盐生草HgS5基因的克隆与抗旱性鉴定
汪欣瑶 , 彭亚萍 , 姚立蓉 , 汪军成 , 司二静 , 张宏 , 杨轲 , 马小乐 , 孟亚雄 , 王化俊 , 李葆春
草业学报 ›› 2025, Vol. 34 ›› Issue (02) : 184 -195.
盐生草HgS5基因的克隆与抗旱性鉴定
Gene cloning and drought resistance identification of the gene HgS5 in Halogeton glomeratus
为应对日益严峻的干旱环境问题,发掘植物体内的抗旱基因具有重要意义。基于前期盐生草转录组测序数据分析结果,盐胁迫后HgS5基因的表达量与差异倍数最高,故选其为研究对象,对目的基因编码的蛋白进行生物信息学分析并进行亚细胞定位;通过qRT-PCR检测目的基因在拟南芥植株叶片和根系的相对表达量,并利用农杆菌完成拟南芥异源表达,以验证目的基因的抗旱能力。结果表明,HgS5基因中碱基对的数量为1738,编码370个氨基酸,编码蛋白为酸性亲水性蛋白且没有跨膜区;具有116个启动子顺式作用元件;HgS5基因和巨人柱、苋菜和甜菜相关同源基因拥有相同的A_thal_3526保守结构域;亚细胞定位显示HgS5基因主要在细胞膜上表达; 荧光定量结果显示HgS5基因主要在拟南芥根系表达,处理第6天表达量与其他组别差异显著(P<0.05);抗旱鉴定结果显示过表达拟南芥的抗旱性明显增强,具体表现为植株枯萎程度减缓;基因HgS5通过影响酶活性来对抗干旱环境,过表达拟南芥根系超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性在干旱胁迫后期整体高于野生型。综上所述,基因HgS5在抗旱过程中起到了积极的调控作用。研究结果旨在为进一步探索HgS5基因应对干旱胁迫的分子响应机制提供理论依据。
To address environmental challenges involving escalating frequency and severity of drought, it is of utmost importance to develop a deep understanding of drought-resistance genes in plant genomes. Based on our initial laboratory analysis of transcriptome sequencing data from Halogeton glomeratus, the HgS5 gene exhibited the highest expression level and differential fold change following salt stress. This study focused on the HgS5 gene, conducting bioinformatics analysis and subcellular localization of the protein encoded by this target gene. We employed qRT-PCR to assess the relative expression of the target gene in the leaves and roots of Arabidopsis thaliana, and achieved heterologous expression in A. thaliana using Agrobacterium as a vector. In this experiment, we cloned the HgS5 gene from H. glomeratus and validated its drought resistance in A. thaliana. It was found that the HgS5 gene comprises 1738 base pairs, encoding 370 amino acids. The encoded protein is acidic and hydrophilic, lacking a transmembrane region. Featuring 116 promoter cis-acting elements, the HgS5 gene shares a A_thal_3526 conserved domain with homologous genes related to Carnegiea gigantea, Amaranthus tricolor, and Beta vulgaris. Subcellular localization indicated that the HgS5 gene is primarily expressed on the cell membrane. Fluorescence quantitative analysis showed that the HgS5 gene is predominantly expressed in the roots of A. thaliana, with a significantly increased expression level compared to other groups at 6 days (P<0.05). The drought resistance assessment revealed a notable enhancement in drought tolerance in A. thaliana overexpressing the HgS5 gene, evident in a slower wilting rate of the plants. The HgS5 gene conferred resistance to dry conditions by influencing enzyme activity, initially increasing and subsequently decreasing the activities of superoxide dismutase, peroxidase, and catalase in the roots of A. thaliana. To summarize, the gene HgS5 plays a pivotal role in the process of drought resistance. The aim of this study was to provide a theoretical basis for further exploration of the molecular response mechanism of the HgS5 gene to drought stress.
盐生草 / 基因家族 / 生物信息学分析 / 基因克隆 / 抗旱性鉴定
Halogeton glomeratus / gene families / bioinformatics analysis / gene cloning / drought resistance identification
| [1] |
Tian L X, Yang Y, Song Y H, et al. Rehydration under extreme drought conditions affected rhizosphere microorganisms more than bulk soil in broomcorn millet farmland. Agricultural Water Management, 2024, 295(1): 108781-108794. |
| [2] |
Corwin D L. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 2020, 72(2): 842-862. |
| [3] |
Sun M, Peng F, Xiao Y, et al. Exogenous phosphatidylcholine treatment alleviates drought stress and maintains the integrity of root cell membranes in peach. Scientia Horticulturae, 2020, 259(6): 108821-108829. |
| [4] |
Zhang H O. An analysis of the distribution and evolutionary characteristics of saline soils in China. Agriculture and Technology, 2022, 42(5): 104-107. |
| [5] |
Yang S S, Gao J F. Influence of active oxygen and free radicals on plant senescence. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(2): 36-41. |
| [6] |
杨淑慎, 高俊凤. 活性氧、自由基与植物的衰老. 西北植物学报, 2001, 21(2): 36-41. |
| [7] |
Zhang J, Mao C L, khan A, et al. Enhanced methane production by using phytoremediated Halogeton glomeratus as substrate via anaerobic digestion. Renewable Energy, 2022, 194(1): 28-39. |
| [8] |
Wang J C, Yang K, Yao L R, et al. Metabolomics analyses provide insights into nutritional value and abiotic stress tolerance in halophyte Halogeton glomeratus. Frontiers in Plant Science, 2021(12): 703255-703264. |
| [9] |
Eggers E J, Burgt A, Heusden S, et al. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nature Communications, 2021(12): 4141-4151. |
| [10] |
Cheng Q, Gan Z, Wang Y, et al. The soybean gene J contributes to salt stress tolerance by up-regulating salt-responsive genes. Frontiers in Plant Science, 2020(11): 272-281. |
| [11] |
Gálvez R L. The application of metabolomics for the study of cereal corn (Zea mays L.). Metabolites, 2020(10): 300-308. |
| [12] |
Ren X M, Hu Z R, Jiang X Z, et al. Analysis of physiological characteristics and related gene expression in response to low-temperature stress in different tobacco varieties. Molecular Plant Breeding, 2024(1): 10-15. |
| [13] |
任晓敏, 户正荣, 姜习振, 低温胁迫对不同烟草品种的生理特性及相关基因表达分析. 分子植物育种, 2024(1): 10-15. |
| [14] |
Wang Q, Tang J, Han B, et al. Advances in genome-wide association studies of complex traits in rice. Theoretical and Applied Genetics, 2020, 133(1): 1415-1425. |
| [15] |
Zafar M M, Rehman A, Razzaq A, et al. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC Plant Biology, 2022, 134(1): 22-43. |
| [16] |
Patel J, Mishra A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. Physiologia Plantarum, 2021, 172(2): 1030-1044. |
| [17] |
Xu X L. Cloning of tonoplast and plasma membrane Na+/H+ antiporter gene and isolating of 5′ flanking sequence of HgNHX1 from Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2014. |
| [18] |
徐先良. 盐生草Na+/H+逆向转运蛋白基因的克隆及HgNHX1基因5′端侧翼序列的分离. 兰州: 甘肃农业大学, 2014. |
| [19] |
Zhang Y, Li B C, Hu Y L, et al. Functional verification of HgNHX1 gene derived from Halogeton glomeratus in barley. Journal of Triticeae Crops, 2018, 38(8): 929-934. |
| [20] |
张燕, 李葆春, 胡有良, 盐生草HgNHX1基因在大麦株系中的功能验证. 麦类作物学报, 2018, 38(8): 929-934. |
| [21] |
Zou L, Yang K, Xu X L, et al. Cloning and functional analysis of halophyte Halogeton glomeratus HgNHX1 promoter. Acta Prataculturae Sinica, 2017, 26(11): 57-68. |
| [22] |
邹兰, 杨轲, 徐先良, 盐生草HgNHX1基因启动子的克隆及功能验证. 草业学报, 2017, 26(11): 57-68. |
| [23] |
Ma Y H, Xu X L, Wang J C, et al. Cloning and expression analysis of Actin gene fragment from halophyte Halogeton glomeratus. Pratacultural Science, 2015, 32(9): 1432-1437. |
| [24] |
马艳红, 徐先良, 汪军成, 盐生草Actin基因片段的克隆及表达. 草业科学, 2015, 32(9): 1432-1437. |
| [25] |
Hu S Q, Wang J C, Yao L R, et al. Cloning and preliminary functional analysis of the root gene HgAKR6C of Halogeton glomeratus. Acta Prataculturae Sinica, 2024, 33(1): 61-74. |
| [26] |
胡尚钦, 汪军成, 姚立蓉, 盐生草根系基因HgAKR6C的克隆与初步功能分析. 草业学报, 2024, 33(1): 61-74. |
| [27] |
Wang J C, Li B C, Meng Y X, et al. Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics, 2015, 16(1):169. |
| [28] |
Wang J C, Wang H J, Yao L R, et al. Salt-tolerant gene HgS3 of Halogeton glomeratus and its application: CN107287212B. 2020-10-30. |
| [29] |
汪军成, 王化俊, 姚立蓉, 盐生草耐盐基因HgS3及其应用: CN107287212B. 2020-10-30. |
| [30] |
Zhou M. Effects of exogenous calcium on physiological characteristics of Rhododendron ovatum Planch seed germination under drought stress. Beijing Agriculture, 2014(21): 11-12. |
| [31] |
周敏. 干旱胁迫下外源钙对马缨杜鹃种子萌发生理特性的影响. 北京农业, 2014(21): 11-12. |
| [32] |
Ma J W, Ma Z K, Yao L R, et al. Regulating effect of exogenous melatonin on root growth of barley seedling under phosphorus stress. Journal of Triticeae Crops, 2023, 43(8): 1020-1028. |
| [33] |
马静玮, 马增科, 姚立蓉, 低磷胁迫下外源褪黑素对大麦幼苗根系发育的调控作用. 麦类作物学报, 2023, 43(8): 1020-1028. |
| [34] |
Yao H. Cloning of DFR, FLS promoters and RNAi vector construction of LYCE and LYCB in Narcissus tazetta var. chinensis. Fuzhou: Fujian Agriculture and Forestry University, 2024. |
| [35] |
姚红. 中国水仙DFR和FLS启动子克隆及LYCE和LYCB RNAi表达载体的构建. 福州: 福建农林大学, 2024. |
| [36] |
Li G, Bai Y, Jia Z Y, et al. Phosphorus altered the response of ionomics and metabolomics to drought stress in wheat seedlings. Scientia Agricultural Sinica, 2022, 55(2): 280-294. |
| [37] |
李刚, 白阳, 贾子颖, 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应. 中国农业科学, 2022, 55(2): 280-294. |
| [38] |
Zeng F L, Li Y F. Generation of active oxygen free radicals and its injury to microsome membranes in wheat leaves under drought stress. Chinese Bulletin of Botany, 1997, 39(12): 1105-1109. |
| [39] |
曾福礼, 李玉峰.干旱胁迫下小麦叶片微粒体活性氧自由基的产生及其对膜的伤害. 植物学报, 1997, 39(12): 1105-1109. |
| [40] |
Li D, Peng S, Chen S, et al. Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling. Physiology and Molecular Biology of Plants, 2021, 27(6): 1323-1335. |
| [41] |
Yang Y Y, Ren Y P, Su Y M, et al. Cloning and analysis of two promoters of stress-related genes in Medicago varia Xinmu-1. Pratacultural Science, 2012, 29(12): 1887-1893. |
| [42] |
杨云尧, 任燕萍, 苏豫梅, 新牧1号苜蓿两个抗逆相关基因启动子的克隆及分析. 草业科学, 2012, 29(12): 1887-1893. |
| [43] |
Wang K, Nan L L, Guo Q E, et al. Effects of drought stress on root architecture of different root-type alfalfa. Acta Ecologica Sinica, 2022, 42(20): 8365-8373. |
| [44] |
汪堃, 南丽丽, 郭全恩, 干旱胁迫对不同根型苜蓿根系构型的影响. 生态学报, 2022, 42(20): 8365-8373. |
| [45] |
Chen Q, Xu X Y, Wang J C, et al. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus. Acta Prataculturae Sinica, 2022, 31(12): 146-157. |
| [46] |
陈倩, 徐晓芸, 汪军成, 基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析. 草业学报, 2022, 31(12): 146-157. |
| [47] |
Wu Y H, Liu W H, Liu K Q, et al. Effects of drought stress on leaf senescence and the active oxygen scavenging system of oat seedlings. Acta Prataculturae Sinica, 2022, 31(10): 75-86. |
| [48] |
吴雨涵, 刘文辉, 刘凯强, 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响. 草业学报, 2022, 31 (10): 75-86. |
| [49] |
Bogati K, Walczak M. The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy, 2022(12): 189-199. |
| [50] |
Wang W B, Kim Y H, Lee H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 2009, 47(7): 570-577. |
| [51] |
Han G, Dang Q, Zhao Z, et al. Responses of antioxidation protective system of Caragana korshinskii Kom. to drought stress. Acta Agrestia Sinica, 2010, 18(4): 528-532. |
| [52] |
韩刚, 党青, 赵忠, 柠条抗氧化保护系统对干旱胁迫的响应. 草地学报, 2010, 18(4): 528-532. |
| [53] |
Jia H T, Hu X J, Qiu F T, et al. The effects of compound anti-drought seed soaking agent and seed coating agent on SOD, POD and CAT isozyme expression in wheat seedlings. Journal of Triticeae Crops, 2016, 36(5): 647-652. |
| [54] |
贾洪涛, 胡晓君, 邱奉同, 小麦专用复方抗旱型浸种剂和包衣剂对小麦幼苗SOD、POD和CAT同工酶表达的影响. 麦类作物学报, 2016, 36(5): 647-652. |
甘肃省优秀研究生“创新之星”项目(2022CXZXS-020)
国家自然科学基金项目(31960072)
国家自然科学基金项目(32001514)
财政部和农业农村部:国家现代农业产业技术体系项目(CARS-05-04B-2)
甘肃省教育厅:产业支撑计划项目(2021CYZC-12)
甘肃省青年基金项目(22JR5A880)
甘肃省自然基金项目(20JR10RA507)
甘肃农业大学伏羲青年英才计划(Ganfx-04Y11)
甘肃农业大学伏羲青年英才计划(Ganfx-03Y06)
甘肃农业大学国家级大学生创新创业训练计划重点支持领域项目(202110733001)
/
| 〈 |
|
〉 |