4株红砂根际固氮菌分离鉴定及对幼苗促生作用的研究
Isolation and identification of four strains of Reaumuria soongorica root zone nitrogen fixing bacteria and their role in seedling growth promotion
为了获得荒漠植物根际土壤中的优良固氮菌,探究其对红砂幼苗氮代谢的影响,验证固氮菌的促生效果。本研究采用稀释涂布平板法,利用Ashby固体培养基从红砂根际土中分离得到4株固氮菌,通过形态学、生理生化特征以及16S rDNA序列分析鉴定菌株的分类地位及促生特性。结果表明,菌株Y3与Y2为芽孢杆菌,菌株P4为桑树肠杆菌,菌株N12为阴沟肠杆菌;4株固氮菌均能提高红砂幼苗叶和根中硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)活性;接种菌株后红砂幼苗根长、叶片相对含水量、地上部和地下部鲜重间均有差异(P<0.05);其中,固氮菌P4促生效果最为显著,接种P4菌株后叶和根中NR活性分别提高了31.99%、34.63%(P<0.05),GOGAT活性分别提高了25.63%、25.08%(P<0.05),GS活性分别提高了23.31%、24.30%(P<0.05),且根长、叶片相对含水量、地上部和地下部鲜重分别增加27.99%、20.75%、33.34%、33.25%(P<0.05)。综上,4株固氮菌可促进红砂幼苗的生长发育,提高其成活率,同时也为研发微生物菌剂提供了优质菌种资源。
The aim of this research was to isolate nitrogen fixing bacteria in the root zone soil of desert plants, investigate their effects on nitrogen metabolism of Reaumuria soongorica seedlings, and verify the growth-promoting effect of the isolated nitrogen fixing bacteria. In this study, four strains of nitrogen fixing bacteria were isolated from the root zone soil of R. soongorica by the dilution-coated plate method, using Ashby’s solid medium. The taxonomic status and growth-promoting characteristics of the strains were identified by morphological, physiological and biochemical characteristics as well as by 16S rDNA sequence analysis. The results showed that strains designated Y3 and Y2 were Bacillus sp., strain P4 was Enterobacter mori, and strain N12 was Enterobacter cloacae. Inoculation with the four strains of nitrogen fixing bacteria increased the activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthetase (GOGAT) in the leaves and roots of the R. soongorica seedlings. There were also differences in the root length and relative water content of leaves, and above-ground and below-ground fresh weight of R. soongorica seedlings after inoculation with the isolated bacterial strains (P<0.05); among them, the nitrogen fixing bacterium P4 had the most significant growth-promoting effect, with the NR activity in leaves and roots increased by 31.9% and 34.6%, respectively (P<0.05), the GOGAT activity by 25.6% and 25.1%, respectively (P<0.05), and the GS activity by 23.3% and 24.3%, respectively (P<0.05). Furthermore, root length, leaf relative water content, above-ground and below-ground fresh weight were increased (P<0.05), respectively, by 27.9%, 20.7%, 33.3% and 33.2%. In conclusion, the four strains of nitrogen fixing bacteria exhibited ability to promote the growth and development of R. soongorica seedlings and improve their survival rate. The isolated strains represent high-quality resources for the development of microbial plant growth promoting agents.
nitrogen fixing bacteria / bacterial isolation and identification / plant-growth-promoting / nitrogen metabolism / Reaumuria soongorica
| [1] |
Dechorgnat J, Francis K L, Dhugga K S, et al. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. BMC Plant Biology, 2019, 19(1): 206. |
| [2] |
Ma S J. Summary of biological effects involved in nitrogen cycling. Biology Teaching, 2021, 46(8): 67-68. |
| [3] |
马士杰. 参与氮循环的生物作用总结. 生物学教学, 2021, 46(8): 67-68. |
| [4] |
Zhang L, Yuan L, Huang J G. Mobilization of potassium in soils by azotobacter. Acta Pedologica Sinica, 2015, 52(2): 399-405. |
| [5] |
张亮, 袁玲, 黄建国. 自生固氮菌对土壤钾的活化作用. 土壤学报, 2015, 52(2): 399-405. |
| [6] |
Wang J C, Lv C Q, Qin L H, et al. Effect of inoculating nitrogen fixation bacteria on afforestation experiment for two Eucalyptus clones. Journal of Central South University of Forestry and Technology, 2010, 30(12): 50-55, 87. |
| [7] |
王劲松, 吕成群, 覃林海, 两个桉树无性系接种固氮菌造林试验效果初探. 中南林业科技大学学报, 2010, 30(12): 50-55, 87. |
| [8] |
Huang B L, Lv C Q, Qin W M, et al. Forestation experiment on Acacia crassicarpa seedlings inoculated with nodule bacteria. Journal of Southwest Forestry College, 2005, 25(4): 80-83. |
| [9] |
黄宝灵, 吕成群, 秦武明, 厚荚相思苗木接种根瘤菌的造林试验. 西南林业大学学报, 2005, 25(4): 80-83. |
| [10] |
Deng L, Li R, Liu J A, et al. Development of Cunninghamia lanceolata PGPR compound microbial fertilizer and its effect on the growth of Cunninghamia lanceolata seedling. Hubei Agricultural Sciences, 2014, 53(24): 5967-5969, 5974. |
| [11] |
邓雷, 李蓉, 刘君昂, 杉木根际促生菌复合肥研制及其对苗木生长的影响. 湖北农业科学, 2014, 53(24): 5967-5969, 5974. |
| [12] |
Han X Y, Li Z, Zhang L X, et al. Screening, identification and inoculation effect of azotobacter from the soils of tea garden. Journal of Tea Science, 2014, 34(5): 497-505. |
| [13] |
韩晓阳, 李智, 张丽霞, 茶园土壤高活性固氮菌的筛选鉴定及接种效果初步研究. 茶叶科学, 2014, 34(5): 497-505. |
| [14] |
Liu F C, Ma H L, Ma B Y, et al. Effect of plant growth-promoting rhizobacteria on photosynthetic characteristics in walnut seedlings under drought stress. Scientia Silvae Sinicae, 2015, 51(7): 84-90. |
| [15] |
刘方春, 马海林, 马丙尧, 干旱环境下接种根际促生细菌对核桃07苗光合特性的影响. 林业科学, 2015, 51(7): 84-90. |
| [16] |
Xiao K, Cui Y, Gao D Y, et al. Screening, identification of phosphate-solubilizing walnut root-promoting rhizobacteria and its promoting effect on walnut. Journal of Hebei Agricultural University, 2018, 41(5): 49-54. |
| [17] |
肖坤, 崔延, 高丹阳, 核桃根际解磷细菌的筛选及对核桃促生作用研究. 河北农业大学学报, 2018, 41(5): 49-54. |
| [18] |
Ma J, Shan L S, Wang S, et al. Studies on photosynthetic characteristics of C3 plant Reaumuria soongorica and C4 plant Salsola passerina in a mixed community under different precipitations. Acta Agrestia Sinica, 2019, 27(4): 921-927. |
| [19] |
马静, 单立山, 王珊, 不同降水量条件下C3植物红砂-C4植物珍珠混生光合特性研究. 草地学报, 2019, 27(4): 921-927. |
| [20] |
Li H S, Liu Z H, Bai J. Comparative study of soil organic matter content in Reaumuria soongorica distribution areas of desert plants. Gansu Science and Technology, 2007, 23(12): 237-238, 248. |
| [21] |
李怀省, 刘振恒, 白娟. 荒漠植物红砂分布区土壤有机质含量的比较研究. 甘肃科技, 2007, 23(12): 237-238, 248. |
| [22] |
Zhang H, Liu X, Yang X, et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in a typical halophyte, Reaumuria soongorica, during seed germination under salt stress. Plants, 2020, 9(3): 351. |
| [23] |
Sun Y Y, Chen J, Wang Y, et al. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance. Acta Agrestia Sinica, 2020, 28(5): 1203-1215. |
| [24] |
孙韵雅, 陈佳, 王悦, 根际促生菌促生机理及其增强植物抗逆性研究进展. 草地学报, 2020, 28(5): 1203-1215. |
| [25] |
Hyder S, Rizvi Z F, los Santos-Villalobos S, et al. Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. Journal of Plant Nutrition, 2023, 46(10): 1-30. |
| [26] |
Qin Y, Druzhinina I S, Pan X Y, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 2016, 34(7): 1245-1259. |
| [27] |
Rigi F, Saberi M, Ebrahimi M. Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria. Journal of Arid Land, 2023, 15(6): 740-755. |
| [28] |
Mao X, Sun B P, Zhang J F, et al. Effect of microbial fertilizer on soil amelioration in arid mining area. Journal of Soil and Water Conservation, 2019, 33(2): 201-206. |
| [29] |
毛骁, 孙保平, 张建锋, 微生物菌肥对干旱矿区土壤的改良效果. 水土保持学报, 2019, 33(2): 201-206. |
| [30] |
Wang Q Q, Feng L, Li Y, et al. Screening and identification of salt-tolerant promoting bacteria of the rhizosphere of Suaeda dentroides in Xinjiang. Microbiology China, 2019, 46(10): 2569-2578. |
| [31] |
王琦琦, 冯丽, 李杨, 新疆木碱蓬(Suaeda dendroides)根际耐盐促生细菌的筛选及鉴定. 微生物学通报, 2019, 46(10):2569-2578. |
| [32] |
Dong X Z, Cai M Y. Handbook of common bacterial system identification. Beijing: Science Press, 2001: 353-385. |
| [33] |
东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001: 353-385. |
| [34] |
Yun F, Liang L, Bao Y B, et al. Optimization of methods for genomic DNA extraction from bacteria. Anhui Agricultural Science, 2021, 49(10): 98-100. |
| [35] |
云飞, 梁林, 鲍彦彬, 革兰氏阳性与阴性细菌基因组DNA提取方法的优化. 安徽农业科学, 2021, 49(10): 98-100. |
| [36] |
Wang X G. Application of biology software in the nucleic acid sequence alignment and phylogenetic analysis. Modern Agricultural Technology, 2015(12): 347-348. |
| [37] |
王小国. 生物学软件在核酸序列比对与系统发育分析中的应用. 现代农业科技, 2015(12): 347-348. |
| [38] |
Kong R J, Chen Q, Zhao Y. Comparison of grid crossing method and WinRHIZO scanning method in determination of plant root length. Journal of Tianjin Normal University (Natural Science Edition), 2023, 43(4): 20-24. |
| [39] |
孔茹洁, 陈清, 赵英. 网格交叉法与WinRHIZO扫描法在植物根长测定中的比较. 天津师范大学学报(自然科学版), 2023, 43(4): 20-24. |
| [40] |
Yang Q F, Du Y H, Liu F. Effects of peanut rhizobia fertilizer on main agronomic characters and yield of peanut. Shandong Agricultural Science, 2014, 46(5): 93-95. |
| [41] |
杨庆锋, 杜迎辉, 刘峰. 根瘤菌肥对花生主要农艺性状及产量的影响. 山东农业科学, 2014, 46(5): 93-95. |
| [42] |
Zeng W D, Rexidai·Naijimiding, Bahaerguli·Aixirepu, et al. Experimental study on the control effect and yield increase of Shenhoe composite microbial fertilizer on tomato field Leedang. Modern Agricultural Science and Technology, 2016(11): 97. |
| [43] |
曾卫东, 热西代·乃吉米丁, 巴哈尔古力·艾西热莆, 神锄复合微生物菌肥对番茄田列当的防效及增产试验. 现代农业科技, 2016(11): 97. |
| [44] |
Zhang K, Yao T, Zhang D G, et al. Effects of associative nitrogen-fixing biofertilizer on growth of Hordeum vulgare in alpine region. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 708-713. |
| [45] |
张堃, 姚拓, 张德罡, 高寒地区联合固氮菌肥对青稞的促生效应研究. 植物营养与肥料学报, 2010, 16(3): 708-713. |
| [46] |
Wu Y G, Wang H X, Zhang Z, et al. The effect and promotion prospect of bio-organic fertilizer containing super-efficient nitrogen-fixing bacteria instead of chemical fertilizer. Rural Economy and Science-Technology, 2020, 31(20): 23-24. |
| [47] |
Jin H Y, Wang H, Zhang Y H, et al. Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil. Acta Microbiologica Sinica, 2021, 61(10): 3249-3263. |
| [48] |
靳海洋, 王慧, 张燕辉, 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用. 微生物学报, 2021, 61(10): 3249-3263. |
| [49] |
Meng C N, Zhao Y J, Chen J X, et al. Screening and identification of two strains of nitrogen-fixing bacteria from the silage maize rhizosphere and their roles in plant growth promotion. Acta Prataculturae Sinica, 2024, 33(3): 174-185. |
| [50] |
孟超楠, 赵玉洁, 陈佳欣, 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究. 草业学报, 2024, 33(3): 174-185. |
| [51] |
Wang H, Wu Y J, An T T, et al. Lateral root elongation enhances nitrogen-use efficiency in maize genotypes at the seedling stage. Journal of the Science of Food and Agriculture, 2022, 102(12): 5389-5398. |
| [52] |
Xu H C, Shang J, Liu M H, et al. Research progress of enzymes related to nitrogen metabolism. Anhui Agricultural Science, 2022, 50(4): 17-20. |
| [53] |
徐洪超, 商靖, 刘铭荟, 氮代谢相关酶的研究进展. 安徽农业科学, 2022, 50(4): 17-20. |
| [54] |
Fan H F, Guo S R, Du C X, et al. Effects of exogenous NO on NO3 --N, NH4 +-N and soluble protein contents and NR activities in cucumber seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2063-2068. |
| [55] |
樊怀福, 郭世荣, 杜长霞, 外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响. 西北植物学报, 2006, 26(10): 2063-2068. |
| [56] |
Dang W, Li Q, Ye G F, et al. Effect NRE2 element deletion of nitrate reductase gene promoter on nitrogen metabolism in tobacco. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 322-328. |
| [57] |
党伟, 李茜, 叶歌斐, 硝酸还原酶基因启动子NRE2元件缺失对烟草氮代谢的影响. 核农学报, 2022, 36(2): 322-328. |
| [58] |
Sun W J, Wu J Z, Li Y. Effect of rhizobia on nitrogen metabolism of alfalfa in response to cadmium. Journal of Agricultural Resources and Environment, 2024, 41(1): 222-229. |
| [59] |
孙文君, 吴基正, 李元. Cd胁迫下接种根瘤菌对紫花苜蓿氮代谢的影响. 农业资源与环境学报, 2024, 41(1): 222-229. |
| [60] |
Wang Z Q, Yuan Y Z, Ou J Q, et al. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Journal of Plant Physiology, 2007, 164(6): 695-701. |
| [61] |
Xu X P, Fu X D, Liao H. Advances in study of ammonium assimilation and its regulatory mechanisms in plants. Acta Botanica Boreali-Occidentalia Sinica, 2016, 51(2): 152-166. |
| [62] |
徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展. 植物学报, 2016, 51(2): 152-166. |
| [63] |
Ouyang X Q, Luo T, Yang L T, et al. Effects of sett-soaking with sugarcane endophytic diazotroph solution on N metabolism related enzymes activities at the early growth stage of sugarcane. Guangxi Agricultural Science, 2010, 41(5): 416-418. |
| [64] |
欧阳雪庆, 罗霆, 杨丽涛, 甘蔗内生固氮菌液浸种对甘蔗生长前期氮代谢相关酶活性的影响. 广西农业科学, 2010, 41(5): 416-418. |
| [65] |
Delaporte Q P, Lovaisa N C, Rapisarda V A, et al. The plant growth promoting bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production. Plant Growth Regulation, 2020, 91(2): 15. |
| [66] |
Qi X X, Wei C, Liu X D, et al. Effects of plant growth-promoting rhizobacteria added in seedling substrate on rice growth. Soils, 2020, 52(5): 1025-1032. |
| [67] |
戚秀秀, 魏畅, 刘晓丹, 根际促生菌应用于基质对水稻幼苗生长的影响. 土壤, 2020, 52(5): 1025-1032. |
国家自然基金:荒漠植物红砂根际促生细菌筛选及其抗逆性研究(32160407)
甘肃省重点研发项目:典型荒漠灌木根际微生物固碳及高效菌肥资源挖掘与利用(23YFFA0065)
草业生态系统教育部重点实验室开放课题:荒漠草原植物红砂耐盐促生菌的分离筛选、鉴定及其促生效果研究(KLGE202215)
/
| 〈 |
|
〉 |