基于GIS技术和聚类分析的汾河上游草地土壤养分空间特征分析
李家新 , 景亚泓 , 张俊 , 净思璞 , 杨宇星 , 范博阳 , 路文杰
草业学报 ›› 2025, Vol. 34 ›› Issue (03) : 17 -28.
基于GIS技术和聚类分析的汾河上游草地土壤养分空间特征分析
Analysis of spatial characteristics of soil nutrients in grasslands in the Fenhe River upper reaches using GIS technology and cluster analysis
土壤环境的保护和治理在促进草地健康可持续发展中发挥着关键作用。本研究利用地理信息系统技术,对汾河上游81个草原点的土壤养分状况进行了调查。以土壤化学性质为主要标准的聚类分析将81个地点的表层土壤分为3类。本研究评估了0~10 cm、10~20 cm和20~30 cm这3个深度的土壤养分空间特征。研究发现,研究区草地土壤健康水平较差,自然含水率较低,全磷及碱解氮含量相对匮乏,土壤pH属弱碱性。各类养分相关指标的空间分布特征存在显著差异。不同指标在不同土层中的最佳拟合模型不同,多数指标的空间自相关性较弱,土壤养分空间变异主要受结构因素和随机因素共同影响;各指标在水平方向上存在明显的空间变异规律。土壤养分浓度高的地点周围也有土壤养分含量高的地点,即高-高集聚区,主要分布在汾河源头地区。土壤养分浓度低的地点也被土壤养分低的地点包围,即低-低集聚区,主要分布在汾河流域东部。低-高集聚区域较为分散,高-低集聚区较少,主要分布在汾河上游南部;在垂直方向上,土壤养分含量具有随着土层的加深而逐渐减少的趋势。各指标的集聚特征无明显的变化规律。研究结果可为退化草地修复提供科学合理的指导意见。
Protecting and managing the soil environment plays a key role in ensuring the sustainable development of grasslands. This study employed geographic information system technology to investigate the soil nutrient status at 81 sites in grasslands in the upper reaches of Fenhe River. Cluster analysis with soil chemical properties as the primary criteria was used to group the surface soil of the 81 sites into three categories. The study evaluated spatial characteristics of soil nutrients for three soil horizons: 0-10 cm, 10-20 cm, and 20-30 cm. It was found that the overall level of grassland soil health in the study area was suboptimal, with low natural moisture content, relatively scarce total phosphorus and alkaline nitrogen content, and a weakly alkaline soil pH. There are significant differences in the spatial distribution characteristics of various nutrient related indicators. The best fitting models of these different indicators varied between soil horizons, and the spatial autocorrelation of most indicators was weak, which indicates that the spatial variation of soil nutrients is primarily impacted by both structural and random factors. In the horizontal direction, a distinct spatial pattern was observed for each indicator. Sites with high soil nutrient concentrations surrounded by sites also with high soil nutrients, known as high-high concentration aggregation zones, were predominantly found in the headwaters of the Fenhe River, while sites with low soil nutrient concentrations also surrounded by sites with low soil nutrients, known as low-low concentration aggregation zones, occurred mainly in the eastern part of the Fenhe River basin. Low-high clustering areas were scattered, and high-low clustering areas were less frequent and mostly located in the southern part of the upper reaches. Vertically, across the three soil horizons at sampling sites, no significant spatial variation was observed for total potassium and the content of other related soil chemical properties decreased with soil depth. The clustering characteristics of each soil property did not show a clear change with depth. The results provide scientific and reasonable guidance for the restoration of degraded grasslands.
汾河上游 / 土壤健康 / 聚类分析 / 地统计学 / 空间自相关
the upper reaches of Fenhe River / soil health / cluster analysis / geostatistics / spatial autocorrelation
| [1] |
Dong S K, Zhang Y H, Wang G C. Assessment of grassland health and degradation: Concepts, principles and methods. Pratacultural Science, 2023, 40(12): 2971-2981. |
| [2] |
董世魁, 张宇豪, 王冠聪. 草地健康与退化评价:概念、原理及方法. 草业科学, 2023, 40(12): 2971-2981. |
| [3] |
Wang Y F. Evaluation of soil conservation function of regional ecosystem in the upper reaches of Fenhe River. Beijing: China University of Geosciences, 2021. |
| [4] |
王怡帆. 汾河上游生态系统土壤保持功能评价. 北京: 中国地质大学, 2021. |
| [5] |
Fu W, Zhao K, Zhang C, et al. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. Journal of Plant Nutrition and Soil Science, 2011, 174(5): 785-798. |
| [6] |
Li Q Q, Wang C Q, Zhang W J, et al. Prediction of soil nutrients spatial distribution based on neural network model combined with geostatistics. Chinese Journal of Applied Ecology, 2013, 24(2): 459-466. |
| [7] |
李启权, 王昌全, 张文江, 基于神经网络模型和地统计学方法的土壤养分空间分布预测. 应用生态学报, 2013, 24(2): 459-466. |
| [8] |
Wang X Y, Huang Y L, Quan B B, et al. Spatial variation characteristics and influencing factors of available nutrient elements in cultivated soil layers in Rui’an City, Zhejiang Province. Geoscience, 2022, 36(3): 963-971. |
| [9] |
王学寅, 黄益灵, 全斌斌, 浙江省瑞安市耕作层土壤养分元素有效态含量空间变异特征及其影响因素. 现代地质, 2022, 36(3): 963-971. |
| [10] |
Chen Q X, Lu X H, Tu C L. Spatial variation and influencing factors of soil pH in Anshun City. Environmental Science, 2022, 43(4): 2124-2132. |
| [11] |
陈清霞, 陆晓辉, 涂成龙. 安顺市土壤pH空间变异及影响因素分析. 环境科学, 2022, 43(4): 2124-2132. |
| [12] |
Bei Q C, Thomas R, Beatrix S, et al. Extreme summers impact cropland and grassland soil microbiomes. The ISME Journal, 2023, 17(10): 1589-1600. |
| [13] |
Seaton F M, Gaynor B, Annette B, et al. Soil health cluster analysis based on national monitoring of soil indicators. European Journal of Soil Science, 2020, 72(6): 2414-2429. |
| [14] |
Fan X L, Lv X, Zhang Z, et al. Soil nutrient evaluation of cotton field based on distance clustering and K-means dynamic clustering. Arid Zone Research, 2021, 38(4): 980-989. |
| [15] |
范向龙, 吕新, 张泽, 基于距离聚类与K-means动态聚类的棉田土壤养分评价研究. 干旱区研究, 2021, 38(4): 980-989. |
| [16] |
Jiang X L. Comprehensive evaluation of soil nutrients geochemistry in Yongtai County based on principal component and cluster analysis. Journal of Anhui Agricultural Sciences, 2023, 51(1): 68-71. |
| [17] |
江晓龙.基于主成分和聚类分析的永泰县土壤养分地球化学综合评价. 安徽农业科学, 2023, 51(1): 68-71. |
| [18] |
Jin Z L, Chen M S, Shao L J, et al. Yongzhou tobacco-growing soil: Main chemical characteristics and cluster analysis. Journal of Agriculture, 2021, 11(8): 37-41. |
| [19] |
靳志丽, 陈梦思, 邵兰军, 永州植烟土壤几种主要化学性状特征及聚类分析. 农学学报, 2021, 11(8): 37-41. |
| [20] |
Tan G J, Zhang S Y, Liu D P, et al. Habitat heterogeneity of grassland community characteristics in the Horchin elm sparse forest. Journal of Inner Mongolia Minzu University (Natural Science Edition), 2023, 38(4): 347-352. |
| [21] |
谭国娟, 张淑艳, 刘殿鹏, 科尔沁榆树疏林草原群落特征的生境分异性研究. 内蒙古民族大学学报(自然科学版), 2023, 38(4): 347-352. |
| [22] |
Hou L, Ma Y J, Wang G L, et al. Distribution of soil nutrient and its relationship with mechanical composition of abandoned farmland in the upper reaches of Fenhe River watershed. Journal of Shanxi Agricultural Sciences, 2019, 47(8): 1422-1427. |
| [23] |
侯丽, 马义娟, 王国玲, 汾河上游流域弃耕地土壤养分及其与机械组成的关系. 山西农业科学, 2019, 47(8): 1422-1427. |
| [24] |
Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
| [25] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. |
| [26] |
Li J, Zhang J Y, Wang R, et al. Comparison of determinations of available P of calcareous soil. Ningxia Journal of Agriculture and Forestry Science and Technology, 2017, 58(11): 31-33. |
| [27] |
李娟, 张静月, 王蓉, 两种石灰性土壤有效磷测定方法比较. 宁夏农林科技, 2017, 58(11): 31-33. |
| [28] |
Shang H Y, Qi J S, Mao S Y, et al. Correlation between two methods for determining soil available phosphorus and available potassium. Gansu Agricultural Science and Technology, 2010(5): 28-29. |
| [29] |
尚海英, 祁居仕, 毛森煜, 两种测定土壤有效磷和速效钾方法的相关性. 甘肃农业科技, 2010(5): 28-29. |
| [30] |
Guo H J, Cai Y P, Li B W, et al. An improved approach for evaluating landscape ecological risks and exploring its coupling coordination with ecosystem services. Journal of Environmental Management, 2023, 348: 119277. |
| [31] |
Han L L, Lu Y C, Ma W, et al. Spatial patterns of poil organic matter, nitrogen, phosphorus and potassium in a subtropical forest and its implication for forest management. Journal of Resources and Ecology, 2022, 13(3): 417-427. |
| [32] |
Qiu M, Zuo Q T, Wu Q S, et al. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Scientific Reports, 2022, 12(1): DOI: 10.1038/S41598-022-07656-9. |
| [33] |
Liang Y L, Li J, Lu Y H, et al. Ecosystem service value evaluation and temporal-spatial evolution characteristics in an agro-pastoral ecotone of Gansu Province based on LUCC. Acta Prataculturae Sinica, 2023, 32(5): 13-26. |
| [34] |
梁赟亮, 李杰, 陆燕花, 基于LUCC的甘肃省农牧交错带生态系统服务价值评估及时空演变特征研究. 草业学报, 2023, 32(5): 13-26. |
| [35] |
Zhang R T, Chen M. Spatial differentiation and driving mechanism of agricultural multifunctions in economically developed areas: A case study of Jiangsu Province, China. Land, 2022, 11(10): 1728. |
| [36] |
Wu H Y, Jin R D, Fan Z W, et al. Assessment of fertility quality of black soil based on principal component and cluster analysis. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 325-334. |
| [37] |
吴海燕, 金荣德, 范作伟, 基于主成分和聚类分析的黑土肥力质量评价. 植物营养与肥料学报, 2018, 24(2): 325-334. |
| [38] |
Zuo X H, Lai J X, Liu F, et al. Spatial heterogeneity and zoning of soil organic matter based on geostatistics and spatial autocorrelation: a perspective form land consolidation. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 240-252. |
| [39] |
左昕弘, 赖佳鑫, 刘峰, 基于地统计学和空间自相关的土壤有机质空间异质性分析及分区——土地整治视角. 中国农业资源与区划, 2022, 43(3): 240-252. |
| [40] |
Lei J R, Chen Z Z, Wu T T, et al. Spatial autocorrelation pattern analysis of land use and the value of ecosystem service in northeast Hainan island. Acta Ecologica Sinica, 2019, 39(7): 2366-2377. |
| [41] |
雷金睿, 陈宗铸, 吴庭天, 海南岛东北部土地利用与生态系统服务价值空间自相关格局分析. 生态学报, 2019, 39(7): 2366-2377. |
| [42] |
Zhao C Y, Liu Y Y, Shi X P, et al. Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants. Environmental Pollution, 2020, 261(C): 113894. |
| [43] |
Jiang N W, Tong G P, Ye Z Q, et al. Spatial variability of soil fertility properties and its affecting factors of Qingliangfeng Nature Reserve, Zhejiang. Acta Ecologica Sinica, 2022, 42(6): 2430-2441. |
| [44] |
姜霓雯, 童根平, 叶正钱, 浙江清凉峰自然保护区土壤肥力指标空间变异及其影响因素. 生态学报, 2022, 42(6): 2430-2441. |
| [45] |
Tong T, Mei S, Liu Y, et al. Spatial variation of soil nutrient characteristics around Chaohu Lake based on GIS results. Journal of Agro-Environment Science, 2023, 42(7): 1522-1531. |
| [46] |
童童, 梅帅, 刘莹, 基于GIS的环巢湖地区土壤养分空间变异特征研究. 农业环境科学学报, 2023, 42(7): 1522-1531. |
| [47] |
Wang T, Kang F F, Cheng X Q, et al. Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China. Catena, 2017, 155: 41-52. |
| [48] |
Liu M J, Xu Z K, Gao Y B, et al. Estimating soil organic matter based on machine learning under sparse sample. Journal of Geo-information Science, 2020, 22(9): 1799-1813. |
| [49] |
刘明杰, 徐卓揆, 郜允兵, 基于机器学习的稀疏样本下的土壤有机质估算方法. 地球信息科学学报, 2020, 22(9): 1799-1813. |
| [50] |
Yang J H, Liu M Y, Zhang J, et al. Spatial variability of soil nutrients and its affecting factors at small watershed in gully region of the Loess Plateau. Journal of Natural Resources, 2020, 35(3): 743-754. |
| [51] |
杨静涵, 刘梦云, 张杰, 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素. 自然资源学报, 2020, 35(3): 743-754. |
| [52] |
Niu W P, Li Q P, Li C, et al. Multi-scale spatial variability and environmental drivers of soil nutrient distributions in the Pearl River Delta, South China. Ecology and Environmental Sciences, 2021, 30(4): 743-755. |
| [53] |
牛文鹏, 李青圃, 李铖, 珠江三角洲土壤养分多尺度空间分异及环境驱动力. 生态环境学报, 2021, 30(4): 743-755. |
| [54] |
Gao G, Tuo D, Han X, et al. Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the Chinese Loess Plateau. Science of the Total Environment, 2020, 746: 141156. |
| [55] |
Rigon G P J, Calonego J C, Capuani S, et al. Soil organic C affected by dry-season management of no-till soybean crop rotations in the tropics. Plant and Soil, 2021, 462(1): 1-14. |
| [56] |
Rui Y C, Jackson R D, Francesca M C, et al. Persistent soil carbon enhanced in mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(7): DOI: 10.1073/PNAS.2118931119. |
| [57] |
Zhang H, Zhao X M, Ouyang Z C, et al. Spatial disparity features and protection zoning of cultivated land quality based on spatial autocorrelation-A case study of Shanggao County, Jiangxi Province. Research of Soil and Water Conservation, 2018, 25(1): 304-312. |
| [58] |
张晗, 赵小敏, 欧阳真程, 基于空间自相关的耕地质量空间差异特征及耕地保护分区——以江西省上高县为例. 水土保持研究, 2018, 25(1): 304-312. |
| [59] |
Wu Y G, Ulan T Y, Zhang W Q, et al. Analysis of the evolution of the grassland degradation evaluation index system in China based on CiteSpace. Chinese Journal of Grassland, 2023, 45(5): 125-136. |
| [60] |
乌云嘎, 乌兰图雅, 张卫青, 基于CiteSpace的中国草地退化评价指标体系演进分析. 中国草地学报, 2023, 45(5): 125-136. |
山西农业大学科技创新基金(2018YJ38)
山西省应用基础研究计划(202203021221166)
山西省高等学校大学生创新创业训练计划项目(20240237)
/
| 〈 |
|
〉 |