 9(9): e1003790. |
| [8] |
Lucas S, Durmaz E, Akpınar B A, et al. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiology and Biochemistry, 2011, 49(3): 346-351. |
| [9] |
Zhao P, Wang D, Wang R, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 2018, 19(1): 1-13. |
| [10] |
Bihani P, Char B, Bhargava S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. The Journal of Agricultural Science, 2011, 149(1): 95-101. |
| [11] |
Rabara R C, Tripathi P, Rushton P J. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. Omics: A Journal of Integrative Biology, 2014, 18(10): 601-614. |
| [12] |
Song Y, Lin W H, Jing Y B, et al. Cloning and expression analysis of Catalase gene in Lilium pumilum. Bulletin of Botanical Research, 2023, 43(5): 756-767. |
| [13] |
宋煜, 林文昊, 荆一博, 细叶百合Catalase基因的克隆及表达分析. 植物研究, 2023, 43(5): 756-767. |
| [14] |
Wang Y, Cao S, Guan C, et al. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response. Plant Physiology and Biochemistry, 2020, 149: 96-110. |
| [15] |
Guan C J. Cloning of three NAC transcription factors from Lilium pumilum and genetic transformation to tobacco. Harbin: Northeast Forestry University, 2018. |
| [16] |
关春景. 细叶百合3个NAC转录因子的克隆及其对烟草的遗传转化. 哈尔滨: 东北林业大学, 2018. |
| [17] |
He H, Zhu G Q, Chen S Y, et al. Cloning of LpPEX7 gene from Lilium pumilum and its expression characteristics under salt stress. Bulletin of Botanical Research, 2020, 40(2): 274-283. |
| [18] |
何好, 朱国庆, 陈诗雅, 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析. 植物研究, 2020, 40(2): 274-283. |
| [19] |
Tan M M, Sun S Y, Wang J W, et al. Bioinformatics and stress expression analysis of DREB transcription factor in Lilium pumilum. Journal of Northwest Forestry University, 2023, 38(1): 95-101,198. |
| [20] |
谭萌萌, 孙绍营, 王静文, 细叶百合DREB转录因子生物信息学及胁迫应答表达分析. 西北林学院学报, 2023, 38(1): 95-101,198. |
| [21] |
Inge C D, Vanessa V, Olivier A V, et al. The membrane-bound NAC transcription factor ANAC013functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. The Plant Cell, 2013, 25(9): 3472-3490. |
| [22] |
Sun S Y. Transcriptome analysis of Lilium pumilum under salt stress and verification of salt-tolerance function of LpNAC14. Harbin: Northeast Forestry University, 2022. |
| [23] |
孙绍营. 盐胁迫下细叶百合转录组分析及LpNAC14抗盐功能验证. 哈尔滨: 东北林业大学, 2022. |
| [24] |
Wang X K. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2006. |
| [25] |
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006. |
| [26] |
Thirumalaikumar V P, Devkar V, Mehterov N, et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnology Journal, 2018, 16(2): 354-366. |
| [27] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391-1406. |
| [28] |
Hussain Q, Asim M, Zhang R, et al. Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules, 2021, 11(8): 1159. |
| [29] |
Rego D C F T, Santos P M, Cabral B G, et al. Expression of a DREB5-A subgroup transcription factor gene from Ricinus communis (RcDREB1) enhanced growth, drought tolerance and pollen viability in tobacco. Plant Cell, Tissue and Organ Culture (PCTOC), 2021, 146(3): 1-12. |
| [30] |
Chen M, Zhao Y J, Zhuo C L, et al. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnology Journal, 2015, 13(4): 482-491. |
| [31] |
Aditi G, Andrés R, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269. |
| [32] |
Ron M, Zandalinas S I, Yosef F, et al. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679. |
| [33] |
Lanceras J C. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology, 2004, 135(1): 384-399. |
| [34] |
Liu B, Cao S J, Wang Y, et al. Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco. Journal of Beijing Forestry University, 2020, 42(4): 69-79. |
| [35] |
刘彬, 曹尚杰, 王营, 过表达细叶百合 LpNAC6 基因增强烟草的耐盐性. 北京林业大学学报, 2020, 42(4): 69-79. |
| [36] |
Chen T, Shabala S, Niu Y. Molecular mechanisms of salinity tolerance in rice. The Crop Journal, 2021, 9(3): 506-520. |
| [37] |
Zhu J, Lee B H, Dellinger M, et al. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. The Plant Journal, 2010, 63(1): 128-140. |
| [38] |
Zhu Q, Zhang J, Gao X, et al. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene, 2010, 457(1): 1-12. |
| [39] |
Bapela T, Shimelis H, Tsilo T J, et al. Genetic improvement of wheat for drought tolerance: progress, challenges and opportunities. Plants, 2022, 11(10): 1331. |
| [40] |
Shinde S S, Kachare D P, Satbhai R D, et al. Water stress induced proline accumulation and antioxidative enzymes in groundnut ( Arachis hypogaea L.). Legume Research, 2018, 41(1): 67-72. |
黑龙江省自然科学基金项目(LH2019C004)
/
| 〈 |
|
〉 |