豌豆蚜组织蛋白酶K基因(ApCtsk1)的鉴定及功能研究
马瑞 , 吴宜亭 , 李岩 , 于展姿 , 刘磊 , 王森山
草业学报 ›› 2025, Vol. 34 ›› Issue (02) : 174 -183.
豌豆蚜组织蛋白酶K基因(ApCtsk1)的鉴定及功能研究
Identification and functional analysis of ApCtsk1 encoding cathepsin K in Acyrthosiphon pisum
为探究豌豆蚜ApCtsk1基因的生理功能,评估其作为豌豆蚜防治靶标的潜力,从而为防控策略的制定提供理论依据。本研究以豌豆蚜为对象,利用NCBI、ExPASy Proteomics Server、MEGA 11等在线网站和软件分析ApCtsk1的氨基酸序列特征并构建系统发育树;采用RT-qPCR技术解析其在不同发育阶段、不同组织的表达模式;通过RNAi研究ApCtsk1在豌豆蚜个体发育和繁殖中的生物学功能。结果表明:豌豆蚜ApCtsk1与半翅目蚜科昆虫的半胱氨酸蛋白酶聚为一支,其在4龄若蚜期显著高表达,并在成虫腹部、卵巢、表皮表达量较高。RNAi干扰3龄若蚜的ApCtsk1后,与对照组相比,豌豆蚜死亡率升高至22.22%,体长体宽分别减小12.56%、13.22%,体色异常,行动缓慢。此外,经dsApCtsk1处理的蚜虫出现蜕皮失败的致死现象,且干扰后豌豆蚜繁殖力也受到影响,表现为产蚜时间的推迟和一段时间产蚜量的降低。由此可见,ApCtsk1在豌豆蚜个体发育、存活和繁殖过程中具有重要的作用。
The aim of this research was to explore the function of ApCtsk1 in pea aphid (Acyrthosiphon pisum) and evaluate its potential as a target for the prevention and control of this pest. The amino acid sequence characteristics of the putative ApCtsk1 protein were analyzed using tools at various websites (NCBI, ExPASy Proteomics Server) and a phylogenetic tree was constructed using MEGA 11. The transcript levels of its encoding gene were determined in aphids at different stages of development and in different tissues by RT-qPCR analysis. The biological function of ApCtsk1 in the development and reproduction of A. pisum was investigated using an RNA interference gene knock-down strategy. In the phylogenetic analysis, ApCtsk1 was clustered with cysteine proteases from other members of the Aphididae in the Hemiptera. High transcript levels of ApCtsk1 were detected in fourth instar nymphs, and in the abdomen, ovary, and cuticle of adult aphids. Compared with A. pisum in the control group, those in the ApCtsk1-knockdown group showed an increased mortality rate (22.22% higher), decreased body length and body width (decreased by 12.56% and 13.22%, respectively), abnormal body color, and slower movement. In addition, the aphids with knocked-down ApCtsk1 showed the lethal phenomenon of molting failure, which affected their fecundity. These changes resulted in delayed reproduction and decreased reproduction over time. Our findings show that ApCtsk1 plays an important role in the development, survival, and reproduction of A. pisum.
Acyrthosiphon pisum / cathepsin K / fecundity / RNAi
| [1] |
Mort J S, Buttle D J. Cathepsin B. The International Journal of Biochemistry & Cell Biology, 1997, 29(5): 715-720. |
| [2] |
Barros N M T, Puzer L, Tersariol I L, et al. Plasma prekallikrein/kallikrein processing by lysosomal cysteine proteases. Biological Chemistry, 2004, 385(11): 1087-1091. |
| [3] |
Lang T, Willinger U, Holzer G, et al. Soluble cathepsin-L: A marker of bone resorption and bone density. Journal of Laboratory and Clinical Medicine, 2004, 144(3): 163-166. |
| [4] |
Lu S Y, Ren H L, Liu Z S, et al. The progress of study on the cathepsin B. Journal of Hebei Normal University (Natural Science Edition), 2004, 28(3): 306-309. |
| [5] |
卢士英, 任洪林, 柳增善, 组织蛋白酶B研究进展. 河北师范大学学报(自然科学版), 2004, 28(3): 306-309. |
| [6] |
Chen L, Zhang M, Sun L, et al. Identification and expressional analysis of two cathepsins from half-smooth tongue sole (Cynoglossus semilaevis). Fish & Shellfish Immunology, 2011, 31(6): 1270-1277. |
| [7] |
Pan G Z. Identification and functional analysis of Cathepsin L in silkworm (Bombyx mori). Chongqing: Southwest University, 2018. |
| [8] |
潘光照. 家蚕Cathepsin L的鉴定及功能初探. 重庆: 西南大学, 2018. |
| [9] |
Dalton J P, Neill S O, Stack C, et al. Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. International Journal for Parasitology, 2003, 33(11): 1173-1181. |
| [10] |
Liu J, Shi G P, Zhang W Q, et al. Cathepsin L function in insect moulting: molecular cloning and functional analysis in cotton bollworm, Helicoverpa armigera.Insect Molecular Biology, 2006, 15(6): 823-834. |
| [11] |
Wang L F, Chai L Q, He H J, et al. A cathepsin L-like proteinase is involved in moulting and metamorphosis in Helicoverpa armigera. Insect Molecular Biology, 2010, 19(1): 99-111. |
| [12] |
Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2012, 1824(1): 68-88. |
| [13] |
Patil A D, Freyer A J, Carte B, et al. Haploscleridamine, a novel tryptamine-derived alkaloid from a sponge of the order Haplosclerida: an inhibitor of cathepsin K. Journal of Natural Products, 2002, 65(4): 628-629. |
| [14] |
Lecaille F, Kaleta J, Brömme D, et al. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chemical Reviews, 2002, 102(12): 4459-4488. |
| [15] |
He W T, Liu K, Sun J X, et al. Research advance of cathepsin K and the treatment of osteoporosis. Chinese Journal of Osteoporosis, 2008, 14(9): 670-673. |
| [16] |
何伟涛, 刘康, 孙金谞, 组织蛋白酶K与骨质疏松症治疗的研究进展. 中国骨质疏松杂志, 2008, 14(9): 670-673. |
| [17] |
Costa A G, Cusano N E, Silva B C, et al. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nature Reviews Rheumatology, 2011, 7(8): 447-456. |
| [18] |
Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biological Chemistry, 2013, 394(9): 1163-1179. |
| [19] |
Tesfaye A, Wale M, Azerefegne F, et al. Acyrthosiphon pisum(Harris) (Homoptera: Aphididae) feeding preference and performance on cool-season food legumes in northwestern Ethiopia. International Journal of Pest Management, 2013, 59(4): 319-328. |
| [20] |
Soleimani S, Madadi H. Seasonal dynamics of: the pea aphid, Acyrthosiphon pisum (Harris), its natural enemies the seven spotted lady beetle Coccinella septempunctata Linnaeus and variegated lady beetle Hippodamia variegata Goeze, and their parasitoid Dinocampus coccinellae (Schrank). Journal of Plant Protection Research, 2015, 55(4): 421-428. |
| [21] |
Aznar Fernández T, Cimmino A, Masi M, et al. Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid (Acyrthosiphon pisum) as potential biocontrol strategy.Natural Product Research, 2018, 33(17): 2471-2479. |
| [22] |
Srinivasan D G, Abdelhady A, Stern D L, et al. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis. PLoS One, 2014, 9(12): e115099. |
| [23] |
Paudel S, Bechinski E J, Stokes B S, et al. Deriving economic models for pea aphid (Hemiptera: Aphididae) as a direct-pest and a virus-vector on commercial lentils. Journal of Economic Entomology, 2018, 111(5): 2225-2232. |
| [24] |
Rashed A, Feng X, Sean M, et al. Vector-borne viruses of pulse crops, with a particular emphasis on north American cropping system. Annals of the Entomological Society of America, 2018, 111(4): 205-227. |
| [25] |
Wang D, Deng J, Pei Y F, et al. Identification and virulence characterization of entomopathogenic fungus Lecanicillium attenuatum against the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Applied Entomology and Zoology, 2017, 52(3): 511-518. |
| [26] |
Lu W N, Kuo M H. Life table and heat tolerance of Acyrthosiphon pisum (Hemiptera: Aphididae) in subtropical Taiwan. Entomological Science, 2008, 11(3): 273-279. |
| [27] |
Bhatnagar A. Efficacy and economics of some insecticides and a neem formulation on incidence of pea aphid (Acrythosiphum pisum) on pea, Pisum sativum. Annals of Plant Protection Sciences, 1996, 4(2): 131-133. |
| [28] |
Saikhedkar N, Summanwar A,JoshiR, et al. Cathepsins of Lepidopteran insects: Aspects and prospects. Insect Biochemistry and Molecular Biology, 2015, 64(2015): 51-59. |
| [29] |
Cheng X A, Lin X W, Jiang X H, et al. cDNA cloning, prokaryotic expression and polyclonal antibody preparation of cathepsin L in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 2018, 61(4): 410-422. |
| [30] |
程杏安, 林贤伟, 蒋旭红, 草地贪夜蛾组织蛋白酶L的基因克隆、原核表达及多克隆抗体制备. 昆虫学报, 2018, 61(4): 410-422. |
| [31] |
Yang K M, Bae E, Ahn S G, et al. Co-chaperone BAG2 determines the pro-oncogenic role of cathepsin B in triple-negative breast cancer cells. Cell Reports, 2017, 21(10): 2952-2964. |
| [32] |
Pym A, Singh K S, Nordgren Å, et al. Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genomics, 2019, 20(1): 996. |
| [33] |
Pyati P, Bandani A R, Fitches E, et al. Protein digestion in cereal aphids (Sitobion avenae) as a target for plant defence by endogenous proteinase inhibitors. Journal of Insect Physiology, 2011, 57(7): 881-891. |
| [34] |
Cristofoletti P T, Ribeiro A F, Deraison C, et al. Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. Journal of Insect Physiology, 2003, 49(1): 11-24. |
| [35] |
Ramsey J S, Wilson A C C, de Vos M, et al. Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics, 2007, 8(1): 423-450. |
| [36] |
Deraison C, Darboux I, Duportets L, et al. Cloning and characterization of a gut-specific cathepsin L from the aphid Aphis gossypii. Insect Molecular Biology, 2004, 13(2): 165-177. |
| [37] |
Sapountzis P, Duport G, Balmand S, et al. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments.Insect Biochemistry and Molecular Biology, 2014, 51(2014): 20-32. |
| [38] |
Mathers T C, Chen Y, Kaithakottil G, et al. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biology, 2017, 18(1): 27-47. |
| [39] |
Waterhouse A, Bertoni M. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46(W1): W296-W303. |
| [40] |
Nikmanesh A, Esmailizadeh A. Comparison of genetic diversity and phylogenetic structure of BRCA1 gene of some domestic and wild sheep breeds in different countries. Animal Biotechnology, 2023, 34(9): 4746-4759. |
| [41] |
Rio D C, Ares M. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010, 2010(6): 5439-5442. |
| [42] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408. |
| [43] |
Liu J. Physiology function analysis of lysosomal cysteine proteases. Hefei: University of Science and Technology of China, 2006. |
| [44] |
刘健. 溶酶体半胱氨酸蛋白酶生理功能的研究. 合肥: 中国科学技术大学, 2006. |
| [45] |
Cai X Y, Yu J, Yu H Y, et al. Core promoter regulates the expression of cathepsin B gene in the fat body of Bombyx mori. Gene, 2014, 542(2): 232-239. |
| [46] |
Guo S Y, Wu W M, Li S Y, et al. 20-hydroxyecdysone-upregulated proteases involved in Bombyx larval fat body destruction.Insect Molecular Biology, 2018, 27(6): 724-738. |
| [47] |
Liao J Y. The mechanism of cathepsin affects the transmission of tomato chlorosis virus by Q Bemisia tabaci. Changsha: Hunan University, 2020. |
| [48] |
廖锦钰. 组织蛋白酶影响Q烟粉虱传播番茄褪绿病毒的机制. 长沙: 湖南大学, 2020. |
| [49] |
Liu W J, Zhang X L, Gao X K, et al. Clone and expression analysis of five cathepsin B genes in different host-specific types of Aphis gossypii Glover. Journal of Environmental Entomology, 2022, 44(4): 946-955. |
| [50] |
刘伟娇, 张肖丽, 高雪珂, 5个棉蚜组织蛋白酶B基因克隆及在不同寄主专化型中的表达分析. 环境昆虫学报, 2022, 44(4): 946-955. |
| [51] |
Martynov A G, Elpidina E N, Perkin L, et al. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum. BMC Genomics, 2015, 16(1): 75. |
| [52] |
Zhao X, Wang J, Yagi N, et al. Occurrence of a cathepsin B-like acid cysteine proteinase in the eggs of silkworm moth, Antheraea pernyi. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 1996, 113(1): 95-103. |
| [53] |
Kang T, Jin R, Zhang Y, et al. Functional characterization of the aspartic proteinase cathepsin D in the beet armyworm (Spodoptera exigua). Gene, 2017, 617: 1-7. |
| [54] |
Liu J P. The response of Aphis gossypii and Acyrthosiphon gossypii from Xinjiang cotton-growing region to heat stress and its molecular mechanism. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
| [55] |
刘金萍. 新疆棉区棉蚜和棉长管蚜对高温胁迫的响应及分子机制. 北京: 中国农业科学院, 2021. |
| [56] |
Wei L T. Expression characteristics and RNAi effect analysis of four cysteine protease genes TccatB25, TccatL11, TccatL13 and TcPigk in Tribolium castaneum. Nanjing: Nanjing Normal University, 2019. |
| [57] |
魏璐婷. 赤拟谷盗四个半胱氨酸蛋白酶基因TccatB25、TccatL11、TccatL13和TcPigk的表达特性与RNAi效应分析. 南京: 南京师范大学, 2019. |
| [58] |
Rauf I, Asif M, Amin I, et al. Silencing cathepsin L expression reduces Myzus persicae protein content and the nutritional value as prey for Coccinella septempunctata. Insect Molecular Biology, 2019, 28(6): 785-797. |
| [59] |
Carnevali O, Cionna C, Tosti L, et al. Role of cathepsins in ovarian follicle growth and maturation. General and Comparative Endocrinology, 2006, 146(3): 195-203. |
甘肃省种业攻关计划项目(GYGG-2024-7)
甘肃省自然科学基金项目(20JR5RA028)
甘肃省高等学校创新基金项目(2022A-060)
甘肃农业大学公招博士科研启动项目(GAN-KYQD-2019-28)
/
| 〈 |
|
〉 |