氮添加对黄土丘陵区草地土壤微生物养分限制特征的影响
贾蕴欢 , 胡雯颖 , 邓健 , 赵雪 , 陈子玥 , 王亚楠 , 李江文 , 张晓曦
草业学报 ›› 2025, Vol. 34 ›› Issue (02) : 221 -232.
氮添加对黄土丘陵区草地土壤微生物养分限制特征的影响
Effects of nitrogen addition on soil microbial nutrient limitation characteristics in grassland in the Loess Hilly Region
不断加剧的大气氮沉降会改变土壤养分平衡,进而引起土壤微生物养分限制,但目前关于氮沉降对黄土丘陵区草地土壤微生物养分限制特征的影响还不清楚。研究基于野外模拟氮沉降控制试验,通过测定土壤微生物生物量和养分转化酶活性,结合土壤理化性质分析,揭示了不同氮添加水平下草地土壤微生物养分限制特征及其影响因素。结果表明:氮添加导致土壤pH下降,并引起土壤养分平衡特征变化,具体表现为土壤有机碳、全氮含量的增加,而全磷无显著变化;氮添加导致了土壤速效养分含量增加,且速效磷含量增加速率大于可溶性碳和矿质氮,引起速效养分碳氮的相对不足。草地土壤微生物生物量和胞外酶活性在低浓度氮添加下降低,在高浓度氮添加下升高。随着氮添加浓度的增加,草地土壤微生物氮限制加剧而碳限制缓解;微生物碳限制同时还影响着微生物碳利用效率特征;氮添加引起的土壤全量和速效养分不平衡变化通过调控微生物生物量和酶活性共同决定着土壤微生物的养分限制特征。研究为理解氮沉降背景下草地土壤养分循环特征提供了进一步的认识。
Increasing atmospheric nitrogen deposition is affecting the soil nutrient balance. This may result in decreased nutrient availability to soil microbes. However, the effect of nitrogen deposition on the characteristics of nutrient limitation for soil microbes in grassland in the Loess Hilly Region is still unclear. The objective of this study was to investigate the effects of nitrogen deposition on soil microbial nutrient limitation in this region. A field-based controlled experiment simulating nitrogen deposition was conducted, and the soil microbial biomass, nutrient-transforming enzyme activities, and soil physicochemical properties were determined. This allowed us to elucidate the characteristics of nutrient limitation for grassland soil microorganisms, and its influencing factors, under different nitrogen addition levels. The results showed that nitrogen addition led to a decrease in soil pH, and altered the soil nutrient balance. More specifically, nitrogen addition increased the soil organic carbon and total nitrogen contents, but did not significantly affect the total phosphorus content. In addition, nitrogen addition enhanced the contents of soil available nutrients, with a greater increase in the available phosphorus content than in the soluble carbon and mineral nitrogen contents. This resulted in a relative shortage of carbon and nitrogen as available nutrients. Notably, the soil microbial biomass and extracellular enzyme activities decreased under low nitrogen addition but increased under high nitrogen addition. Further analyses using an enzyme stoichiometric model indicated that with increasing amounts of nitrogen addition, nitrogen limitation for soil microorganisms was intensified, while carbon limitation was alleviated. Microbial carbon limitation also affected the microbial carbon utilization efficiency. The imbalance of soil total and available nutrients caused by nitrogen addition jointly affected the characteristics of nutrient limitation for soil microorganisms by regulating microbial biomass and enzyme activity. In conclusion, these findings provide new information about the characteristics of soil nutrient cycling in grassland as affected by increasing nitrogen deposition.
氮沉降 / 草地 / 养分限制 / 胞外酶活性 / 养分利用效率
nitrogen deposition / grassland / nutrient limitation / extracellular enzyme activity / nutrient use efficiency
| [1] |
Bao P A, Qiu K Y, Huang Y Y, et al. Leaf functional trait characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition. Acta Prataculturae Sinica, 2024, 33(3): 97-106. |
| [2] |
鲍平安, 邱开阳, 黄业芸, 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性. 草业学报, 2024, 33(3): 97-106. |
| [3] |
Zhang Y, Zhang C H, Wang Q T, et al. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition. Chinese Journal of Plant Ecology, 2022, 46(4): 473-483. |
| [4] |
张英, 张常洪, 汪其同, 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异. 植物生态学报, 2022, 46(4): 473-483. |
| [5] |
Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. |
| [6] |
付伟, 武慧, 赵爱花, 陆地生态系统氮沉降的生态效应:研究进展与展望. 植物生态学报, 2020, 44(5): 475-493. |
| [7] |
Zhang X, Zhao W B, Liu Y X, et al. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena, 2016, 145: 56-67. |
| [8] |
Zhu R F, Tang F L, Liu J L, et al. Response of soil microbial biomass carbon and nitrogen on a short-term fertilizing N in Leymus chinensis meadow. Acta Agrestia Sinica, 2016, 24(3): 553-558. |
| [9] |
朱瑞芬, 唐凤兰, 刘杰淋, 羊草草甸草原土壤微生物生物量碳氮对短期施氮的响应. 草地学报, 2016, 24(3): 553-558. |
| [10] |
Zhang T A, Chen Y H, Ruan H H, et al. Global negative effects of nitrogen deposition on soil microbes. Multidisciplinary Journal of Microbial Ecology, 2018, 12(7): 1817-1825. |
| [11] |
Xu Q M, Gu X M, Wang Y Y, et al. Simulated nitrogen deposition significantly increases nitrous oxide emission rate from alpine grassland on the Tibetan Plateau. Acta Agrestia Sinica, 2023, 31(12): 3785-3792. |
| [12] |
许庆民, 顾晓梦, 王云英, 模拟氮沉降显著提高青藏高原高寒草地氧化亚氮排放速率. 草地学报, 2023, 31(12): 3785-3792. |
| [13] |
Wang X Y, Li Y Q, Wang L L, et al. Soil extracellular enzyme stoichiometry reflects microbial metabolic limitations in different desert types of northwestern China. Science of the Total Environment, 2023, 874: 162504. |
| [14] |
Shen F Y, Liu N, Chen F S, et al. Soil extracellular enzyme stoichiometry reveals the increased P limitation of microbial metabolism after the mixed cultivation of Korean pine and Manchurian walnut in Northeast China. European Journal of Soil Biology, 2023, 118: 103539. |
| [15] |
Guo Y H, Zhao H T, Gao Y, et al. Effect of inorganic nitrogen addition on soil microbial nutrient requirement strategy in the Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 137-144. |
| [16] |
郭银花, 赵洪涛, 高雨, 山西太岳山油松林无机氮添加对土壤微生物养分限制类型的影响. 应用与环境生物学报, 2022, 28(1): 137-144. |
| [17] |
Moorhead D L, Rinkes Z L, Sinsabaugh R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 2013, 4: 223. |
| [18] |
Cui Y X, Wang X, Zhang X C, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry, 2020, 147: 107814. |
| [19] |
Cui Y X, Moorhead D L, Guo X B, et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 2021, 30(11): 2297-2311. |
| [20] |
Xu M P, Li W J, Wang J Y, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 815: 152918. |
| [21] |
Cao Y Y, Su X M, Zhou Z C, et al. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China. Acta Prataculturae Sinica, 2023, 32(5): 94-105. |
| [22] |
曹玉莹, 苏雪萌, 周正朝, 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究. 草业学报, 2023, 32(5): 94-105. |
| [23] |
Yao N, Liu G Q, Yao S B, et al. Evaluating on effect of conversion from farmland to forest and grassland project on ecosystem carbon storage in loess hilly-gully region based on InVEST model. Bulletin of Soil and Water Conservation, 2022, 42(5): 329-336. |
| [24] |
姚楠, 刘广全, 姚顺波, 基于InVEST模型的黄土丘陵沟壑区退耕还林还草工程对生态系统碳储量的影响评估. 水土保持通报, 2022, 42(5): 329-336. |
| [25] |
Yao Y W, Ren H R. Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data. Ecological Indicators, 2024, 165: 112230. |
| [26] |
Deng J, Zhao X, Lu X Y, et al. Different responses of enzymes activities related to nitrogen and phosphorus transformation to nitrogen addition in different sized soil aggregates in semi-arid grassland. Acta Ecologica Sinica, 2023, 43(16): 6539-6549. |
| [27] |
邓健, 赵雪, 卢笑玥, 半干旱草地土壤团聚体氮磷转化相关酶活性对氮添加的响应. 生态学报, 2023, 43(16): 6539-6549. |
| [28] |
Han Y H, Dong S K, Zhao Z Z, et al. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma, 2019, 343: 263-268. |
| [29] |
Wei Y, Tong Y A, Qiao L, et al. Preliminary estimate of the atmospheric nitrogen deposition in different ecological regions of Shaanxi province. Journal of Agro-Environment Science, 2010, 29(4): 795-800. |
| [30] |
魏样, 同延安, 乔丽, 陕西省不同生态区大气氮沉降量的初步估算. 农业环境科学学报, 2010, 29(4): 795-800. |
| [31] |
Zheng H, Xue J B, Hao J, et al. Effects of short-term different N addition levels on phosphorus components in a saline-alkaline grassland in North China. Acta Agrestia Sinica, 2022, 30(3): 712-720. |
| [32] |
郑慧, 薛江博, 郝杰, 短期不同水平氮添加对华北盐渍化草地土壤磷组分的影响. 草地学报, 2022, 30(3): 712-720. |
| [33] |
Bao S D. Soil agrochemical analysis (3rd edition). Beijing: China Agriculture Press, 2000. |
| [34] |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. |
| [35] |
Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology and Biochemistry, 2019, 134: 1-14. |
| [36] |
Geng J, Cheng S L, Fang H J, et al. The effects of types and doses of nitrogen addition on soil N2O flux in a cold-temperate coniferous forest, northern China. Acta Ecologica Sinica, 2017, 37(2): 395-404. |
| [37] |
耿静, 程淑兰, 方华军, 氮素类型和剂量对寒温带针叶林土壤N2O排放的影响. 生态学报, 2017, 37(2): 395-404. |
| [38] |
Guo J Y, Wang Y X, Li J L, et al. Effects of nitrogen addition on plant-soil carbon dynamics in terrestrial ecosystems of China. Acta Ecologica Sinica, 2022, 42(12): 4823-4833. |
| [39] |
郭洁芸, 王雅歆, 李建龙, 氮添加对中国陆地生态系统植物-土壤碳动态的影响. 生态学报, 2022, 42(12): 4823-4833. |
| [40] |
Liu Y W, Bai W, Yin P S, et al. Effects of exogenous nitrogen addition on soil nutrients and plant community biomass in alpine swamp meadow in the headwaters region of the Yangtze River. Acta Agrestia Sinica, 2020, 28(2): 483-491. |
| [41] |
刘永万, 白炜, 尹鹏松, 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响. 草地学报, 2020, 28(2): 483-491. |
| [42] |
Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks. Nature Geoscience, 2008, 1: 430-437. |
| [43] |
Liu S W, Yin M, Chu G, et al. Research progress of soil nitrogen priming effect and its microbial mechanisms. Chinese Journal of Rice Science, 2019, 33(4): 303-312. |
| [44] |
刘少文, 殷敏, 褚光, 土壤氮激发效应及其微生物机理研究进展. 中国水稻科学, 2019, 33(4): 303-312. |
| [45] |
Huang J, Wang G F, An S Z, et al. Effect of nitrogen fertilization on the vegetation structure and biomass of degraded meadow and soil fertility. Pratacultural Science, 2009, 26(3): 75-78. |
| [46] |
黄军, 王高峰, 安沙舟, 施氮对退化草甸植被结构和生物量及土壤肥力的影响. 草业科学, 2009, 26(3): 75-78. |
| [47] |
Li R, Chang R Y. Effects of external nitrogen additions on soil organic carbon dynamics and the mechanism. Chinese Journal of Plant Ecology, 2015, 39(10): 1012-1020. |
| [48] |
李嵘, 常瑞英. 土壤有机碳对外源氮添加的响应及其机制. 植物生态学报, 2015, 39(10): 1012-1020. |
| [49] |
Fang Y, Xun F, Bai W M, et al. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS One, 2012, 7(10): e47369. |
| [50] |
Yang J Q, Diao H J, Hu S Y, et al. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 2021, 45(7): 780-789. |
| [51] |
杨建强, 刁华杰, 胡姝娅, 不同水平氮添加对盐渍化草地土壤微生物特征的影响. 植物生态学报, 2021, 45(7): 780-789. |
| [52] |
Zhao M Z. Desorption of phosphate on some soils and clay minera. Acta Pedologica Sinica, 1988, 25(2): 156-163. |
| [53] |
赵美芝. 几种土壤和粘土矿物上磷的解吸. 土壤学报, 1988, 25(2): 156-163. |
| [54] |
Ma Y J, Xu F L, Wang W L, et al. Increase of soil nutrients and enzymatic activity by adding nitrogen and phosphorus to Larix principis-rupprechtii plantation. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 664-674. |
| [55] |
马亚娟, 徐福利, 王渭玲, 氮磷提高华北落叶松人工林地土壤养分和酶活性的作用. 植物营养与肥料学报, 2015, 21(3): 664-674. |
| [56] |
Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008,11: 1252-1264. |
| [57] |
Ma W J, Li J, Gao Y, et al. Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem. Science of the Total Environment, 2020, 703: 134691. |
| [58] |
Claudia M B, Ed K H, Karolien D, et al. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biology and Biochemistry, 2016, 92: 211-220. |
| [59] |
Chang E H, Chung R S, Trai Y H, et al. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition, 2007, 53(2): 132-140. |
| [60] |
Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522. |
| [61] |
鲁显楷, 莫江明, 张炜, 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 2019, 27(5): 500-522. |
| [62] |
Zhang X B, Zhang Z H, Lu X K. Responses of soil microbial carbon use efficiency to elevated nitrogen deposition in forest ecosystem. Advances in Earth Science, 2023, 38(10): 999-1014. |
| [63] |
张雪冰, 张泽和, 鲁显楷. 森林生态系统土壤微生物碳利用效率对氮沉降增加的响应及其机制. 地球科学进展, 2023, 38(10): 999-1014. |
| [64] |
Liu J B, Kathleen M R, Chen J H, et al. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Climate Change, 2017, 7(3): 190-194. |
| [65] |
Zak D R, Holmes W, Burton A J, et al. Simulated atmospheric NO3 - deposition increases soil organic matter by slowing decomposition. Ecological Applications, 2008, 18(8): 2016-2027. |
| [66] |
Wu J P, Wang S M, Cai M T, et al. Review on carbon use efficiency of plants and microbes and its influencing factors. Acta Ecologica Sinica, 2019, 39(20): 7771-7779. |
| [67] |
吴建平, 王思敏, 蔡慕天, 植物与微生物碳利用效率及影响因子研究进展. 生态学报, 2019, 39(20): 7771-7779. |
| [68] |
Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
| [69] |
Keiblinger K M, Hall E K, Wanek W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 2010, 73(3): 430-440. |
| [70] |
Li J, Sang C P, Yang J Y, et al. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry, 2021, 156(1): 108207. |
| [71] |
Sun X Q, Dai H, Zeng Q X, et al. The influence of soil microbial community structure on microbial carbon use efficiency under nitrogen addition. Acta Ecologica Sinica, 2024, 44(4): 1737-1746. |
| [72] |
孙雪琦, 戴辉, 曾泉鑫, 氮添加土壤微生物群落结构影响微生物碳利用效率. 生态学报, 2024, 44(4): 1737-1746. |
陕西省自然科学基础研究计划项目(2024JC-YBMS-224)
延安市科技计划项目(2023-CYL-120)
榆林市科技计划项目(2023-CXY-212)
国家级大学生创新创业训练计划项目(202310719001)
/
| 〈 |
|
〉 |