甘南野生天蓝苜蓿高效共生、抗逆根瘤菌筛选鉴定
李雪梅 , 姚拓 , 李昌宁 , 杨晓蕾 , 王晚霞 , 张怡忻
草业学报 ›› 2025, Vol. 34 ›› Issue (03) : 134 -143.
甘南野生天蓝苜蓿高效共生、抗逆根瘤菌筛选鉴定
Screening and identification of symbiotically efficient and stress-resistant rhizobia of wild Medicago lupulina in Gannan
为进一步挖掘高寒草地野生天蓝苜蓿根瘤菌资源,筛选与宿主植物高效共生的菌株。本研究利用YMA刚果红培养基从野生天蓝苜蓿中分离根瘤菌,通过菌落形态观察、产酸产碱反应结合16S rRNA基因序列分析进行菌株鉴定,原宿主回接验证其促生特性,离体耐酸、耐碱及温度耐受性测定菌株抗逆能力。结果表明:从野生天蓝苜蓿中分离得到4株菌株,菌落形态和产酸产碱结果符合根瘤菌特性,经鉴定菌株GNT1和GNT6为苜蓿中华根瘤菌,菌株GNT2为吉氏副根瘤菌,菌株GNT4为豆根副根瘤菌。4株根瘤菌回接后植株单株结瘤数、株高、根长及植株干重分别是不接种处理的2.06~3.64倍、0.75~3.17倍、0.21~0.38倍和0.55~2.82倍,有效结瘤数和固氮酶活性分别为11.33~18.00个、5.71~10.97 μmol C2H4·g-1·h-1,不接种处理下根瘤为无效根瘤且不具有固氮酶活性。4株菌株均能在pH为11时生长,以菌株GNT2生长最佳;不同菌株对NaCl耐受能力不同,其中菌株GNT6耐受5% NaCl,且仅菌株GNT6在4 ℃低温下能够生长,具有在高寒草地应用的潜力。因此,筛选出的苜蓿中华根瘤菌GNT6可作为候选菌株为高寒草地的修复提供优良菌株资源。
This research investigated the rhizobacterial resources of wild Medicago lupulina in alpine meadows, by screening for strains exhibiting efficient symbiosis with host plants. YMA Congo red medium was used to isolate rhizobacteria from wild M. lupulina, and strain identification was carried out through colony morphology observation and assessment of acid and alkali production, combined with 16S rRNA gene sequence analysis. Growth-promoting properties were verified by back-inoculation to the original host, and strain resilience was determined by evaluating in vitro acid, alkali and temperature tolerance. Four strains of interest were isolated from wild M. lupulina in this way, designated GNT1, GNT2, GNT4 and GNT6, and the colony morphology and acid and alkali production results were consistent with the characteristics of rhizobia. Strains GNT1 and GNT6 were identified as Sinorhizobium meliloti, GNT2 as Pararhizobium giardinii, and GNT4 as Pararhizobium herbae. Compared with a no-inoculation treatment, rhizobium inoculation increased the number of plant nodules by 2.06-3.64 times, the plant height by 0.75-3.17 times, the root length by 0.21-0.38 times and the plant dry weight by 0.55-2.82 times. The effective nodule number and nitrogenase activity under inoculation treatments were 11.33-18.00 nodules per plant and 5.71-10.97 μmol C2H4·g-1·h-1, respectively. The nodules under the non-inoculation treatment were ineffective nodules and did not have nitrogenase activity. The four strains could grow at pH 11, and the strain GNT2 grew best. The strains differed in their tolerance to NaCl. Strain GNT6 could tolerate 5% NaCl, and only strain GNT6 could grow at the low temperature of 4 ℃. Hence, strain GNT6 was determined to have potential to be applied in alpine grassland, and is identified in this research as a candidate strain to provide improved rhizobial strain resources for the restoration of alpine grassland.
Medicago lupulina / rhizobium / strain resilience / efficient symbiosis
| [1] |
Zhang C J, Wang X Y, Yao B H, et al. Diet composition and trophic niche characteristics of three rodents in Gannan meadow. Acta Agrestia Sinica, 2021, 29(7): 1484-1490. |
| [2] |
张彩军, 王小燕, 姚宝辉, 甘南草原3种啮齿动物的食性及其营养生态位特征. 草地学报, 2021, 29(7): 1484-1490. |
| [3] |
Guo W W, Jin L, Li W, et al. Assessing the vulnerability of grasslands in Gannan of China under the dual effects of climate change and human activities. Ecological Indicators, 2023, 148(3): 110100. |
| [4] |
Li Y C, Hou M J, Ge J, et al. NDVI changes and driving factors of grassland vegetation in Gannan prefecture and northwest Sichuan region. Acta Agrestia Sinica, 2020, 28(6): 1690-1701. |
| [5] |
李元春, 侯蒙京, 葛静, 甘南和川西北地区草地植被NDVI变化及其驱动因素研究. 草地学报, 2020, 28(6): 1690-1701. |
| [6] |
Hasi M, Zhang X Y, Niu G X, et al. Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 2021, 304(9): 108389. |
| [7] |
Gu S S, Zhou X L, Yu H, et al. Microbial and chemical fertilizers for restoring degraded alpine grassland. Biology and Fertility of Soils, 2023, 59(8): 911-926. |
| [8] |
Li X X, Xu R N, Liao H. Contributions of symbiotic nitrogen fixation in soybean to reducing fertilization while increasing efficiency in agriculture. Soybean Science, 2016, 35(4): 531-535. |
| [9] |
李欣欣, 许锐能, 廖红. 大豆共生固氮在农业减肥增效中的贡献及应用潜力. 大豆科学, 2016, 35(4): 531-535. |
| [10] |
Oleńska E, Małek W, Wójcik M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 2020, 743(46): 140682. |
| [11] |
Lagunas B, Richards L, Sergaki C, et al. Rhizobial nitrogen fixation efficiency shapes endosphere bacterial communities and Medicago truncatula host growth. Microbiome, 2023, 11(1): 146. |
| [12] |
Ji Z J, Yan H, Cui Q G, et al. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Systematic and Applied Microbiology, 2017, 40(2): 114-119. |
| [13] |
Zahran H H. Conditions for successful Rhizobium-legume symbiosis in saline environments. Biology and Fertility of Soils, 1991, 12(1): 73-80. |
| [14] |
Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis, 2019, 77(3): 191-205. |
| [15] |
Megu M, Paul A, Deb C R. Isolation and screening of stress tolerant and plant growth promoting root nodulating rhizobial bacteria from some wild legumes of Nagaland, India. South African Journal of Botany, 2024, 168(5): 260-269. |
| [16] |
Ren H L, Wei Z W, Chen X. Cross-species markers developed from genome sequencing in Medicago truncatula, Medicago lupulina and Medicago polymorpha. Acta Prataculturae Sinica, 2017, 26(4): 188-195. |
| [17] |
任海龙, 魏臻武, 陈祥. 蒺藜苜蓿、天蓝苜蓿、金花菜基因组SNP穿梭标记开发. 草业学报, 2017, 26(4): 188-195. |
| [18] |
Zeng Q F, Wei X D, Wei X, et al. Research on resource exploration, nitrogen fixation characteristics and diversity of rhizobia of Medicago lupulina in karst mountainous area of Guizhou. Acta Agrestia Sinica, 2022, 30(7): 1891-1899. |
| [19] |
曾庆飞, 韦兴迪, 韦鑫, 贵州岩溶山区野生天蓝苜蓿根瘤菌资源发掘、固氮特性及其多样性研究. 草地学报, 2022, 30(7): 1891-1899. |
| [20] |
Ma N. Phenotypic diversity and analysis of 16S rDNA RFLP on rhizobia isolated from leguminous plants in some mining areas of northwest China. Yangling: Northwest A&F University, 2010. |
| [21] |
马宁. 西北部分矿区豆科植物根瘤菌表型多样性及16S rDNA RFLP分析. 杨凌: 西北农林科技大学, 2010. |
| [22] |
Feng C S. Phylogeny of rhizobium isolated from Medicago lupulina in northwest of China. Yangling: Northwest A&F University, 2008. |
| [23] |
冯春生. 西北地区天蓝苜蓿根瘤菌系统发育研究. 杨凌: 西北农林科技大学, 2008. |
| [24] |
Li S L. Soil physicochemical properties of alpine grasslands under different desertification degrees in Maqu, Gansu, China. Journal of Desert Research, 2022, 42(6): 44-52. |
| [25] |
李世龙. 青藏高原东缘玛曲沙化高寒草地土壤理化性质. 中国沙漠, 2022, 42(6): 44-52. |
| [26] |
Lan X J. Screening and evaluation of PGPR resources from 6 Gansu native grass and research on growth promoting mechanism. Lanzhou: Gansu Agricultural University, 2022. |
| [27] |
兰晓君. 六种甘肃乡土草根际促生菌资源筛选、评价及促生机理研究. 兰州: 甘肃农业大学, 2022. |
| [28] |
Raghupathy S, Arunachalam S. Trends in legume-rhizobia symbiosis in remediation of mercury-contaminated agricultural soils. Communications in Soil Science and Plant Analysis, 2024, 55(6): 916-930. |
| [29] |
Yan W. The screening and application research of plant growth promoting rhizobacteria of alfalfa in the salinized area of Tumochuan plain. Hohhot: Inner Mongolia Agricultural University, 2023. |
| [30] |
闫伟. 土默川平原盐碱化区域苜蓿根际促生菌的筛选及应用研究. 呼和浩特: 内蒙古农业大学, 2023. |
| [31] |
Wei X D. Investigation and floristic analysis of rhizobial resources of natural leguminous grass in Guizhou Province. Guiyang: Guizhou University, 2019. |
| [32] |
韦兴迪. 贵州天然豆科牧草根瘤菌资源调查与区系分析. 贵阳: 贵州大学, 2019. |
| [33] |
Wang L, Cao Y, Wang E T, et al. Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Systematic and Applied Microbiology, 2016, 39(3): 211-219. |
| [34] |
Gan Y N. Screening of PGPR strains of typical leguminous on alpine grassland and construction of synthetic microbial communities. Lanzhou: Lanzhou University, 2024. |
| [35] |
甘雅楠. 高寒草地典型豆科植物PGPR菌株筛选及合成菌群的构建. 兰州: 兰州大学, 2024. |
| [36] |
Wang X C, Ma X T, Han M, et al. Screening of rhizobia of common vetch (Vicia sativa) in Qinghai, and assessment of symbiont salt tolerance. Acta Prataculturae Sinica, 2016, 25(8): 145-153. |
| [37] |
王雪翠, 马晓彤, 韩梅, 青海箭筈豌豆根瘤菌的筛选及其共生体耐盐性研究. 草业学报, 2016, 25(8): 145-153. |
| [38] |
Li Y M, Zhong Y Z, Tan Y, et al. Diversity of rhizobia nodulating Astragalus sinicus, Medicago sativa and Trifolium repens in nodulated soybean rhizosphere soil in Sichuan. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 234-241. |
| [39] |
李艳梅, 钟宇舟, 谭渊, 四川地区结瘤大豆根际土壤中紫云英、苜蓿和三叶草根瘤菌的多样性分析. 应用与环境生物学报, 2015, 21(2): 234-241. |
| [40] |
Chen D M, Zeng Z H, Sui X H, et al. Screening of high efficient symbiontic rhizobium on alfalfa. Pratacultural Science, 2002, 19(6): 27-31. |
| [41] |
陈丹明, 曾昭海, 隋新华, 紫花苜蓿高效共生根瘤菌的筛选. 草业科学, 2002, 19(6): 27-31. |
| [42] |
He L, Shi S L, Kang W J, et al. Location and sterilization of endogenous rhizobia in alfalfa seeds. Acta Agrestia Sinica, 2022, 30(11): 2892-2898. |
| [43] |
何龙, 师尚礼, 康文娟, 紫花苜蓿种子内生根瘤菌定位及灭菌方法研究. 草地学报, 2022, 30(11): 2892-2898. |
| [44] |
Kumar P S, Rangasamy G, Gayathri K V, et al. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environmental Research, 2023, 220(5): 115200. |
| [45] |
Chang D N, Ma X T, Zhou G P, et al. Symbiotic compatibility of different rhizobia strains with important Chinese milk vetch(Astragalus sinicus) cultivars. Acta Prataculturae Sinica, 2022, 31(12): 171-180. |
| [46] |
常单娜, 马晓彤, 周国朋, 不同根瘤菌与紫云英主栽品种的共生匹配性. 草业学报, 2022, 31(12): 171-180. |
| [47] |
Buckel W, Thauer R K. Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chemical Reviews, 2018, 118(7): 3862-3886. |
| [48] |
Zhang W H, Hou L Y, Yang J, et al. Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 2018, 63(17): 1651-1663. |
| [49] |
张文浩, 侯龙鱼, 杨杰, 高寒地区苜蓿人工草地建植技术. 科学通报, 2018, 63(17): 1651-1663. |
| [50] |
D’ Amours E, Bertrand A, Cloutier J, et al. Selection of effective and competitive Sinorhizobium meliloti strains that nodulate alfalfa under low temperature. Rhizosphere, 2024, 29(1): 100860. |
| [51] |
Li S S, Zhang Z Q, Wang Y F, et al. Effect of symbiotic rhizobium in alfalfa on physiological change under cold stress. Acta Agrestia Sinica, 2016, 24(2): 377-383. |
| [52] |
李莎莎, 张志强, 王亚芳, 根瘤菌共生对低温胁迫下紫花苜蓿抗寒生理变化的影响. 草地学报, 2016, 24(2): 377-383. |
| [53] |
Chen L Y, Zhang H L, Zhou Z Y. Technical detection of RAPD molecule maker and saline alkali tolerance experiments on rhizobia. Agricultural Research in the Arid Areas, 2010, 28(6): 212-216. |
| [54] |
陈利云, 张海林, 周志宇. 根瘤菌的RAPD分子标记技术检测和耐盐碱筛选. 干旱地区农业研究, 2010, 28(6): 212-216. |
| [55] |
Song T T, Sun N, Dong L, et al. Enhanced alkali tolerance of rhizobia-inoculated alfalfa correlates with altered proteins and metabolic processes as well as decreased oxidative damage. Plant Physiology and Biochemistry, 2021, 159(2): 301-311. |
| [56] |
Dai J X, Wang Y J, Guo J J, et al. Analysis of stress resistance and phylogenesis of rhizobia isolated from Caragsana spp.. Agricultural Research in the Arid Areas, 2011, 29(4): 223-227. |
| [57] |
代金霞, 王玉炯, 郭晶静, 荒漠植物柠条根瘤菌的抗逆性及其系统发育分析. 干旱地区农业研究, 2011, 29(4): 223-227. |
| [58] |
Kang W J, Shi S L, Wang Z Y, et al. Analysis of functional differences among three Medicago sativa endophytic rhizobial strains. Pratacultural Science, 2018, 35(7): 1614-1623. |
| [59] |
康文娟, 师尚礼, 王泽一, 3株紫花苜蓿内生根瘤菌功能差异性分析. 草业科学, 2018, 35(7): 1614-1623. |
甘肃省林业和草原局高寒退化草地植被恢复与土壤改良菌剂研发与示范项目(GSAU-TSYF-2021-011)
国家牧草产业体系金昌综合试验站(CARS-34)
/
| 〈 |
|
〉 |