农田氧化亚氮减排技术及其与绿肥协同应用分析

刘蕊 ,  常单娜 ,  周国朋 ,  高嵩涓 ,  柴强 ,  曹卫东

草业学报 ›› 2025, Vol. 34 ›› Issue (02) : 196 -210.

PDF (935KB)
草业学报 ›› 2025, Vol. 34 ›› Issue (02) : 196 -210. DOI: 10.11686/cyxb2024111
综合评述

农田氧化亚氮减排技术及其与绿肥协同应用分析

作者信息 +

Techniques of N2O emission reduction in farmland and their synergistic application with green manure

Author information +
文章历史 +
PDF (956K)

摘要

氧化亚氮(N2O)是导致全球气候变暖的主要温室气体之一,农业活动是N2O的重要排放源。土壤N2O排放主要源于硝化和反硝化过程,受土壤pH值、氧气浓度、二氧化碳浓度、水分、质地、温度和外源碳氮投入等因素的影响。近年来,中国在利用绿肥实现化肥减施、驱动土壤健康方面取得了明显成效。但关于绿肥参与N2O排放的研究尚处在起步阶段。种植利用绿肥对N2O排放的影响受绿肥种类、土壤理化性状等多方面因素共同作用,绿肥主要通过调控土壤无机氮含量影响N2O排放,绿肥生长期间能够吸收土壤盈余的无机氮,翻压后能够替代部分氮肥,通过减少硝化和反硝化底物减少农田土壤N2O排放,但同时存在由于绿肥腐解引发的有机氮矿化导致的N2O排放风险。可根据绿肥种植制度、作物种类、气候条件和土壤类型等,采用适宜的N2O减排技术。南方水稻与绿肥轮作区,可减施氮肥40%,添加生物炭等碱性调理剂;华北地区主作物与绿肥轮作区,可减施氮肥15%~20%,添加化学抑制剂、结合氮肥机械化深施;东北和西北地区的主作物复种、间作绿肥制度中,可减施氮肥13%~48%,结合添加硝化抑制剂、结合水肥一体化和免耕;西南地区主作物与绿肥轮作制度中,可减施氮肥15%~20%,配合缓控释肥一次性施肥和添加化学抑制剂等。重点探讨了N2O减排技术在绿肥制度中应用的可行性,以期为更好发挥绿肥作用,进一步减缓N2O排放提供参考。

Abstract

Nitrous oxide (N2O) is one of four the main gases linked to global warming, and agricultural production is the largest anthropogenic source of N2O emissions. N2O mainly originates from nitrification and denitrification processes in soil and is predominantly influenced by soil pH value, O2 concentration, CO2 concentration, moisture, texture, temperature, and exogenous carbon (C) and nitrogen (N) input. In recent years, China has achieved remarkable results in using green manure to reduce chemical N fertilizer application and drive soil health. However, study of the role of green manure in N2O emission is still in the early stages. The impact of planting and incorporating green manure on soil N2O emission depends on factors such as the varieties of green manure and the physicochemical properties of the soil. Among them, the influence on soil mineral N is the greatest factor. Generally, green manure can efficiently absorb soil mineral N in the fallow period, and its incorporation into the soil can reduce chemical N fertilizer application, thus decreasing N2O emission. However, green manure releases large amounts of N during its decomposition, which may increase soil N2O emissions. Combined with appropriate N2O emission reduction approaches, N2O emission in green manure-based systems can be reduced according to planting systems, crop varieties, climate conditions and soil types. In southern China’s rice-green manure rotation area, chemical N could be reduced by 40%, when adding alkaline amendments such as biochar. In northern China’s main crop-green manure rotation area, chemical N could be reduced by 15%-20%, through adding chemical inhibitors and combining mechanical deep application of chemical N fertilizers. For main crops rotated or intercropped with green manure systems in Northeast and Northwest China, chemical N could be reduced by 13%-48%, by adding nitrification inhibitors, with integrated water-fertilizer management practices and no-tillage. In main crops rotated with green manure systems of Southwest China, chemical N could be reduced by 15%-20%, through techniques such as slow-release fertilization, use of chemical inhibitors, and others. In this study we have focused on the feasibility of N2O emission reduction by combining green manure practices and exogenous reduction approaches to N2O emission, to provide practical guidance for reducing N2O emission in green manure-based systems.

Graphical abstract

关键词

绿肥 / 氧化亚氮 / 影响因素 / 减排技术

Key words

green manure / nitrous oxide / influencing factors / emission reduction technology

引用本文

引用格式 ▾
刘蕊,常单娜,周国朋,高嵩涓,柴强,曹卫东. 农田氧化亚氮减排技术及其与绿肥协同应用分析[J]. 草业学报, 2025, 34(02): 196-210 DOI:10.11686/cyxb2024111

登录浏览全文

4963

注册一个新账户 忘记密码

氧化亚氮(nitrous oxide,N2O)是第三大温室气体,在大气中的留存时间可达120年之久,其百年尺度的增温潜势是二氧化碳(carbon dioxide,CO2)的298倍,对全球气候变暖有深远影响1,是破坏臭氧层的重要影响因素2。农业活动是N2O最大的人为排放源3,2020年全球农田土壤N2O排放量估计为1.2 Tg N·yr-1,我国农业活动中的N2O排放情况也不容乐观,N2O排放量约为198.6 Gg N·yr -1,约占全世界的1/64。我国N2O排放中的49%~78%来源于氮肥5-6。推动农田N2O减排,对助推我国农业绿色高质量发展,实现“碳达峰、碳中和”双碳目标具有重要意义。
农田N2O减排技术主要包括调整肥料用量及种类、优化种植制度、利用硝化和脲酶抑制剂、添加生物炭和黏土矿等土壤改良剂、水肥一体化等,这些技术的主要目标就是提高氮素的利用效率、减少氮肥的投入及其在土壤中的累积,进而降低N2O的排放。土壤N2O的产生主要是土壤微生物作用的过程,微生物受环境因素影响极大,因此通过调控手段改变土壤的硝化和反硝化作用过程,也是抑制N2O排放的研究热点。多年来,全球在氮肥减量或替代、调控N2O产生的机理机制等方面,取得了系统的研究进展。绿肥是我国传统农业的精华,是培养地力的重要物质基础,在化肥减量、耕地质量提升、农田固碳减排中发挥着重要作用7。近年来,中国在利用绿肥实现化肥减施、驱动土壤健康方面取得了明显成效。但关于绿肥参与N2O排放的研究尚处在起步阶段。如何既发展好绿肥的土壤培肥与有机替代效应,又利用科学的手段管控好其可能的N2O排放增加的风险,是当前亟需解决的科学和技术问题。为此,本研究梳理了土壤N2O产生途径及其影响因素、减排技术,分析了绿肥种植利用对N2O排放的影响和农田N2O减排技术在绿肥种植制度中应用的可行性,以期优化绿肥种植制度中的管理技术,在保障绿肥节肥养地的同时实现N2O减排。

1 农田N2O产生途径及其影响因素

1.1 农田N2O产生途径

土壤N2O产生的过程有生物学过程和非生物学过程。生物学过程是N2O产生和排放的主要过程,包括硝化作用、反硝化作用、耦合硝化-反硝化作用、化学反硝化作用和硝酸盐的异化还原作用等(图1)。

硝化作用是在有氧条件下,氨(ammonia,NH3)或铵盐(ammonium,NH4+)被硝化微生物氧化成硝酸盐的过程,N2O作为副产物释放8。硝化作用是碱性和中性土壤中N2O产生的主要途径9-11,此环境下硝化作用由氨氧化细菌(ammonia-oxidizing bacteria,AOB)主导12,而在酸性土壤中氨氧化古菌(ammonia-oxidizing archaea,AOA)通常起主导作用13。另外,近年有研究发现能将NH3完全氧化为硝态氮(nitrate,NO3-)的完全氨氧化菌,可通过其中间产物羟胺的非生物反应产生N2O14

反硝化作用是在兼性厌氧条件下,反硝化微生物逐步将土壤中的NO3-还原成NO、N2O、N2的过程15。完全的反硝化作用最终产物是N2,然而,约1/3的反硝化细菌和具有反硝化能力的真菌缺少N2O还原酶(N2OR,编码基因nosZ),无法将N2O还原为N216-17。N2O还原细菌有两种不同的类群,分别为典型的反硝化细菌(Clade Ⅰ)和非典型的反硝化细菌(Clade Ⅱ)。土壤N2O还原主要由Clade Ⅱ决定,Clade Ⅱ丰度增加或群落结构改变,可能会促进N2O还原从而降低N2O排放量18。耦合硝化-反硝化作用是由硝化过程产生的NO3-为反硝化作用提供底物,从而生成N2O的过程19。化学反硝化作用是指NO2-化学分解或与其他物质的化学反应过程,主要产物为N2O、NOX和N220。仅在土壤pH较低时化学反硝化才被视为N2O的一个产生源,而在碱性条件下NO2-能够短暂积累,从而减少N2O的排放21。硝态氮异化还原成铵作用是一类以NH4+为主要产物的硝态氮异化还原过程,此过程伴有NO2-的短暂积累和N2O的排放22

1.2 农田N2O排放的影响因素

1.2.1 影响农田N2O排放的环境因素

农田土壤N2O排放主要受土壤pH、氧气(oxygen,O2)浓度、CO2浓度、水分、质地、温度和外源碳氮投入等因素的影响(表1)。土壤pH是影响土壤硝化、反硝化作用的关键因子。硝化反应强度一般与土壤pH值呈正相关,pH值增加通过提高硝化反应底物(NH3)浓度33-34,增加N2O排放。在pH<6.0时反硝化群落可获得的有机质和无机氮较少,N2OR的形成受到抑制24,N2O向N2还原的过程受阻,反硝化产物主要为N2O,而在pH>7时,反硝化产物主要为N22335。O2和CO2浓度通过影响硝化和反硝化作用相对贡献调控N2O排放。当土壤O2含量低于5%时,土壤N2O排放量急剧增加,并且硝化作用对N2O排放的贡献明显下降25。N2OR受到O2的抑制,但反硝化过程中其他的还原酶仍可发挥作用,导致N2O的积累36。高浓度CO2主要通过增强反硝化作用提高土壤N2O排放。高浓度CO2减少了植物蒸腾作用,从而增加了土壤含水量,为反硝化作用提供了厌氧环境,另外高浓度的CO2促进植物释放根系分泌物1,为反硝化作用提供了底物。相比于环境CO2浓度,土壤中高浓度的CO2导致N2O排放量增加了21%~36%26。土壤含水量通过调控土壤通气性和有效氮分布,影响硝化、反硝化过程27。土壤含水量在30%~60%时硝化作用是产生N2O的主要来源,高于70%时反硝化作用是N2O的主要来源37。土壤质地通过影响土壤通气性和水分状况,导致硝化、反硝化过程存在差异38-39。一般而言,N2O的排放量为壤质>砂质>粘质土壤40。土壤温度通过影响微生物活性,改变土壤氧气和有效碳的含量41-42,间接影响了N2O的排放,35~40 ℃时N2O排放量达到峰值29

1.2.2 影响农田N2O排放的底物因素

作为硝化和反硝化作用的底物,土壤中无机氮(NH4+、NO3-)和有机质的浓度直接影响N2O排放43。施氮不仅通过增加硝化、反硝化作用底物浓度,促进N2O排放,施氮增加的NO3-还可作为末端电子受体被优先利用,N2OR活性被抑制44-45,降低了N2O向N2的转化比例。有机质是土壤中异养微生物的碳源和能量来源,添加有机物料对土壤N2O排放的影响尚无一致定论。“水稻(Oryza sativa)-小麦(Triticum aestivum)”种植制度中麦秸还田减少了1%~78%的N2O排放46,“水稻-紫云英(Astragalus sinicus)”种植制度中稻秸还田减少了12%的N2O排放47,而Zhou等32在培养试验中发现添加麦秸、豆科绿肥均增加了N2O排放,是未添加有机物料处理的1.2~1.9倍。

2 种植利用绿肥影响农田N2O排放的效应与机制

2.1 种植利用绿肥对农田N2O排放的影响

我国当前绿肥面积稳定在每年约413万hm2,仅占绿肥潜力面积不足12%,发展空间和节氮减排潜力巨大48。种植利用绿肥能够促进土壤碳氮等养分循环、改善土壤的物理化学性质、改变土壤的温度及湿度、影响土壤的微生物群落结构,进而影响土壤N2O的排放。一项包含106个观测值的荟萃分析表明,40%的观测结果显示绿肥减少了土壤N2O排放,60%的观测结果则显示增加了土壤N2O排放,综合全年观测结果来看,绿肥增加和减少的N2O排放量基本持平49。种植绿肥对N2O排放的影响取决于绿肥种类、土壤理化性状、气候等多方面因素共同作用50-51。一般而言,种植利用禾本科绿肥造成的N2O排放低于豆科绿肥52。绿肥作物地上及地下部的生物量和化学性质均影响N2O排放53-54。土壤无机氮含量是影响绿肥制度中N2O排放的主要因素,绿肥种植期间能够吸收土壤盈余的无机氮,通过减少硝化、反硝化作用底物降低土壤N2O排放55,当绿肥吸氮量高时,N2O排放量较吸氮量少时显著降低了5倍56。绿肥还田后,大量的有机物料投入不仅增加了土壤中无机氮、活性炭和氮含量,还促进了硝化、反硝化微生物活性57-58。此时,土壤N2O排放主要受绿肥碳/氮和生物量影响。研究认为低碳/氮的豆科绿肥还田比高碳/氮的非豆科绿肥土壤排放了更多的N2O3259。而相比于绿肥碳/氮,N2O排放受生物量的影响更大。研究表明,翻压燕麦(Avena sativa,高碳氮比、高生物量)比豌豆(Pisum sativum,低碳氮比、低生物量)的N2O排放量更高60。绿肥不同还田方式中,相比于覆盖还田,翻压还田土壤N2O排放量更高60。绿肥翻压还田增加了土壤通气性和微生物与有机物料的接触面积,进一步增加了土壤微生物活性61-63,提高了N2O排放量。相比于冬闲,秋冬绿肥覆盖能够提高土壤温度,这可能增加种植利用绿肥时的土壤N2O排放风险64。土壤质地也会影响绿肥种植制度中的N2O排放,随着土壤粒径从粘土、壤土向沙壤土的增加,N2O排放量逐步减少43

种植利用绿肥从多方面影响N2O排放,不同地区、不同种植制度中绿肥对N2O排放存在正负效应65-66表2)。国外研究表明,经济园林中,相比于未种植绿肥,种植绿肥增加了地中海葡萄(Vitis vinifera)园周年N2O排放11.5%78;而柑橘(Citrus reticulata)园中豆科和非豆科绿肥混播覆盖,促进了N2O转化为N2,使得全年N2O排放量显著降低了12.6%77。我国部分绿肥制度中N2O排放已有报道,但还缺少区域性系统性的绿肥种植和翻压期间N2O排放周年监测。南方绿肥水稻轮作系统中,冬季种植翻压油菜(Brassica campestris)较冬闲全年N2O累积排放量显著增加了53.1%74,翻压黑麦草(Lolium perenne)、紫云英增加了37.5%、43.7%79。北方旱地玉米(Zea mays)间作系统中,与玉米单作相比,玉米间作大豆(Glycine max)处理N2O年平均排放通量降低了25.6%~48.8%67-68。华北的绿肥-棉花(Gossypium spp.)轮作系统中,相比于冬闲处理,棉花轮作二月兰(Orychophragmus violaceus)全年N2O累积排放量显著减少了58.0%80。西北的夏绿肥冬小麦轮作系统中,与夏休闲相比,黑豆(Glycine max)-冬小麦轮作在绿肥填闲期和冬小麦生长期土壤N2O排放量分别显著增加了26.8%~44.2%和6.2%~52.3%71

2.2 种植利用绿肥影响N2O排放的微生物机制

种植利用绿肥会通过影响底物(NO3-,NH4+等)浓度和土壤通气性等,调控土壤硝化和反硝化微生物群落丰度和多样性进而影响土壤N2O排放7781-82。绿肥生长期间,土壤硝化(AOB-amoA、AOA-amoA)和反硝化功能基因(nirK、norB、nosZInosZII)丰度均显著增加,N2O减排的主要原因为覆盖绿肥增加了氧化亚氮还原功能微生物基因(nosZInosZII)相对丰度83。同时,绿肥覆盖改变了氨氧化古菌(Candidatus Nitrososphaera evergladensisCandidatus Nitrososphaera gargensis)、亚硝酸还原细菌(Bosea robiniae,Bradyrhizobium paxllaeri,Bradyrhizobium sp.,Chelatococcus daeguensisChetalococcus sp.,Rhodobacter sphaeroidesRhodopseudomonas palustris)和氧化亚氮还原细菌(Achromobacter cycloclastesAzospirillum sp.,Bradyrhizobium diazoefficiensdaeguensiChetalococcus sp.Microvirga sp.,Rhizobium etliShinella sp.)关键群落组成,从而降低N2O排放77

绿肥还田后,向土壤中输入大量有机氮,有机氮矿化逐渐释放NH4+,由于氨氧化微生物大多为自养型微生物,土壤NH4+的增加能够提高土壤硝化潜势84-85。在南方酸性红壤中的研究表明,翻压绿肥增加了土壤硝化潜势,提高了AOA和AOB的amoA基因丰度,并且对AOA群落结构的影响高于AOB86,硝化潜势的增加提高了N2O排放风险。另外,硝化微生物通过增加硝化潜势,加速了氧气的消耗,引起反硝化过程的增强。翻压豆科绿肥,显著增加了土壤反硝化微生物功能基因narGnirK丰度87,翻压禾本科绿肥土壤反硝化微生物功能基因narG、napA、nirK、nirSnosZI丰度同样显著增加,这提高了反硝化过程的完成度,降低了土壤N2O排放88。同时,翻压绿肥促进了微生物活动,提高了微生物对氮素的固定89,减少了硝化和反硝化底物,有降低N2O排放的潜力。有机氮的矿化速率取决于土壤水分含量、温度、绿肥碳氮比等,总的来说绿肥还田后一周为快速腐解期90,由于旱地土壤N2O排放以硝化反应为主91,此时容易造成N2O的排放高峰,研究人员应重点关注此段时间减排N2O的可行性技术。

3 N2O减排技术在绿肥制度中的应用现状

农业生产中主要的N2O减排技术包括优化施肥制度(减肥、有机肥替代和控释肥替代等)、优化种植制度、配施土壤改良剂(化学抑制剂、生物炭和矿物类材料)、少耕或免耕和滴灌等,通过调控环境因素减排N2O。近年来,这些措施在绿肥制度中开展了相关研究应用。

3.1 优化施肥制度

1980-2014年,我国氮肥使用量增加了两倍,但粮食产量仅增加了83%92,氮素利用效率明显下降。氮肥不合理施用是我国农业生产中N2O排放的主要来源,77%的农田土壤N2O排放来源于氮肥93。我国氮肥减施潜力高达15%~19%,优化施氮后小麦、玉米和水稻的产量可增加10%~19%,氮盈余减少40%94。荟萃分析表明,优化施氮量相对于传统施氮量,可以在降低25%的氮素投入、18%的N2O排放量的同时,保持目标产量95。由于硝化、反硝化底物的减少,减量施氮能够有效降低N2O的排放95-96。种植利用绿肥可减施化学氮肥20%~40%48,能够进一步减少外源氮的投入。南方水稻轮作绿肥系统中,减少化肥用量能降低N2O排放,随紫云英替代化肥比例(25%~100%)的增加,N2O减排比例随之增加(44.0%~83.7%)97;柑橘间作豆科绿肥可减施氮肥10%~30%,N2O排放量降低了11.2%~32.2%76

联合国粮农组织和国际肥料工业协会发布的报告表明,氯化铵和有机肥N2O排放系数较低98。有机肥替代化肥是最为常见的农业施肥措施之一,不同有机肥的N2O减排效果存在差异。油菜粕替代化肥,N2O可减排16.1%~32.2%98。而家禽粪肥替代化肥全年N2O排放量显著增加了78.9%99。这可能与有机肥种类、管理措施和环境因素等相关100-101。另外,荟萃分析发现施用缓释氮肥N2O排放量可降低38.3%102。Liu等103证实缓释尿素的N2O排放系数显著低于普通尿素、硫酸铵和硝酸钙。绿肥制度中,可根据绿肥腐解后养分释放规律和主作物养分需求特征,选择适宜的缓释肥料,充分发挥缓释肥的N2O减排效能。

种植利用绿肥作物一般无须增施氮肥,氮素供应时间应与主作物的需肥时期同步。在主作物播种后较播种前施肥增加了氮肥被作物吸收的概率,从而减少了N2O排放104。例如,在旱地玉米拔节期的侧施氮肥较播前施氮N2O排放量降低了16.1%~52.4%104,在稻田“早稻-晚稻-紫云英”制度中,相比氮肥全部基施,按照基肥∶蘖肥∶穗肥=5∶3∶2施用氮肥显著提高了氮肥利用率105。并且,应注意绿肥的翻压时间,宜在绿肥最大生物量时翻压,不宜过早或过迟,在绿肥营养生长时翻压较绿肥生殖生长时N2O排放量降低了11.3%~16.2%106

3.2 优化作物类型及种植制度

适宜的作物类型及种植制度能够改变土壤物理化学特性和微生物群落多样性,降低土壤N2O排放6877107。选择适宜的绿肥作物与粮食作物轮作或间作,能够提高氮肥利用效率,降低N2O排放108-110。在加拿大的研究表明,相比玉米连作,玉米轮作大豆N2O排放显著降低了50%111,但在我国的一项研究表明,玉米轮作大豆对N2O排放无显著影响112。间作制度中,玉米间作大豆较玉米单作土壤N2O排放量降低了25.6%~48.8%67-68,玉米间作猪屎豆(Crotalaria pallida)土壤N2O排放量降低了15.0%70。而玉米间作拉巴豆(Physostigma venenosum)、紫花苜蓿(Medicago sativa)、草木樨(Melilotus officinalis)较玉米单作N2O排放通量无显著变化6770。由此可见,种植制度和绿肥种类均显著影响N2O排放,应因地制宜,选择适宜的绿肥种类及种植制度,实现N2O减排的目标。

3.3 添加土壤改良剂

3.3.1 化学抑制剂

化学抑制剂主要包括硝化抑制剂和脲酶抑制剂。硝化抑制剂常见类型有双氰胺(dicyandiamide,DCD)、硝基吡啶(nitrapyrin)和3,4-二甲基吡唑磷酸(3,4-dimethylpyrazole phosphate,DMPP),能够降低土壤中硝化强度、减少NO3-积累,进而减少硝化和反硝化过程中产生的N2O113。高丹草(Sorghum sudanense)-小麦轮作系统中,添加硝化抑制剂可使N2O排放量降低86.5%113

常见的脲酶抑制剂有N-丁基硫代磷酰三胺[N-(n-Butyl)thiophosphoric triamide,NBPT],通过抑制尿素向NH4+转化,延缓尿素水解速率,降低土壤中NH4+含量,减少硝化底物进而减少N2O排放114。培养试验显示,相较于对照,添加脲酶抑制剂可使N2O排放量降低17.1%115。等量添加条件下,硝化抑制剂往往较脲酶抑制剂N2O减排效果更好115-116。也可将二者混合使用,降低N2O排放117

3.3.2 生物炭

生物炭是生物质在高温和厌氧条件下生成的一类结构及性质稳定、碳氮比高的富碳材料,在农业系统中常用作土壤改良剂118。在物理性质上,生物炭具有较高的比表面积、孔隙度、表面电荷和持水性119。在化学性质上,生物炭表面具有大量的官能团、盐基离子,且本身具有较高的灰分含量120。添加生物炭可降低土壤N2O排放的原因有:1)改善土壤通气状况,降低土壤反硝化作用121;2)生物炭输入增加了微生物对氮的固定,减少了硝化和反硝化底物122;3)生物炭可以吸附土壤硝化作用的底物(NH4+122;4)生物炭提高了土壤pH,从而降低反硝化作用123;5)生物炭具有浓缩的芳香结构,允许电子在共轭pi电子系统之间转移,促进N2O还原为N2124。全球荟萃分析表明,施用生物炭可使N2O排放量降低32%~54%125,N2O减排量与生物炭施用量呈正相关126。小麦-黑麦(Secale cereale,用作绿肥)-高粱(Sorghum bicolor)轮作系统中,小麦播种前添加生物炭N2O排放平均降低15%123

3.3.3 矿物类材料

沸石和膨润土等黏土矿能够缓慢地吸附和释放氮,施用黏土矿是土壤N2O减排策略之一。沸石的晶体空间结构赋予了其较高的阳离子吸附和保水性能127-128,可以吸附土壤中NH4+降低硝化作用129,减少N2O排放。稻田的研究表明,添加沸石可使N2O排放量降低9%130。培养试验中也发现,翻压黑麦草处理中,相比于单独添加硫酸镁和硼处理,在此基础上添加沸石可使N2O排放量显著降低30.4%131。与沸石类似,膨润土能够固定土壤中游离的NH4+,抑制了N2O排放132,旱地的研究发现,添加膨润土可使N2O排放量降低37.3%132

部分研究表明添加碱性矿石能够减少N2O排放,主要原因是碱性矿石能够通过增加土壤pH,提高氧化亚氮还原微生物丰度133。添加(煅烧)石灰石、白云石可使N2O排放量显著降低21.7%~39.0%134-135。种植绿肥会影响碱性矿石的N2O减排效果,轮作豆科绿肥后,石灰失去小麦种植过程中减排N2O的效果,原因为轮作豆科绿肥缓解了土壤微生物量碳、氮限制,掩盖了添加石灰增加土壤微生物量带来的N2O减排效应136

黏土矿物及含钙类碱性矿石这些天然材料便宜易得,但施用不便,可利用物理法现代造粒工艺等技术,创制绿色、环保、易用的增效新产品,达到节肥、减排的目的。施用矿物类材料应该注意因地制宜,碱性黏土矿类材料较适宜南方酸性土壤;北方旱地应选择偏中性的材料,避免土壤碱性过强,影响土壤中氨挥发及作物生长发育。

3.4 其他

保护性耕作条件下N2O排放量一般低于常规耕作,这主要是由于免耕有助于改善土壤结构、增加土壤碳储量137,降低土壤中硝化、反硝化还原酶功能微生物丰度,增加氧化亚氮还原微生物丰度18138。相比于常规耕作,免耕使N2O排放量减少了28%,且干旱条件下N2O减排效果更明显117。地中海葡萄园种植绿肥结合少耕使N2O排放量减少了17.2%78,在肥田萝卜(Raphanus sativus)-燕麦-蚕豆(Vicia faba)轮作系统中,免耕使N2O排放量较常规耕作显著降低了37.5%~47.4%64,耕作条件下绿肥翻压分解消耗氧气形成局部厌氧环境,反硝化过程驱动更多的N2O排放64

滴灌通过改变土壤湿度、温度、氧气含量影响反硝化过程,促进完全反硝化作用的发生,更多的N2O转变成了N245。Sánchez-Martín等139通过田间试验,比较了不同灌溉系统N2O排放的差异,结果表明,与沟灌相比,滴灌的N2O排放总量减少了70%。与常规沟灌相比,滴灌菜地N2O排放量降低了16.4%~60.9%140。番茄(Solanum lycopersicum)轮作毛叶苕子(Vicia villosa)系统中,膜下滴灌较犁沟滴灌作物生长季N2O排放降低了74%141。采用滴灌技术时需要注意根据不同作物适宜的生长环境,调控滴灌强度、频率等控制土壤水分,达到N2O减排的目的。

4 结论与展望

综上,农田土壤N2O排放是土壤pH值、氧气及二氧化碳浓度、水分、质地、温度和外源碳氮投入等因素综合影响的结果。绿肥生长期间能够吸收土壤盈余的矿质氮,翻压后能够替代部分氮肥,有减少农田土壤N2O排放的潜势,但同时存在由于腐解引发的增加土壤活性炭和有机氮含量导致的N2O排放风险。可结合适宜的N2O减排技术,降低绿肥制度中N2O排放,具体包括优化施肥制度、优化种植制度、配施土壤改良剂、采用少耕或免耕等减排技术。

我国生态类型多样、种植制度多元,可根据绿肥种植制度、作物种类、气候条件、土壤类型等,结合适宜的N2O减排技术,降低绿肥制度中N2O排放风险。种植利用绿肥在保证作物稳产的同时,在南方水稻与绿肥轮作区,可减施氮肥40%142,采用绿肥稻秸共同还田,添加生物炭等碱性调理剂。在华北地区主作物(如玉米、棉花)与绿肥轮作区,可减施氮肥15%~20%5872,翻压绿肥时添加化学抑制剂、结合氮肥机械化深施。在东北地区的麦后复种绿肥、薯类麻类复种绿肥及玉米、高粱、油葵(Helianthus annuus)前期间作绿肥等制度中,可减施氮肥10%~15%48,结合免耕模式根茬还田,地上部饲用,减少土壤扰动及翻压腐解带来的增排效应。在西北地区的麦后复种绿肥、玉米前期间作绿肥等制度中,可减施氮肥13%~48%72143-144,添加硝化抑制剂、结合水肥一体化、免耕等技术。在西南地区玉米、烟草(Nicotiana tabacum)等与绿肥轮作的制度中,可减施氮肥15%~20%,配合缓控释肥一次性施肥、添加化学抑制剂等技术。

参考文献

[1]

Van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 2011, 475(7355): 214-216.

[2]

Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century. Science, 2009, 326(5949): 123-125.

[3]

Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models//Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Computational Geometry, 2013, 18(2): 95-123.

[4]

Cui X, Bo Y, Adalibieke W, et al. The global potential for mitigating nitrous oxide emissions from croplands. One Earth, 2024, 7(3): 401-420.

[5]

Liang M Q, Zhou Z Y, Ren P Y, et al. Four decades of full-scale nitrous oxide emission inventory in China. National Science Review 2024, 11(3): 285.

[6]

Sun B F, Zhao H, Lyu Y Z, et al. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands. Journal of Integrative Agriculture, 2016, 15(2): 440-450.

[7]

Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China. Journal of Plant Nutrition and Fertilizers, 2017, 23(6):1450-1461.

[8]

曹卫东, 包兴国, 徐昌旭, 中国绿肥科研60年回顾与未来展望. 植物营养与肥料学报, 2017, 23(6): 1450-1461.

[9]

Sun Z Q, Hao Q J, Jiang C S, et al. Advances in the study of nitrous oxide production mechanism and its influencing factors in agricultural soils. Chinese Journal of Soil Science, 2010, 41(6): 1524-1530.

[10]

孙志强, 郝庆菊, 江长胜, 农田土壤N2O的产生机制及其影响因素研究进展. 土壤通报, 2010, 41(6): 1524-1530.

[11]

Zhang Y Y, Mu Y J, Zhou Y Z, et al. NO and N2O emissions from agricultural fields in the North China Plain: Origination and mitigation. Science of the Total Environment, 2016, 551/552(1): 197-204.

[12]

Cui F, Yan G X, Zhou Z X, et al. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain. Soil Biology and Biochemistry, 2012, 48: 10-19.

[13]

Ju X T, Lu X, Gao Z L, et al. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution, 2011, 159(4): 1007-1016.

[14]

Liang D, Robertson G P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity. Global Change Biology, 2021, 27(21): 5599-5613.

[15]

Lu L, Jia Z J. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environmental Microbiology, 2013, 15(6): 1795-1809.

[16]

Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528(7583): 504-509.

[17]

Smith M S, Delwiche C C. Denitrification, nitrification, and atmospheric nitrous oxide. Bioscience, 1981, 32(4): 1308549.

[18]

Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 2011, 17(3): 1497-1504.

[19]

Nakahara K, Tanimoto T, Hatano K, et al. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. Journal of Biological Chemistry, 1993, 268(11): 8350-8355.

[20]

Wang W Y, Hou Y T, Pan W H, et al. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biology and Biochemistry, 2021, 157(1): 108239.

[21]

Kremen A, Bear J, Shavit U, et al. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environmental Science and Technology, 2005, 39(11): 4180-4188.

[22]

Bremner J M. Source of nitrous oxide in soils. Nutrient Cycling in Agroecosystem, 1997, 49: 7-16.

[23]

Van Cleemput O, Baert L. Nitrite: A key compound in N loss processes under acid conditions? Plant and Soil, 1984, 76(1): 233-241.

[24]

Yang S, Wu S J, Cai Y J, et al. The synergetic and competitive mechanism and the dominant factors of dissimilatory nitrate reduction processes: A review. Acta Ecologica Sinica, 2016, 36(5): 1224-1232.

[25]

杨杉, 吴胜军, 蔡延江, 硝态氮异化还原机制及其主导因素研究进展. 生态学报, 2016, 36(5): 1224-1232.

[26]

ŠImek M, Cooper J E. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 2002, 53(3): 345-354.

[27]

Bergaust L, Mao Y, Bakken L R, et al. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Applied and Environmental Microbiology, 2010, 76(19): 6387-6396.

[28]

Zhu K, Bruun S, Larsen M, et al. Spatial oxygen distribution and nitrous oxide emissions from soil after manure application: A novel approach using planar optodes. Journal of Environmental Quality, 2014, 43(5): 1809-1812.

[29]

Li Y C, Lin E, Han X, et al. Effects of elevated carbon dioxide concentration on nitrous oxide emissions and nitrogen dynamics in a winter-wheat cropping system in northern China. Mitigation and Adaptation Strategies for Global Change, 2015, 20(7): 1027-1040.

[30]

Goldberg S D, Gebauer G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biology and Biochemistry, 2009, 41(9): 1986-1995.

[31]

Siljanen H M, Welti N, Voigt C, et al. Atmospheric impact of nitrous oxide uptake by boreal forest soils can be comparable to that of methane uptake. Plant and Soil, 2020, 454(1): 121-138.

[32]

Lai T V, Farquharson R, Denton M D. High soil temperatures alter the rates of nitrification, denitrification and associated N2O emissions. Journal of Soils and Sediments, 2019, 19(5): 2176-2189.

[33]

Zhou X, Fornara D, Wasson E A, et al. Effects of 44 years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland. Soil Biology and Biochemistry, 2015, 162: 108425.

[34]

Gillam K M, Zebarth B J, Burton D L. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Canadian Journal of Soil Science, 2008, 88(2): 133-143.

[35]

Zhou W, Jones D L, Hu R G, et al. Crop residue carbon-to-nitrogen ratio regulates denitrifier N2O production post flooding. Biology and Fertility of Soils, 2020, 56(6): 825-838.

[36]

Meng Y, Wang Z H, Luo H Y, et al. Mechanisms research on how pH affects nitrification in purple soils of Southwest China. Acta Prataculturae Sinica, 2017, 26(4): 73-79.

[37]

孟瑶, 王智慧, 罗红燕, 西南地区pH影响紫色土硝化作用机制研究. 草业学报, 2017, 26(4): 73-79.

[38]

Zhang S J, Zhang G, Wu M, et al. Straw return and low N addition modify the partitioning of dissimilatory nitrate reduction by increasing conversion to ammonium in paddy fields. Soil Biology and Biochemistry, 2021, 162: 108425.

[39]

ŠImek M, Jsiová L, Hopkins D W. What is the so-called optimum pH for denitrification in soil? Soil Biology and Biochemistry, 2002, 34(9): 1227-1234.

[40]

Morley N, Baggs E M, Dörsch P, et al. Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2 - and O2 concentrations. FEMS Microbiology Ecology, 2008, 65(1): 102-112.

[41]

Bateman E J, Baggs E M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils, 2005, 41(6): 379-388.

[42]

Bollmann A, Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 2004, 4(4): 387-396.

[43]

Gu J X, Nicoullaud B, Rochette P, et al. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biology and Biochemistry, 2013, 60: 134-141.

[44]

Xu H, Xing G X, Cai Z C, et al.Effect of soil texture on N2O emissions from winter wheat and cotton fields. Agro-environmental Protection, 2000, 19(1): 1-3.

[45]

徐华, 邢光熹, 蔡祖聪, 土壤质地对小麦和棉花田N2O排放的影响. 农业环境保护, 2000, 19(1): 1-3.

[46]

Smith K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global Change Biology, 2010, 3(4): 327-338.

[47]

Butterbach-Bahl K, Dannenmann M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability, 2011, 3(5): 389-395.

[48]

Muhammad I, Sainju U M, Zhao F, et al. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil and Tillage Research, 2019, 192: 103-112.

[49]

Bremner J M, Blackmer A M. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science, 1978, 199(4326): 295-296.

[50]

Weier K L, Doran J W, Power J F, et al. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal, 1993, 57(1): 66-72.

[51]

Ma J, Ma E D, Xu H, et al. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology and Biochemistry, 2009, 41(5): 1022-1028.

[52]

Zhou G P, Cao W D, Bai J S, et al. Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: An incubation study. Pedosphere, 2020, 30(5): 661-670.

[53]

Cao W D, Gao S J. Chinese green manure development strategy by 2025. Journal of China Agricultural Resources and Regional Planning, 2023, 44(12): 1-9.

[54]

曹卫东, 高嵩涓. 到2025年中国绿肥发展策略. 中国农业资源与区划, 2023, 44(12): 1-9.

[55]

Basche A D, Miguez F E, Kaspar T C, et al. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 2014, 69(6): 471-482.

[56]

Guardia G, Abalos D, García-Marco S, et al. Integrated soil fertility management drives the effect of cover crops on GHG emissions in an irrigated field. Biogeosciences Discussions, 2016, 13: 5245-5257.

[57]

Peyrard C, Mary B, Perrin P, et al. N2O emissions of low input cropping systems as affected by legume and cover crops use. Agriculture, Ecosystems and Environment, 2016, 224: 145-156.

[58]

Guardia G, Abalos D, García-Marco S, et al. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences, 2016, 13(18): 5245-5257.

[59]

Borden K A, Mafa-Attoye T G, Dunfield K E, et al. Root functional trait and soil microbial coordination: Implications for soil respiration in riparian agroecosystems. Frontiers in Plant Science, 2021, 12: 681113.

[60]

Oram N J, van Groenigen J W, Bodelier P L E, et al. Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice? Science of the Total Environment, 2020, 727: 138476.

[61]

Chahal I, Van Eerd L L. Cover crops increase tomato productivity and reduce nitrogen losses in a temperate humid climate. Nutrient Cycling in Agroecosystems, 2021, 119(2): 195-211.

[62]

Behnke G D V, Maria B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Research, 2019, 241: 107580.

[63]

Mitchell D C, Castellano M J, Sawyer J E, et al. Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Science Society of America Journal, 2013, 77(5): 1765-1773.

[64]

Zhang Z G, Wang J, Huang W B, et al. Cover crops and N fertilization affect soil ammonia volatilization and N2O emission by regulating the soil labile carbon and nitrogen fractions. Agriculture, Ecosystems and Environment, 2022, 340: 108188.

[65]

Wu Y, Lin S, Liu T, et al. Effect of crop residue returns on N2O emissions from red soil in China. Soil Use and Management, 2016, 32(1): 80-88.

[66]

Singh G, Kaur G, Williard K W J, et al. Cover crops and tillage effects on carbon-nitrogen pools: A lysimeter study. Vadose Zone Journal, 2021, 20(2): e20110.

[67]

Alluvione F, Bertora C, Zavattaro L, et al. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Science Society of America Journal, 2010, 74(2): 384-395.

[68]

Baggs E M, Watson C A, Rees R M. The fate of nitrogen from incorporated cover crop and green manure residues. Nutrient Cycling in Agroecosystems, 2000, 56(2): 153-163.

[69]

Baggs E M, Stevenson M, Pihlatie M, et al. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant and Soil, 2003, 254(2): 361-370.

[70]

Taghizadeh-Toosi A, Hansen E M, Olesen J E, et al. Interactive effects of straw management, tillage, and a cover crop on nitrous oxide emissions and nitrate leaching from a sandy loam soil. Science of the Total Environment, 2022, 828: 154316.

[71]

Daryanto S, Fu B J, Wang L X, et al. Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews, 2018, 185: 357-373.

[72]

Van Eerd L L, Chahal I, Peng Y, et al. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America. Science of the Total Environment, 2023, 858: 159990.

[73]

Huang J X, Chen Y Q, Sui P, et al. Soil nitrous oxide emissions under maize-legume intercropping system in the North China Plain. Journal of Integrative Agriculture, 2014, 13(6): 1363-1372.

[74]

Chen J S, Wang G S, Zhang Y Y, et al. The effects of soybean-maize intercropping on N2O emission from soil. Journal of Irrigation and Drainage, 2020, 39(9): 32-40.

[75]

陈津赛, 王广帅, 张莹莹, 玉米大豆间作对农田土壤N2O排放的影响. 灌溉排水学报, 2020, 39(9): 32-40.

[76]

Lyu H Q, Li Y, Wang Y L, et al. No-tillage with total green manure mulching: A strategy to lower N2O emissions. Field Crops Research, 2024, 306: 109238.

[77]

Raji S G, Dörsch P. Effect of legume intercropping on N2O emission and CH4 uptake during maize production in the Ethiopian Rift Valley. Biogeosciences Discussions, 2019, 7: 1-29.

[78]

Wang T, Yang J L, Li L L, et al. Effects of black soybean-winter wheat rotation and nitrogen applicationon soil N2O and CH4 emission of Longdong dryland in Gansu. Gansu Agricultural Science and Technology, 2022, 53(9): 36-40.

[79]

王婷, 杨君林, 李利利, 陇东旱塬麦黑豆-冬小麦轮作条件下施氮水平对土壤N2O和CH4排放的影响. 甘肃农业科技, 2022, 53(9): 36-40.

[80]

Zhang D B, Yao P W, Zhao N, et al. Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. European Journal of Agronomy, 2016, 72: 47-55.

[81]

Xie Z, Shah F, Tu S, et al. Chinese milk vetch as green manure mitigates nitrous oxide emission from monocropped rice system in South China. PLoS One, 2016, 11(12): e0168134.

[82]

Wang S W, Wu Z G, Sun Y Q, et al. Effects of typical crop rotation systems and land fallow on paddy soil N2O and CH4 emissions in Taihu Lake region of China. Ecology and Environmental Sciences, 2021,30(1): 63-71.

[83]

王书伟, 吴正贵, 孙永泉, 太湖地区典型轮作与休耕方式对稻田水稻季N2O和CH4排放量的影响. 生态环境学报, 2021, 30(1): 63-71.

[84]

Raheem A, Zhang J, Huang J, et al. Greenhouse gas emissions from a rice-rice-green manure cropping system in South China. Geoderma, 2019, 353: 331-339.

[85]

Zhou W, Ma Q X, Wu L, et al. The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard. Agriculture, Ecosystems and Environment, 2022, 326: 107806.

[86]

Castellano-Hinojosa A, Martens-Habbena W, Strauss S L. Cover crop composition drives changes in the abundance and diversity of nitrifiers and denitrifiers in citrus orchards with critical effects on N2O emissions. Geoderma, 2022, 422: 115952.

[87]

Wolff M W, Alsina M M, Stockert C M, et al. Minimum tillage of a cover crop lowers net GWP and sequesters soil carbon in a California vineyard. Soil and Tillage Research, 2018, 175: 244-254.

[88]

Li J, Wang S, Shi Y, et al. Do fallow season cover crops increase N2O or CH4 emission from paddy soils in the mono-rice cropping system? Agronomy, 2021, 11(2): 199.

[89]

Kim G W, Das S, Hwang H Y, et al. Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: Fluxes, emission factors and yield-scaled emissions. Atmospheric Environment, 2017, 152: 377-388.

[90]

Quick A M, Reeder W J, Farrell T B, et al. Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables. Earth-Science Reviews, 2019, 191: 224-262.

[91]

Bent E, Németh D, Wagner-Riddle C, et al. Residue management leading to higher field-scale N2O flux is associated with different soil bacterial nitrifier and denitrifier gene community structures. Applied Soil Ecology, 2016, 108: 288-299.

[92]

Castellano-Hinojosa A, Martens-Habbena W, Smyth A R, et al. Short-term effects of cover crops on soil properties and the abundance of N-cycling genes in citrus agroecosystems. Applied Soil Ecology, 2022, 172: 104341.

[93]

Lin Y X, Ye G P, Luo J F, et al. Nitrosospira cluster 8a play a predominant role in the nitrification process of a subtropical Ultisol under long-term inorganic and organic fertilization. Applied and Environmental Microbiology, 2018, 84(18): e01031.

[94]

Chu H, Fujii T, Morimoto S, et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and Environmental Microbiology, 2007, 73(2): 485-491.

[95]

Gao S J, Chang D N, Zou C Q, et al. Archaea are the predominant and responsive ammonia oxidizing prokaryotes in a red paddy soil receiving green manures. European Journal of Soil Biology, 2018, 88: 27-35.

[96]

Jiang P, Zhou G P, Han M, et al. Mechanism of co-incorporating of wheat straw and hairy vetch in controlling greenhouse gas emissions in Qinghai Plateau of China. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 651-663.

[97]

江鹏, 周国朋, 韩梅, 麦秸与毛叶苕子共同调控青海高原土壤温室气体排放的作用机制. 植物营养与肥料学报, 2023, 29(4): 651-663.

[98]

Wang H, Beule L, Zang H, et al. The potential of ryegrass as cover crop to reduce soil N2O emissions and increase the population size of denitrifying bacteria. European Journal of Soil Science, 2021, 72(3): 1447-1461.

[99]

Nie J W, Wang Y J, Tian Y, et al. Effects of combined applying Chinese milk vetch and chemical fertilizers on CH4 and N2O emissions from double cropping paddy fields. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 676-684.

[100]

聂江文, 王幼娟, 田媛, 紫云英与化学氮肥配施对双季稻田CH4与N2O排放的影响. 植物营养与肥料学报, 2018, 24(3): 676-684.

[101]

Zhao Q, Tian X P, Zhou L P, et al. Effect of different winter green manures on composition and mineralization of soil organic nitrogen. Bulletin of Soil and Water Conservation, 2023, 43(1): 78-83.

[102]

赵秋, 田秀平, 周丽平, 不同冬绿肥翻压对土壤有机氮组分和氮素矿化的影响. 水土保持通报, 2023, 43(1): 78-83.

[103]

Hu H W, Trivedi P, He J Z, et al. Microbial nitrous oxide emissions in dryland ecosystems: Mechanisms, microbiome and mitigation. Environmental Microbiology, 2017, 19(12): 4808-4828.

[104]

Liu X, Vitousek P, Chang Y, et al. Evidence for a historic change occurring in China. Environmental Science and Technology, 2016, 50(2): 505-506.

[105]

Gao B, Ju X T, Zhang Q, et al. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences, 2011, 8(10): 3011-3024.

[106]

Ren K Y, Xu M G, Li R, et al. Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 2022, 360: 132180.

[107]

Yangjin D Z, Wu X W, Bai H, et al. A meta-analysis of management practices for simultaneously mitigating N2O and NO emissions from agricultural soils. Soil and Tillage Research, 2021, 213: 105142.

[108]

Liang H, Li S, Zhang L, et al. Long-term green manuring enhances crop N uptake and reduces N losses in rice production system. Soil and Tillage Research, 2022, 220: 105369.

[109]

Yang W, Yao L, Zhu M Z, et al. Replacing urea-N with Chinese milk vetch (Astragalus sinicus L.) mitigates CH4 and N2O emissions in rice paddy. Agriculture, Ecosystems and Environment, 2022, 336: 108033.

[110]

International Fertilizer Industry Association (IFA). Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. The United Nations: Food and Agriculture Organization of the United Nations (FAO), 2001.

[111]

Hayakawa A, Akiyama H, Sudo S, et al. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biology and Biochemistry, 2009, 41(3): 521-529.

[112]

Chen A F, Zhang X, Zhang Q Q, et al. Responses of N2O and NO emissions driven by ammonia-oxidizing bacteria and archaea to different combinations of organic and inorganic N fertilization in a vegetable field.Acta Scientiae Circumstantiae, 2021, 41(8): 3374-3383.

[113]

陈安枫, 张溪, 张前前, 菜地氨氧化微生物驱动的N2O和NO对有机无机肥配施的响应. 环境科学学报, 2021, 41(8): 3374-3383.

[114]

Han Z, Walter M T, Drinkwater L E. N2O emissions from grain cropping systems: A meta-analysis of the impacts of fertilizer-based and ecologically-based nutrient management strategies. Nutrient Cycling in Agroecosystems, 2017, 107(3): 335-355.

[115]

Xia L L, Shu K L, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(5): 1917-1925.

[116]

Liu S W, Lin F, Wu S, et al. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Global Change Biology, 2017, 23(6): 2520-2532.

[117]

Breitenbeck G A, Bremner J M. Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia. Biology and Fertility of Soils, 1986, 2(4): 201-204.

[118]

Wang H, Tang S, Wu J, et al. Effects of nitrogen managements with incorporation of Chinese milk vetch on the yield of double cropping rice and fertilizer use efficiency. Journal of Agricultural Resources and Environment, 2018, 35(4): 327-333.

[119]

王慧, 唐杉, 武际, 紫云英翻压条件下氮肥运筹对双季稻产量和肥料利用率的影响. 农业资源与环境学报, 2018, 35(4): 327-333.

[120]

Signor D, Cerri C E P, Conant R. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, 2013, 8(1): 15013.

[121]

Linton N F, Machado P V F, Deen B, et al. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biology and Biochemistry, 2020, 149(3): 107917.

[122]

Chen Y D, Zhao Y, Gao D J, et al. Effects of different rotation patterns of oil-rice on methane and nitrous oxide emissions in rice fields. Environmental Science, 2020, 41(10): 4701-4710.

[123]

陈友德, 赵杨, 高杜娟, 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响. 环境科学, 2020, 41(10): 4701-4710.

[124]

Graf D R H, Saghaï A, Zhao M, et al. Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment. Soil Biology and Biochemistry, 2019, 137: 107547.

[125]

Shen Y W, Sui P, Huang J X, et al. Greenhouse gas emissions from soil under maize-soybean intercrop in the North China Plain. Nutrient Cycling in Agroecosystems, 2018, 110(8): 451-465.

[126]

Drury C, Yang X, Reynolds W, et al. Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat. Canadian Journal of Soil Science, 2008, 88(2): 163-174.

[127]

Cai Y J, Ding W X, Luo J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: A 3-year field measurement. Atmospheric Environment, 2013, 65: 112-122.

[128]

Bozal-Leorri A, Corrochano-Monsalve M, Arregui L M, et al. Evaluation of a crop rotation with biological inhibition potential to avoid N2O emissions in comparison with synthetic nitrification inhibition. Journal of Environmental Sciences, 2023, 127: 222-233.

[129]

Gonzaga L C, Carvalho J L N, Carvalho B G O, et al. Crop residue removal and nitrification inhibitor application as strategies to mitigate N2O emissions in sugarcane fields. Biomass and Bioenergy, 2018, 119: 206-216.

[130]

Tao Z, Li Z Y, Li S J, et al. Effects of the additive ratio and aeration rate on sludge composting with airflow film. Journal of Agro-Environment Science, 2022, 41(6): 1368-1379.

[131]

陶甄, 李中阳, 李松旌, 硝化抑制剂、脲酶抑制剂与生物炭复配对土壤温室气体排放的影响. 农业环境科学学报, 2022, 41(6): 1368-1379.

[132]

Thapa R, Chatterjee A, Awale R, et al. Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta-analysis. Soil Science Society of America Journal, 2016, 80(5): 1121-1134.

[133]

Ekwunife K C, Madramootoo C A, Abbasi N A. Assessing the impacts of tillage, cover crops, nitrification, and urease inhibitors on nitrous oxide emissions over winter and early spring. Biology and Fertility of Soils, 2022, 58(3): 195-206.

[134]

Ribas A, Mattana S, Llurba R, et al. Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites. Science of the Total Environment, 2019, 685: 1075-1086.

[135]

Harter J, Krause H M, Schuettler S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal, 2014, 8(3): 660-674.

[136]

Harter J, Weigold P, El-Hadidi M, et al. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562: 379-390.

[137]

Yosuke Y, Koki T, Masanori O, et al. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 2007, 53(2): 181-188.

[138]

Nelissen V, Saha B K, Ruysschaert G, et al. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biology and Biochemistry, 2014, 70: 244-255.

[139]

Hüppi R, Neftel A, Lehmann M F, et al. N use efficiencies and N2O emissions in two contrasting, biochar amended soils under winter wheat-cover crop-sorghum rotation. Environmental Research Letters, 2016, 11(8): 84013.

[140]

Cayuela M L, Sánchez-Monedero M A, Roig A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Scientific Reports, 2013, 3(1): 1-7.

[141]

Liu Q, Zhang Y, Liu B, et al. How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 2018, 426(1): 211-225.

[142]

Feng Z, Zhu L. Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil. Science of the Total Environment, 2017, 584/585: 776-782.

[143]

Englert A H, Rubio J. Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing, 2005, 75(1/2): 21-29.

[144]

Shi W Y, Shao H B, Li H, et al. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials, 2009, 170(1): 1-6.

[145]

Zaman M, Nguyen M L. Effect of lime or zeolite on N2O and N2 emissions from a pastoral soil treated with urine or nitrate-N fertilizer under field conditions. Agriculture, Ecosystems and Environment, 2010, 136(3): 254-261.

[146]

Liu G Y, Zheng J L, Chen T T, et al. Zeolite mitigates N2O emissions in paddy fields under alternate wetting and drying irrigation. Agriculture, Ecosystems and Environment, 2022, 339: 108145.

[147]

Wang H, Oertelt L, Dittert K. The addition of magnesium sulfate and borax to urea reduced soil NH3 emissions but increased N2O emissions from soil with grass. Science of the Total Environment, 2022, 803: 149902.

[148]

Wu Y, Li F, Zheng H C, et al. Effects of three types of soil amendments on yield and soil nitrogen balance of maize-wheat rotation system in the Hetao Irrigation Area, China. Journal of Arid Land, 2019, 11(6): 904-915.

[149]

Shaaban M, Wu Y, Khalid M S, et al. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes. Environmental Pollution, 2018, 235: 625-631.

[150]

Žurovec O, Wall D P, Brennan F P, et al. Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agriculture, Ecosystems and Environment, 2021, 311: 107319.

[151]

Shaaban M, Wu Y, Peng Q, et al. The interactive effects of dolomite application and straw incorporation on soil N2O emissions. European Journal of Soil Science, 2018, 69(3): 502-511.

[152]

Barton L, Murphy D V, Butterbach-Bahl K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agriculture, Ecosystems and Environment, 2013, 167: 23-32.

[153]

Mazzoncini M, Antichi D, Bene C D, et al. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. European Journal of Agronomy, 2016, 77: 156-165.

[154]

Wang W Y, Wang M, Shen P F, et al. Conservation tillage reduces nitrous oxide emissions by regulating functional genes for ammonia oxidation and denitrification in a winter wheat ecosystem. Soil and Tillage Research, 2019, 194: 104347.

[155]

Sánchez-Martín L, Arce A, Benito A, et al. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology and Biochemistry, 2008, 40(7): 1698-1706.

[156]

Ye X H, Liu H D, Zhang X C, et al. Impacts of irrigation methods on greenhouse gas emissions/absorptions from vegetable soils. Journal of Soils and Sediments, 2020, 20(2): 723-733.

[157]

Kallenbach C M, Rolston D E, Horwath W R. Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agriculture, Ecosystems and Environment, 2010, 137(3): 251-260.

[158]

Gao S J, Zhou G P, Chang D N, et al. Southern China can produce more high-quality rice with less N by green manuring. Resources, Conservation and Recycling, 2023, 196: 107025.

[159]

Zhang D B, Yao P W, Zhao N, et al. Responses of winter wheat production to green manure and nitrogen fertilizer on the Loess Plateau. Agronomy Journal, 2015, 107(1): 361-374.

[160]

Li H T, Fan Z L, Wang Q M, et al. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas. European Journal of Agronomy, 2023, 145: 126788.

基金资助

国家重点研发计划项目(2021YFD1700200)

国家绿肥产业技术体系项目(CARS-22)

中国农业科学院科技创新工程项目资助

AI Summary AI Mindmap
PDF (935KB)

173

访问

0

被引

详细

导航
相关文章

AI思维导图

/