施肥和补播对山地草甸牧草营养及瘤胃发酵的影响

郭楠 ,  杜鹉辰 ,  纪守坤 ,  刘建 ,  崔素倩 ,  袁辉 ,  韩旭 ,  刘计双 ,  高立杰

草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 150 -163.

PDF (8319KB)
草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 150 -163. DOI: 10.11686/cyxb2024174
研究论文

施肥和补播对山地草甸牧草营养及瘤胃发酵的影响

作者信息 +

Effects of different fertilization and reseeding rates on the nutrient content of forage in a mountain meadow and its rumen fermentation parameters

Author information +
文章历史 +
PDF (8518K)

摘要

为了探究施肥和补播量对退化山地草甸牧草的营养物质含量及瘤胃发酵参数的影响,筛选最适宜的老芒麦、扁穗冰草、垂穗披碱草和紫花苜蓿混播组合,设置4个施肥量(0、3.6、7.2和10.8 t·hm-2)和4个播种量(0、3.4、4.6和5.7 kg·hm-2),对4种混播草地:老芒麦+垂穗披碱草+紫花苜蓿(EEM)、老芒麦+扁穗冰草+紫花苜蓿(EAM)、扁穗冰草+垂穗披碱草+紫花苜蓿(AEM)和老芒麦+扁穗冰草+垂穗披碱草+紫花苜蓿(EAEM)的干物质产量、营养物质含量进行测定,并通过体外发酵研究施肥和补播量对混播牧草组合瘤胃发酵参数的影响。结果表明:与未施肥相比,施肥显著提高了各混播处理的干物质产量(DMY)和相对饲喂价值(RFV)(P<0.05),显著降低了各混播处理的中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量(P<0.05);在4.6 kg·hm-2的补播量处理下,补播显著提高了EEM混播处理的DMY和RFV(P<0.05),显著降低了EEM混播处理的NDF和ADF含量;EEM、EAM、AEM在4.6 kg·hm-2处理下,瘤胃液中氨态氮(NH3-N)和丙酸含量显著高于其他补播处理(P<0.05)。主成分分析结果显示,施肥和播种量分别为10.8 t·hm-2、5.7 kg·hm-2的EEM混播组合综合得分最高。响应面分析结果表明,AEM混播组合的预测产量最高,EEM次之,EEM混播组合的预测综合得分最高。基于产量和综合评价,在施肥和补播量分别为10.8 t·hm-2和5.7 kg·hm-2的老芒麦+垂穗披碱草+紫花苜蓿组合效果最好。

Abstract

The aim of this study was to investigate the effects of fertilization and seeding rates on the nutrient content and rumen fermentation parameters of mixed vegetation in a degraded mountain meadow. Combinations of Elymus sibiricusAgropyron cristatumElymus nutans, and Medicago sativa were sown at four seeding rates (0, 3.4, 4.6, and 5.7 kg·ha-1) and grown with four different fertilization treatments (0, 3.6, 7.2, and 10.8 t·ha-1). The dry matter yields and nutrient contents of four different grassland seed mixtures (EEM: E. sibiricus+E. nutans+M. sativa; EAM: E. sibiricus+A. cristatum+M. sativa; AEM: A. cristatum+E. nutans+M. sativa; EAEM: E. sibiricus+A. cristatum+E. nutans+M. sativa) were measured and their rumen fermentation parameters were studied by in vitro fermentation. The main results were as follows: Compared with no fertilization, fertilization had significant effects on dry matter yield (DMY), neutral detergent fiber (NDF), acid detergent fiber (ADF) content, and the relative feed value (RFV) of each mixed sowing treatment (P<0.05). Under the 4.6 kg·ha-1 seeding rate, the DMY, NDF, and ADF contents and RFV value of EEM were significantly different from their corresponding values in the other seeding rate treatments (P<0.05). The contents of ammonia nitrogen and propionate in rumen fluid of EEM, EAM, and AEM sown with a seeding rate of 4.6 kg·ha-1 were significantly different from their corresponding values in the other seeding rate treatments (P<0.05). In a principal component analysis, EEM with a fertilization rate of 10.8 t·ha-1 and a seeding rate of 5.7 kg·ha-1 had the highest comprehensive score. A response surface analysis showed that AEM had the highest predicted yield, followed by EEM, and EEM had the highest comprehensive score. Based on yield and the comprehensive score, E. sibiricus+E. nutans+M. sativa with a fertilization rate of 10.8 t·ha-1 and a seeding rate of 5.7 kg·ha-1 was identified in this study as the best option for replanting degraded mountain meadows.

Graphical abstract

关键词

施肥量 / 补播量 / 牧草品质 / 瘤胃发酵参数 / 主成分分析(PCA) / 响应面分析(RSM)

Key words

fertilizer application amount / sowing amount / forage quality / rumen fermentation parameters / principal component analysis (PCA) / response surface analysis (RSM)

引用本文

引用格式 ▾
郭楠,杜鹉辰,纪守坤,刘建,崔素倩,袁辉,韩旭,刘计双,高立杰. 施肥和补播对山地草甸牧草营养及瘤胃发酵的影响[J]. 草业学报, 2025, 34(04): 150-163 DOI:10.11686/cyxb2024174

登录浏览全文

4963

注册一个新账户 忘记密码

牧草是发展我国畜牧生产,特别是草食动物(如反刍动物)生产的基础1。牧草作为反刍动物粗纤维的重要来源,具有再生能力强,富含各种营养物质及微量元素的特点。牧草包括人工牧草和天然牧草,中国天然草原面积约占国土面积的40%,提供了巨大的生态和经济价值。近20年间,由于过度放牧、土壤侵蚀和自然气候变化等原因导致我国北方部分地区的草原退化程度日益加重2-3。草原退化主要表现为草原上的优良牧草种类减少、质量变差且产草量大幅下降4。因此,牧草品质的优劣直接影响到我国畜牧经济的发展,如何遏制草原退化、提高牧草营养价值成为当下草业工作者亟待解决的问题。
目前退化草地修复的措施有很多,例如施肥、补播和刈割。施肥是提高草原生产力和牧草品质的重要措施之一5。施肥促进了禾草的生长6,提高了高寒草甸草原牧草品质,增加了禾本科、莎草科和杂类草的粗蛋白含量,降低了各功能群的酸性洗涤纤维和中性洗涤纤维含量7。Zhang等8发现施用有机肥可提高退化草地的饲料产量和土壤养分含量,分别是未施肥的0.59和0.28倍。研究表明,人工补播对植物的多样性及促进生产力有益9,能够抑制杂草的生长,削弱杂草的竞争力10,提高草地植被盖度。补播豆科牧草和多年生禾草可以提高草地生产力、牧草品质及群落稳定性11。但补播面临的难题之一就是补播种难以在退化草地中存活12,因此补播物种选择是补播成功与否的关键。在退化草原补播单一的禾本科植物可以快速建植缓解退化,但是恢复后的生态系统稳定性较差13且牧草营养品质较差。豆禾混播草地全年总产草量高于单播草地14。由此认为,豆禾混播是草地生产力修复,保障草地可持续利用的重要补播方式之一15
河北省草原总面积为284.4万hm2,主要分布在张家口、承德坝上地区,占国土面积的15%。丰宁坝上草原是经济命脉—滦河上游的水源补给站,是当地牧民赖以生存的资源。近年来,由于草原退化和生态失调问题日益突出,影响了草地生产力和牧草品质。目前,已有研究表明牧草混播能够提高三江源等草地牧草产量及营养物质含量,施肥和混播能够提高松嫩平原的土壤有机质和牧草蛋白质含量,但适宜河北坝上山地草甸退化草地修复混播牧草种类及补播和施肥量尚未见报道。通过研究河北丰宁坝上山地草甸退化草地不同修复模式下半天然牧草的营养物质含量及瘤胃发酵参数,全面评价、筛选牧草最优混播组合及施肥量和补播量,旨在为山地草甸退化草地修复提供理论依据。

1 材料与方法

1.1 研究区域概况

试验地位于河北省承德市丰宁满族自治区大滩镇南围子村(116°02′ E, 41°53′ N,海拔2206 m),属干旱大陆季风性气候,全年平均温度0.5 ℃,1月平均气温-19.4 ℃,7月气温均值17.4 ℃,年均降水量430 mm。草原类型属山地草甸,主要以多年生禾本科牧草为主,天然植物类型有老芒麦(Elymus sibiricus)、扁穗冰草(Agropyron cristatum)和垂穗披碱草(Elymus nutans)等,土壤类型属栗钙土、风沙土,无灌溉条件。

1.2 试验设计

采用4×4×4三因子设计,共64个处理,小区面积为15 m×20 m。三因子分别为混播组合、补播量和施肥量。其中,混播组合为:老芒麦+垂穗披碱草+苜蓿(E. sibiricus+E. nutans+Medicago sativa, 1∶1∶1, EEM);老芒麦+扁穗冰草+苜蓿(E. sibiricus+A. cristatum+M. sativa, 1∶1∶1, EAM);扁穗冰草+垂穗披碱草+苜蓿(A. cristatum+E. nutans+M. sativa, 1∶1∶1, AEM);老芒麦+扁穗冰草+垂穗披碱草+苜蓿(E. sibiricus+A. cristatum+E. nutans+M. sativa, 1∶1∶1∶1, EAEM),补播量为:0、3.4、4.6、5.7 kg·hm-2,施肥采用干牛粪[氮(N):0.30%~0.45%,磷(P2O5):0.15%~0.25%,钾(K2O):0.10%~0.15%],施肥量为:0、3.6、7.2、10.8 t·hm-2

1.3 牧草样品收集

于2021年8月播种,2022年8月牧草生长期进行取样,每个处理小区随机取样,设置0.5 m×0.5 m的样方,留茬5 cm,刈割称重,小区内重复取样3次。每个样品分别取300 g置于烘箱中,65 ℃烘干48 h,恒重后称量,通过样品干物质产量,计算不同处理下牧草每hm2干物质产量。烘干后用微型粉碎机粉碎,过0.425 mm网筛,收集装于密封袋中,用于营养成分的测定和体外瘤胃发酵。

1.4 体外发酵

1.4.1 瘤胃液采集

6只年龄为1.5周岁、体况相近的健康西门塔尔牛为瘤胃液供体。在收集瘤胃液之前禁食12 h,于晨饲前采用胃管从口腔采集瘤胃液,将采集好的瘤胃液通过4层纱布过滤后,保存到通入过量CO2且已预热的保温壶中,然后立即密封。带回实验室将瘤胃液保持在CO2下在39 ℃的水浴中用于体外发酵。

1.4.2 体外发酵过程

人工瘤胃缓冲液的配制参照Menke等16的方法。每个玻璃注射器都厌氧地分配发酵培养基,包括20 mL瘤胃接种物和40 mL缓冲溶液和100 mg干燥底物,设置3个重复,将恒温水浴摇床预热至39 ℃,将玻璃注射器放置于水浴摇床中,恒温39 ℃,维持4 d,记录各处理发酵96 h产气量(gas production, GP)。共192个注射器(4个混播处理×4个施肥量×4个补播量×3个样品),此外,进行一组类似的3个仅含有发酵培养基的玻璃注射器,作为空白对照,以纠正瘤胃接种物中干物质发酵产生的气体。将含有发酵培养基和基质的玻璃注射器在39 ℃的振荡水浴中孵育,并在孵育的3、6、9、12、24、36、48、72和96 h记录产气量。

1.5 指标测定

1.5.1 化学成分测定

通过在105 ℃下烘干8 h来分析牧草样品的干物质含量。采用官方分析化学家协会(Association of Official Analytical Chemists, AOAC)17的方法,测定干物质产量(dry matter yield, DMY)、粗蛋白(crude protein, CP)和粗脂肪(ether extract, EE)含量。采用Van Soest等18的方法使用滤袋技术和ANKOM纤维分析仪(A2000i,美国)测定中性洗涤纤维(neutral detergent fiber, NDF)和酸性洗涤纤维(acid detergent fiber, ADF)含量。相对饲喂价值(relative feed value, RFV)是根据测量的营养物质计算得出的19

DDM(%)=88.9-0.779ADF
DMI(%)=120/NDF
RFV=(DDM×DMI)/1.29

式中:DDM为可消化干物质(digestible dry matter);DMI为干物质摄入(dry matter intake)。

1.5.2 体外发酵参数测定

收集10 mL体外发酵培养基,采用便携式pH计(PHS-25,中国)测定每个发酵针管的pH,氨态氮(NH3-N)的浓度使用苯酚-次氯酸钠比色法进行测定。以巴豆酸为内标物,采用气相色谱仪(CP-3800,美国)测定发酵液中乙酸、丙酸、丁酸的浓度20。总挥发性脂肪酸(total volatile fatty acids, TVFA)浓度为乙酸、丙酸、丁酸浓度之和。对于气体收集,记录96 h产气量(GP)后,通过三通旋塞阀将发酵气体连接到空的气体收集袋,以氮气作为载体用气相色谱法测定气体中甲烷(CH4)和二氧化碳(CO2)的摩尔分数。

1.6 统计分析

对数据进行整理后,采用热图显示显著性分析结果。利用SPSS软件进行主成分分析(principal component analysis, PCA),采用主成分分析计算各处理的综合得分。用Design-expert进行中心组合设计(central composite design, CCD),设计方法进行响应曲面法(response surface methodology, RSM)优化,以施肥量和补播量为变量,以综合得分Y和产量为响应值来确定每个混播组合的施肥量和补播量的最佳取值。

2 结果与分析

2.1 不同施肥和补播量对干物质产量和牧草营养物质含量的影响

施肥和补播量对EEM、EAM和AEM混播组合的DMY有交互作用(图1P<0.05),对AEM混播组合EE含量有交互作用(P<0.05),对EAEM混播组合的CP和EE含量有交互作用(P<0.05);EEM、EAM、AEM、EAEM混播组合在各补播量处理下的NDF、ADF含量施肥处理均显著低于不施肥处理,RFV值和DMY显著高于不施肥处理(P<0.05)。

在不施肥处理下,EEM、EAM、AEM、EAEM混播组合的CP和EE含量及DMY显著低于其他施肥处理(P<0.05),EEM混播组合在7.2、10.8 t·hm-2的施肥量处理下,5.7 kg·hm-2处理的DMY和RFV值高于其他补播处理,4.6 kg·hm-2处理的CP、NDF、ADF含量高于其他补播处理,除未施肥处理外,在4.6 kg·hm-2处理下各混播处理的CP、NDF、ADF含量及RFV值与其他补播处理均有显著差异(P<0.05)。

2.2 不同施肥和补播量对牧草在瘤胃体外发酵的影响

施肥和补播量对EEM和AEM混播组合的CH4浓度有交互作用(图2~5P<0.05),对EAM混播组合的丙酸和乙丙比(A/P)有交互作用(P<0.05),对EAEM混播组合的乙丙比有交互作用(P<0.05)。在不施肥处理下,EEM、EAM、AEM、EAEM的瘤胃液中乙酸、丙酸、丁酸、TVFA含量与其他施肥处理有显著差异(P<0.05),EEM混播组合在7.2、10.8 t·hm-2的施肥量处理下,其瘤胃液中NH3-N和GP与其他施肥处理有显著差异(P<0.05),EAM混播组合在7.2 t·hm-2处理下,发酵后CH4、CO2浓度显著低于其他施肥处理,对于AEM混播组合来说,在不施肥处理下,瘤胃液中NH3-N含量及GP与其他施肥处理有显著差异。EAEM组合在不施肥处理下,瘤胃发酵后CH4、CO2浓度在4.6 kg·hm-2补播处理下,均显著低于其他补播处理(P<0.05)。EEM、EAM、AEM在4.6 kg·hm-2处理下,其瘤胃液中NH3-N、丙酸含量与其他补播处理有显著差异(P<0.05)。

2.3 不同施肥和补播量下混播牧草组合的综合得分

EEM混播组合综合得分最高的施肥和补播量为10.8 t·hm-2、5.7 kg·hm-2表1)。EAM混播组合综合得分最高的施肥和补播量为7.2 t·hm-2、4.6 kg·hm-2。AEM混播组合综合得分最高的施肥和补播量为7.2 t·hm-2、4.6 kg·hm-2。EAEM混播组合综合得分最高的施肥和补播量为7.2 t·hm-2、4.6 kg·hm-2

2.4 不同施肥和补播量对各混播牧草组合的影响

各混播组合的综合得分随补播量的增加而增加,随施肥量的增加略有升高(图6)。EEM、EAM、EAEM组合中补播量是影响综合评价的最重要因素,其次是施肥量。EEM、EAM、EAEM组合的施肥和补播在综合评价方面有交互作用。对EEM来说,施肥和补播量在7.54 t·hm-2和5.7 kg·hm-2时,综合得分预测值最高,与7.2 t·hm-2和5.7 kg·hm-2处理最为接近。对EAM来说,施肥和补播量在8.63 t·hm-2和4.79 kg·hm-2时,综合评价预测值最高,与7.2 t·hm-2和4.6 kg·hm-2处理最为接近。对AEM来说,施肥和补播量在8.11 t·hm-2和5.04 kg·hm-2时,综合评价预测值最高,与7.2 t·hm-2和4.6 kg·hm-2处理最为接近。对EAEM来说,施肥和补播量在10.44 t·hm-2和4.9 kg·hm-2时,综合评价预测值最高,与10.8 t·hm-2和4.6 kg·hm-2处理最为接近。

各混播组合干物质产量随施肥量、补播量的增加呈增加的趋势(图7)。补播量是影响牧草产量的最重要因素,其次是施肥量。施肥和补播在综合评价方面有交互作用。AEM组合的预测产量最高,EEM次之,EEM的综合得分最高(图8)。施肥和补播量为9.95 t·hm-2和4.68 kg·hm-2时,EEM的干物质产量预测值最高,与10.8 t·hm-2和4.6 kg·hm-2处理最为接近。施肥和补播量为8.93 t·hm-2和4.32 kg·hm-2时,EAM的干物质产量预测值最高,与7.2 t·hm-2和4.6 kg·hm-2处理最为接近。施肥和补播量为7.83 t·hm-2和5.02 kg·hm-2时,AEM的干物质产量预测值最高,与7.2 t·hm-2和4.6 kg·hm-2处理最为接近。施肥和补播量为8.01 t·hm-2和4.18 kg·hm-2时,EAEM的干物质产量预测值最高,与7.2 t·hm-2和4.6 kg·hm-2处理最为接近。

3 讨论

3.1 施肥和补播量对牧草产量及营养物质含量的影响

在退化草地上,施肥和补播是提高牧草生产力和营养物质含量的主要措施21。施肥主要通过增加CP和EE含量,降低NDF、ADF含量等来改善牧草品质22。牧草粗蛋白含量越高代表其可被利用养分越充足且饲用品质更优23。在本研究中,EEM、EAM、AEM、EAEM混播组合的干物质产量、CP、EE和RFV值均显著高于不施肥处理,NDF、ADF含量均显著低于不施肥处理。这说明施肥提高了牧草营养物质含量和干物质产量,与前人的研究结果一致24。McDonald等25的研究表明施肥能够提高牧草的营养价值,是促进牧草生长和干物质产量积累的必要手段26。然而,有研究表明过量的有机肥则会抑制植物的生长,张楚等27的研究表明羊草(Leymus chinensis)的地上生物量并不是随施肥量的增加而增加,施肥量在11.25 t·hm-2时可以获得最大效益。在本研究中,当施肥量为10.8 t·hm-2时,EEM的干物质产量和牧草营养物质含量的提升效果最好,然而当施肥量为7.2 t·hm-2时,EAM、AEM和EAEM的牧草营养物质含量最高,可能是EEM混播组合的生态位宽度较高,对生存资源有更高的利用能力。

补播改良对提高牧草产量和营养物质含量有重要作用28。补播可以提高植被覆盖度,从而提高牧草产量29,而牧草产量又是评估草地牧草资源价值的一个重要指标。在本研究中,同样施肥处理下,补播提高了牧草的干物质产量、CP含量、EE含量和RFV值,降低了NDF、ADF含量。播种量为4.6 kg·hm-2时,4个混播组合的牧草产量均优于0和3.6 kg·hm-2的补播处理。上述结论可能是由于补播牧草提高了植被盖度,加上豆科牧草的固氮作用保障了土壤养分的积累和土壤水分的涵养,从而促进了牧草的生长。Mack等30和Hakl等31对耐草甘膦苜蓿的研究发现,播种率更高时产生了更高的饲料产量,提高了饲料潜力。牧草补播不仅可以提高牧草产量,且能够有效地提高牧草CP和EE等营养物质含量32-33

补播改良是否成功的关键在于草种的选择,牧草种类是影响草地系统生产力的重要因素。苜蓿-禾草混播模式的研究表明,豆禾混播能显著提高禾草的干物质产量及其营养品质,且在豆禾比为3∶1时牧草产量显著提高。在本研究中,EEM、EAM、AEM组合产量均高于EAEM组合,这可能是由于EEM、EAM、AEM组合豆禾比3∶1,且禾草和苜蓿的生态位互补34。上述结果可能是由于在退化山地草甸上补播禾本科和豆科牧草后,促进了氮素的利用,稳定性较好,能够充分利用草地资源,从而提高了牧草产量及营养品质35-37。当禾草与豆科植物混播时,豆科根瘤的固氮可以确保氮的利用,禾草对有效氮具有更强的竞争能力38-39,可充分实现生存资源与养分的互补利用40,从而提高草地生产力41-42。混播比单播对植物和土壤有更积极的恢复作用,更利于退化草甸的恢复。本研究中,施肥和补播量的交互作用显著提高了牧草产量和营养物质含量,与前人研究结果一致43。上述结果与Wang等44的研究结果一致,可能是由于施肥结合播种对牧草产量和营养物质含量有互补作用,能够保证合适覆盖度和土壤养分,促进牧草的生长。

3.2 施肥和补播对瘤胃发酵参数的影响

施肥和补播能够提高牧草产量和营养物质含量,本研究结果表明,补播和施肥提高了牧草干物质产量、CP含量、EE含量和RFV值,降低了NDF、ADF含量,牧草的营养物质水平在一定程度上反映了其提供营养的能力,从而影响牧草在瘤胃内的瘤胃发酵参数45。pH值、NH3-N和VFA含量是反刍动物瘤胃发酵的重要指标46-47。有研究指出,施肥使黑麦草(Lolium perenne)的化学成分发生变化,影响了瘤胃消化率以及NH3-N浓度、pH值48-49,本研究结果与之一致。瘤胃液pH值随着日粮NDF水平的降低而显著降低,造成这种趋势的原因可能是低NDF日粮中含有更易发酵的碳水化合物。CP含量与瘤胃内NH3-N浓度成正比,较高的CP含量和较低的纤维含量可以提高牧草的消化率50。本研究中,在不施肥处理下,EEM、EAM、AEM、EAEM的瘤胃液中NH3-N和TVFA含量与其他施肥处理有显著差异,EEM、EAM、AEM在4.6 kg·hm-2处理下,其瘤胃液中NH3-N、丙酸含量显著高于其他补播处理(P<0.05)。上述结果与Zhao等51的研究结果一致,主要归因于牧草中NDF和碳水化合物等营养物质含量的不同,对瘤胃菌群结构造成了影响,提高了牧草在瘤胃发酵中的TVFA浓度。有研究表明,瘤胃TVFA浓度可以反映瘤胃内部的环境状况及牧草在瘤胃内的发酵程度,其随着CP含量的增加而线性增加,与NDF和ADF呈负相关,是反刍动物的主要能源52-53。最大产气量与CP含量呈负相关,与NDF、ADF含量呈正相关;通常认为牧草的饲喂价值越高会产生更多的TVFA和更少的CH454,本研究结果与之一致。因此,施肥和补播管理提高了牧草的瘤胃发酵参数,有利于牧草在瘤胃内的消化和利用。

3.3 不同施肥量和补播量下牧草的综合评价

施肥和补播量对各混播组合牧草的营养品质及瘤胃发酵的各项指标影响不同,无法利用上述指标直接、全面地评价施肥和补播对牧草营养品质及瘤胃发酵参数的影响。因此,对牧草营养品质及体外发酵的15个参数进行了主成分分析,利用RSM对各混播组合的施肥和补播进行筛选。对EEM的综合评价来说,预测值最高的施肥和补播量为7.2 t·hm-2和5.7 kg·hm-2,而干物质产量最高的施肥和补播量为10.8 t·hm-2和4.6 kg·hm-2,可能是因为退化草地土壤养分不平衡导致的;对EAM、AEM、EAEM来说,综合得分和预测值最高的施肥量和补播量为7.2 t·hm-2、4.6 kg·hm-2。从产量角度来说,AEM的预测产量最高。因此,综合考虑产量和品质最优方案是10.8 t·hm-2施肥量和5.7 kg·hm-2播种量处理下的EEM组合。多年生混播人工草地群落受施肥、补播处理和自身演替等影响较大,应综合多年数据进行评价。而本研究仅采用了一年的牧草营养物质含量及瘤胃发酵参数,在后续研究中,应针对施肥和补播后多年的牧草营养及瘤胃发酵参数进行持续探究。

4 结论

施肥和补播管理提高了半天然牧草的产量、CP含量和RFV值,降低了牧草中NDF、ADF含量;提高了半天然牧草在瘤胃内的TVFA和GP,降低了CH4浓度。通过PCA和RSM-CCD分析得到了最优混播组合的最优施肥量和补播量,证明了老芒麦、垂穗披碱草和苜蓿(EEM)组合在10.8 t·hm-2施肥量、5.7 kg·hm-2补播量处理下效果最好,有利于提高半天然牧草的营养物质含量及瘤胃发酵参数。

参考文献

[1]

Leal V N, Santos D D C, Paim T D P, et al. Economic results of forage species choice in crop-livestock integrated systems. Agriculture, 2023, 13(3): 637.

[2]

Zhao G S, Ren L J, Ye Z L, et al. Vegetation dynamics in response to climate change and human activities in a typical alpine region in the Tibetan Plateau. International Journal of Environmental Research and Public Health, 2022, 19(19): 12359.

[3]

Wang H S, Song M L, Wang Y Q, et al. Effects of different restoration methods on Ligularia virgaurea and toxic weed dominated degraded grassland community. Chinese Journal of Grassland, 2022, 44(4): 32-39.

[4]

王宏生, 宋梅玲, 王玉琴, 不同恢复措施对黄帚橐吾及毒害草型退化草地群落的影响. 中国草地学报, 2022, 44(4): 32-39.

[5]

Nie H Y, Gao J X. Research progress on the ecological impact and spreading mechanism of weeds on degraded grassland. Chinese Journal of Grassland, 2022, 44(7): 101-113.

[6]

聂华月, 高吉喜. 退化草地杂草生态影响及蔓延机制研究进展. 中国草地学报, 2022, 44(7): 101-113.

[7]

Song M H, Yu F H. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytologist, 2015, 207(1): 70-77.

[8]

Scotton M, Rossetti V. Effects of fertilisation on grass and forb gamic reproduction in semi-natural grasslands. Scientific Reports, 2021, 11(1): 19146.

[9]

Cao W X, Li W, Li X L, et al. Effects of nitrogen fertilization on plant community structure and soil nutrient in alpine meadow-steppe. Journal of Desert Research, 2015, 35(3): 658-666.

[10]

曹文侠, 李文, 李小龙, 施氮对高寒草甸草原植物群落和土壤养分的影响. 中国沙漠, 2015, 35(3): 658-666.

[11]

Zhang H J, Zheng K F, Gu S S, et al. Grass-legume mixture with rhizobium inoculation enhanced the restoration effects of organic fertilizer. Microorganisms, 2023, 11(5): 1114.

[12]

Tian L, Yang W, Ji S A, et al. Artificial reseeding improves multiple ecosystem functions in an alpine sandy meadow of the eastern Tibetan Plateau. Land Degradation & Development, 2023, 34(7): 2052-2060.

[13]

Shang Z H, Ma Y S, Long R J, et al. Effect of fencing, artificial seeding and abandonment on vegetation composition and dynamics of ‘black soil land’ in the headwaters of the Yangtze and the Yellow Rivers of the Qinghai-Tibetan Plateau. Land Degradation & Development, 2008, 19(5): 554-563.

[14]

Yang Z Z, Zhang C P, Dong Q M, et al. Effects of reseeding on plant community composition and diversity of moderately degraded alpine grassland in Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2018, 26(5): 1071-1077.

[15]

杨增增, 张春平, 董全民, 补播对中度退化高寒草地群落特征和多样性的影响. 草地学报, 2018, 26(5): 1071-1077.

[16]

He J S, Bu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908.

[17]

贺金生, 卜海燕, 胡小文, 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908.

[18]

Zhang Q, Ma L, Zhang Z H, et al. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: Degradation status, restoration measures, effects and prospects. Acta Ecologica Sinica, 2019, 39(20): 7441-7451.

[19]

张骞, 马丽, 张中华, 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望. 生态学报, 2019, 39(20): 7441-7451.

[20]

Tahir M, Li C H, Zeng T, et al. Mixture composition influenced the biomass yield and nutritional quality of legume-grass pastures. Agronomy, 2022, 12(6): 1449.

[21]

Cinar S, Hatipoglu R, Avci M, et al. Quality characteristics of the mixtures of some warm season perennial grasses with alfalfa (Medicago sativa L.) under irrigated conditions in the Mediterranean region of Turkey. Applied Ecology and Environmental Research, 2018, 16(5): 7139-7154.

[22]

Menke K H, Raab L, Salewsli A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in-vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222.

[23]

Guo L N, Yao D D, Li D X, et al. Effects of lactic acid bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in-vitro digestibility of alfalfa silage. Frontiers in Microbiology, 2019, 10: 2998.

[24]

Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597.

[25]

Mirzaei-Aghsaghali A, Maheri-Sis N, Mirza-Aghazadeh A, et al. Estimation of quality indices of iranian alfalfa varieties using in vivo and in-situ methods. Journal of Animal and Veterinary Advances, 2012, 6(8): 1022-1027.

[26]

Wang Y Q, Wu J T, Lv M X, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 2021, 9: 612285.

[27]

Minski D M E A, Dall A M, Rios E, et al. Nutritive value and herbage mass in hybrids of Paspalum plicatulum×Paspalum guenoarum fertilized with nitrogen or in mixture with temperate legumes. Grassland Science, 2020, 66(4): 261-270.

[28]

Peng Y, Sun J Y, Ma S J, et al. Effects of nitrogen and phosphorus addition on production performance and nutritive value of pasture species in Northern Tibet. Acta Prataculturae Sinica, 2021, 30(5): 52-64.

[29]

彭艳, 孙晶远, 马素洁, 氮磷添加对藏北人工牧草生产性能和品质的评价. 草业学报, 2021, 30(5): 52-64.

[30]

Wang Y Q, Song M L, Wang H S, et al. Effects of nitrogen addition on vegetation and forage nutritional quality of degraded alpine grasslands. Acta Agrestia Sinica, 2021, 29(12): 2742-2751.

[31]

王玉琴, 宋梅玲, 王宏生, 添加氮素对退化高寒草地植被及营养品质的影响. 草地学报, 2021, 29(12): 2742-2751.

[32]

Symanowicz B, Skorupka W, Becher M, et al. The effect of alfalfa mineral fertilization and times of soil sampling on enzymatic activity. Agronomy, 2021, 11(7): 1335.

[33]

McDonald I, Baral R, Min D. Effects of alfalfa and alfalfa-grass mixtures with nitrogen fertilization on dry matter yield and forage nutritive value. Journal of Animal Science and Technology, 2021, 63(2): 305-318.

[34]

Šidlauskaitė G, Kemešytė V, Toleikienė M, et al. Plant diversity, functional group composition and legumes effects versus fertilisation on the yield and forage quality. Sustainability, 2022, 14(3): 1182.

[35]

Zhang C, Wang M, Zhang Y, et al. Effects of root cutting and organic fertilizer application on aboveground biomass and soil nutrients in the mowing grassland of Leymus chinensis meadow. Acta Agrestia Sinica, 2022, 30(1): 220-228.

[36]

张楚, 王淼, 张宇, 切根与施有机肥对羊草草甸草原打草场地上生物量与土壤养分的影响. 草地学报, 2022, 30(1): 220-228.

[37]

Yue L N, Shi S L, Qi J, et al. Effects of no-tillage reseeding on productivity and nutritional quality of degraded grassland in northern China. Acta Agrestia Sinica, 2021, 29(11): 2583-2590.

[38]

岳丽楠, 师尚礼, 祁娟, 免耕补播对北方退化草地生产力及营养品质的影响. 草地学报, 2021, 29(11): 2583-2590.

[39]

Hou Y R, Ren Y P, Li X S, et al. Effects of reseeding alfalfa against community of degraded mountain meadow steppe in northern Tianshan Mountain. Grass-Feeding Livestock, 2016(2): 44-47.

[40]

侯钰荣, 任玉平, 李学森, 补播紫花苜蓿对天山北坡退化山地草甸草原群落的影响. 草食家畜, 2016(2): 44-47.

[41]

Mack G, EI B N, Sporri M, et al. Perceived feasibility of sward management options in permanent grassland of alpine regions and expected effects on delivery of ecosystem services. Environment Development and Sustainability, 2024, 26: 4579-4601.

[42]

Hakl J, Kunzová E, Tocauerová Š, et al. Impact of long-term manure and mineral fertilization on yield and nutritive value of lucerne (Medicago sativa) in relation to changes in canopy structure. European Journal of Agronomy, 2021, 123: 126219.

[43]

Zhang R, Yang W, Wang W, et al. Effects of reseeding on forage nutrition and physical and chemical properties of degraded alpine meadow soils. Pratacultural Science, 2022, 39(6): 1059-1068.

[44]

张冉, 杨蔚, 王文, 补播对退化高寒草甸牧草养分及土壤理化性质的影响. 草业科学, 2022, 39(6): 1059-1068.

[45]

Yin W, Tian H N, Yang G Z, et al. Reseeding experiment of several legume herbage natural grassland in the south bank of Qinghai Lake. Heilongjiang Animal Science and Veterinary, 2019(12): 117-120.

[46]

尹卫, 田海宁, 杨国柱, 青海湖南岸地区几种豆科牧草天然草地补播试验. 黑龙江畜牧兽医, 2019(12): 117-120.

[47]

Duchene O, Vian J, Celette F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. Agriculture, Ecosystems & Environment, 2017, 240: 148-161.

[48]

Wang P, Chen B, Gu X M, et al. Evaluation of the adaptability of different forage varieties growing on meadow grassland. Journal of Animal Science and Veterinary, 2022, 41(5): 248-252.

[49]

王鹏, 陈斌, 顾新民, 不同牧草品种在草甸草原生长的适应性评价. 畜牧兽医杂志, 2022, 41(5): 248-252.

[50]

Wendling M, Büchi L, Amossé C, et al. Specific interactions leading to transgressive over yielding in cover crop mixtures. Agriculture, Ecosystems & Environment, 2017, 241: 88-99.

[51]

Ye T, Wu X J, Lu Y X, et al. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures. Acta Prataculturae Sinica, 2023, 32(5): 127-137.

[52]

叶婷, 吴晓娟, 芦奕晓, 混播比例对两种苜蓿混播草地产量和种群密度稳定性的影响. 草业学报, 2023, 32(5): 127-137.

[53]

Zheng W, Jianaerguli, Tang G R, et al. Determination and comparison of community stability in different legume-grass mixes. Acta Prataculturae sinica, 2015, 24(3): 155-167.

[54]

郑伟, 加娜尔古丽, 唐高溶, 不同混播方式下豆禾混播草地群落稳定性的测度与比较. 草业学报, 2015, 24(3): 155-167.

[55]

Ma Q H, Wu Y H, Liu Y N, et al. Interspecific interaction and productivity in a dryland wheat/alfalfa strip intercropping. Field Crops Research, 2024, 309: 109335.

[56]

Liu X D, Jiao Y, Zhao X Y, et al. Root architecture of forage species varies with intercropping combinations. Agronomy, 2023, 13(9): 2223.

[57]

Han J Q, Dong Y Y, Zhang M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Applied Soil Ecology, 2021, 165: 103966.

[58]

Pan H, Chen M M, Feng H J, et al. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil and Tillage Research, 2020, 198: 104540.

[59]

Fang Y F, Cao Z W, Sun H S, et al. Effects of fertilization and reseeding interaction on yield and quality of degraded grassland in Songnen plain. Soil and Fertilizer Sciences in China, 2023(6): 167-174.

[60]

方玉凤, 曹志伟, 孙洪升, 施肥和补播互作对松嫩平原退化草地产量、品质的影响. 中国土壤与肥料, 2023(6): 167-174.

[61]

Wang Y, Wang Z, Kang Y, et al. Assessing the win-win situation of forage production and soil organic carbon through a short-term active restoration strategy in alpine grasslands. Frontiers in Plant Science, 2024, 14: 1290808.

[62]

Fan Q S, Wanapat M, Hou F J. Chemical composition of milk and rumen microbiome diversity of yak, impacting by herbage grown at different phenological periods on the Qinghai-Tibet plateau. Animals, 2020, 10(6): 1030.

[63]

Dijkstra J, Ellis J L, Kebreab E, et al. Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 2012, 172(1/2): 22-33.

[64]

Liu H J, Xu T W, Xu S X, et al. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan Plateau. Peer J, 2019, 7: e7462.

[65]

Ferri C M, Stritzler N P, Pagella J H. Nitrogen fertilization on rye pasture: Effect on forage chemical composition, voluntary intake, digestibility and rumen degradation. Journal of Agronomy and Crop Science, 2004, 190(5): 347-354.

[66]

Ta N, Gui R, Wei R H, et al. Dynamic changes of grazing sheep body gains and ruminal fermentation parameters on sandy recovering grassland. Acta Prataculturae Sinica, 2010, 19(5): 45-50.

[67]

塔娜, 桂荣, 魏日华, 沙地恢复草场放牧绵羊体增重及瘤胃发酵参数动态变化. 草业学报, 2010, 19(5): 45-50.

[68]

Cappellozza B I, Bohnert D W, Reis M M, et al. Influence of amount and frequency of protein supplementation to steers consuming low-quality, cool-season forage: Intake, nutrient digestibility, and ruminal fermentation. Journal of Animal Science, 2021, 99(6): skab112.

[69]

Zhao H B, Lv F, Liu G H, et al. Effects of starters with different NDF/starch ratio on rumen fermentation parameters and rumen microorganisms in lambs. Frontiers in Veterinary Science, 2023, 10: 1064774.

[70]

Suarez-Mena F X, Heinrichs A J, Jones C M, et al. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation. Journal of Dairy Science, 2016, 99(1): 341-353.

[71]

Shen H, Lu Z, Xu Z, et al. Associations among dietary non-fiber carbohydrate, ruminal microbiota and epithelium G-protein-coupled receptor, and histone deacetylase regulations in goats. Microbiome, 2017, 5(1): 123.

[72]

Zhong R Z, Fang Y, Xia S H, et al. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in-vitro gas production technique. Journal of Integrative Agriculture, 2016, 15(2): 414-423.

基金资助

河北省科学技术厅重点研发计划项目-坝上草畜耦合修复退化草地生态技术模式研究(22327508D)

河北省草业产业技术体系饲草资源开发创新团队项目(HBCT2023160202)

AI Summary AI Mindmap
PDF (8319KB)

270

访问

0

被引

详细

导航
相关文章

AI思维导图

/