苗期白羊草对盐胁迫的生理生化响应及其耐盐阈值的界定
高守舆 , 刘文静 , 李钰莹 , 向清源 , 许佳俊 , 舒蕾淇 , 李肇中
草业学报 ›› 2025, Vol. 34 ›› Issue (03) : 164 -174.
苗期白羊草对盐胁迫的生理生化响应及其耐盐阈值的界定
Physiological and biochemical responses of Bothriochloa ischaemum seedlings to salt stress at seedling stage and definition of salt tolerance threshold
土壤盐渍化是我国北方草业发展的重要限制因素之一,开发抗盐碱能力强的乡土草种质资源,是解决盐碱地资源化利用的有效手段。为探究苗期白羊草的抗盐机制及其耐盐阈值,本研究以苗期‘太行’白羊草为材料,设置9个NaCl浓度盐胁迫处理,测定其株高、根长、地上部生物量等13个指标,并利用主成分分析计算其耐盐阈值。结果表明,NaCl胁迫对白羊草地上部生长影响更大,但地下部对Na+、K+的响应更为敏感。在胁迫时间和NaCl浓度两个维度上,叶片中过氧化物酶和超氧化物歧化酶活性均呈先升后降的趋势,并于210 mmol·L-1 NaCl处理下的第8和10天分别达到最大值;丙二醛、可溶性糖含量呈升高趋势;叶绿素含量呈下降趋势。通过主成分分析选取分数集前二的指标(根长和干重)建立回归曲线,经验证后发现地上部干重更适合作为评价耐盐阈值的指标,得出白羊草的耐盐阈值为207.53 mmol·L-1。本试验将为禾本科植物耐盐机制研究和后续探究白羊草抗盐机制研究的试验处理时间提供参考依据。
Soil salinization is one of the important limiting factors restricting the development of the pastoral industry in northern China. Developing local grass germplasm resources with strong saline-alkali resistance is an effective means to overcome difficulties utilizing saline-alkali land. This study investigated the salt-tolerance mechanisms and salt-tolerance threshold of Bothriochloa ischaemum cv. ‘Taihang’ seedlings. Nine NaCl salt stress treatments were set up, and plant height, root length, aboveground biomass and other 13 other plant traits were measured. Salt-tolerance threshold was calculated by principal component analysis. The results showed that NaCl stress had a greater influence on the growth of the shoots of B. ischaemum seedlings, but the root system was more sensitive to Na+ and K+. With increase in both stress exposure time and NaCl concentration, the activities of peroxidase and superoxide dismutase in leaves initially increased and then decreased, and reached their maxima on the 8th and 10th day, respectively, in a treatment of 210 mmol·L-1 NaCl. The contents of malondialdehyde and soluble sugar showed an upward trend over time, while chlorophyll content showed a downward trend. After principal component analysis (PCA), the first two sets of PC scores (root length and dry weight) were selected to establish regression relationship. From this evaluation it was found that the dry weight of aboveground parts was the most suitable criterion for evaluating salt tolerance, and the salt tolerance threshold of B. ischaemum seedlings was approximately 207.53 mmol·L-1. This study provides preliminary insight about the salt tolerance mechanism of grasses and for planning of subsequent research on the impact of exposure duration and salt concentration on salt tolerance in B. ischaemum.
Bothriochloa ischaemum / salt tolerance threshold / physiological and biochemical changes / principal component analysis
| [1] |
Che-Othman M H, Millar A H, Taylor N L. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. Plant, Cell & Environment, 2017, 40(12): 2875-2905. |
| [2] |
Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71. |
| [3] |
Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63(5): 635-674. |
| [4] |
Wu W T. Physiological response and transcriptome analysis of tomato to salt stress. Yantai: Ludong University, 2022. |
| [5] |
吴雯婷. 番茄对盐胁迫的生理响应及转录组分析. 烟台: 鲁东大学, 2022. |
| [6] |
Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
| [7] |
沈海花, 朱言坤, 赵霞, 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. |
| [8] |
Wang X, Fan L Q, Zhang Y H, et al. Effects of afforestation trees on soil water-salt distribution in saline-alkali soil of Ningxia. Soils, 2023, 55(1): 211-217. |
| [9] |
王旭, 樊丽琴, 张永宏, 造林树木对宁夏盐碱土水盐分布的影响. 土壤, 2023, 55(1): 211-217. |
| [10] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
| [11] |
Chen X, Ding Y, Yang Y, et al. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 2021, 63(1): 53-78. |
| [12] |
Jia T, Yao Y S, Guo T Y. Characteristics of arbuscular mycorrhizal fungi communities in rhizosphere soil at different growth stages of Bothriochloa ischaemum in copper tailings. Acta Ecologica Sinica, 2020, 40(13): 4651-4658. |
| [13] |
贾彤, 姚玉珊, 郭婷艳. 铜尾矿白羊草各生长阶段根际土壤丛枝菌根真菌群落特征. 生态学报, 2020, 40(13): 4651-4658. |
| [14] |
Gao S Y, Li Y Y, Yang Z Q, et al. Codon usage bias analysis of the chloroplast genome of Bothriochloa ischaemum. Acta Prataculturae Sinica, 2023, 32(7): 85-95. |
| [15] |
高守舆, 李钰莹, 杨志青, 白羊草叶绿体基因组密码子使用偏好性分析. 草业学报, 2023, 32(7): 85-95. |
| [16] |
Liu W J, Yang Z Q, Li Y Y, et al. Effects of salt stress on the growth of Bothriochloa ischaemum and its physiological response. Pratacultural Science, 2023, 40(10): 2651-2658. |
| [17] |
刘文静, 杨志青, 李钰莹, 盐胁迫对‘太行’白羊草生长与生理特性的影响. 草业科学, 2023, 40(10): 2651-2658. |
| [18] |
Wu L G, Fang Z H, Dong K H. Effects of NaCl and Na2SO4 stress on seeds germination of Bothriochloa ischaemum. Journal of Shanxi Agricultural Sciences, 2011, 39(10): 1115-1118. |
| [19] |
武路广, 方志红, 董宽虎. NaCl和Na2SO4胁迫对白羊草种子萌发的影响. 山西农业科学, 2011, 39(10): 1115-1118. |
| [20] |
Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. |
| [21] |
肖国增, 滕珂, 李林洁, 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. |
| [22] |
Wang B S, Zhao K F. Comparison of extractive methods of Na and K in wheat leaves. Plant Physiology Communications, 1995, 31(1): 50-52. |
| [23] |
王宝山, 赵可夫. 小麦叶片中Na、K提取方法的比较. 植物生理学通讯, 1995, 31(1): 50-52. |
| [24] |
Li H S. Principle and technology of plant physiology and biochemical experiments. Beijing: Higher Education Press, 2000. |
| [25] |
李合生. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000. |
| [26] |
Qian Y L, Wilhelm S J, Marcum K B. Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Science, 2001, 41(6): 1895-1900. |
| [27] |
Suplick-Ploense M R, Qian Y L, Read J C. Relative NaCl tolerance of Kentucky bluegrass, Texas bluegrass, and their hybrids. Crop Science, 2002, 42(6): 2025-2030. |
| [28] |
Zhao X T, Wang Y S, Duan J, et al. Effects of salt stress on growth and photosynthetic characteristics of Magnolia wufengensis grafted seedlings. Scientia Silvae Sincae, 2021, 57(4): 43-53. |
| [29] |
赵秀婷, 王延双, 段劼, 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响. 林业科学, 2021, 57(4): 43-53. |
| [30] |
Gouia H, Ghorbal M H, Touraine B. Effects of NaCl on flows of N and mineral ions and on N O 3 - reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiology, 1994, 105(4): 1409-1418. |
| [31] |
Yuan Y H. Study on physiological response and adaptive mechanism of broom corn millet (Panicum miliaceum L.) under salt stress. Yangling: Northwest A&F University, 2022. |
| [32] |
袁雨豪. 盐胁迫下糜子的生理响应及适应机制研究. 杨凌: 西北农林科技大学, 2022. |
| [33] |
Gao Y K, Yang P Y, Xiang X D, et al. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 113-121. |
| [34] |
高玉坤, 杨溥原, 项晓冬, 不同耐盐高粱品种全生育期对盐胁迫的响应. 华北农学报, 2020, 35(6): 113-121. |
| [35] |
Guo W T, Wang G H, Gou Q Q. Effects of sodium salt stress on seed germination and seedling growth of three Chenopodiaceae annuals. Acta Prataculturae Sinica, 2023, 32(2): 128-141. |
| [36] |
郭文婷, 王国华, 缑倩倩. 钠盐胁迫对藜科一年生草本植物种子萌发和幼苗生长的影响. 草业学报, 2023, 32(2): 128-141. |
| [37] |
Wang Z D. Characterization of phenotype traits, salt tolerance and genetic composition of new triticale strains. Tai’an: Shandong Agricultural University, 2022. |
| [38] |
王紫铎. 小黑麦新品系农艺性状、耐盐特性分析及遗传组成鉴定. 泰安: 山东农业大学, 2022. |
| [39] |
Su X L, Shu X, Wang X Y, et al. Effects of exogenous melatonin on seed germination and seedling growth of Elymus sibiricus under NaCl stress. Pratacultural Science, 2023, 40(10): 2595-2606. |
| [40] |
苏晓丽, 舒欣, 王晓耘, 外源褪黑素对 NaCl 胁迫下老芒麦种子萌发和幼苗生长的影响. 草业科学, 2023, 40(10): 2595-2606. |
| [41] |
Cassaniti C, Romano D, Flowers T J. The response of ornamental plants to saline irrigation water. Irrigation-water Management, Pollution and Alternative Strategies, 2012, 131: 158. |
| [42] |
Cassaniti C, Leonardi C, Flowers T J. The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 2009, 122(4): 586-593. |
| [43] |
Li R Q, Wang Y X, Sun Y L, et al. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
| [44] |
李瑞强, 王玉祥, 孙玉兰, 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价. 草业学报, 2023, 32(1): 99-111. |
| [45] |
Liu B, Kang C, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4): 217-226. |
| [46] |
Renault S, Croser C, Franklin J A, et al. Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant and Soil, 2001, 233(2): 261-268. |
| [47] |
Ashraf M, Ahmad R, Bhatti A S, et al. Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere, 2010, 20(2): 153-162. |
| [48] |
Puyang X H, An M, Han L B, et al. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 2015, 117: 96-106. |
| [49] |
Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolic response of Leymus chinensis to saline-alkali stress at seedling stage. Acta Prataculturae Sinica, 2013, 22(1): 201-209. |
| [50] |
李晓宇, 蔺吉祥, 李秀军, 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应. 草业学报, 2013, 22(1): 201-209. |
| [51] |
Wang X T. Physiological response of Chenopodium album L. to different concentrations of NaHCO3 stress. Changchun: Northeast Normal University, 2020. |
| [52] |
王献田. 藜对不同浓度NaHCO3胁迫的生理反应. 长春: 东北师范大学, 2020. |
| [53] |
Tepe H D, Aydemir T. Protective effects of Ca2+ against NaCl induced salt stress in two lentil (Lens culinaris) cultivars. African Journal of Agricultural Research, 2015, 10(23): 2389-2398. |
| [54] |
Zhao Y X, Zhang F L, Hao L Z, et al. Effect of NaCl stress on root characters and inorganic ion contents of Allium mongolicum regel. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(3): 115-121. |
| [55] |
赵映雪, 张凤兰, 郝丽珍, NaCl胁迫对沙葱苗期根系特征及无机离子含量的影响. 西北农林科技大学学报(自然科学版), 2020, 48(3): 115-121. |
| [56] |
Alam H, Khattak J Z K, Ksiksi T S, et al. Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiologia Plantarum, 2021, 172(2): 1336-1351. |
| [57] |
Jiang Y, Zhou M, Wu Y, et al. Evaluation of tolerance and its underlying physiological mechanisms in different oats. Pratacultural Science, 2018, 35(12): 2903-2914. |
| [58] |
姜瑛, 周萌, 吴越, 不同燕麦品种耐盐性差异及其生理机制. 草业科学, 2018, 35(12): 2903-2914. |
| [59] |
Li S, Wang A Y, Jiao Z, et al. Physiological and chemical characteristics and transcriptome analysis of different type of wheat seedlings under salt stress. Journal of Agricultural Science and Technology, 2024, 26(2): 20-32. |
| [60] |
李双, 王爱英, 焦浈, 盐胁迫下不同抗性小麦幼苗生理生化特性及转录组分析. 中国农业科技导报, 2024, 26(2): 20-32. |
| [61] |
Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plant. Plant Science, 2004, 166(1): 3-16. |
| [62] |
Yang Y J, Zheng W, Tian Y, et al. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284. |
| [63] |
Zou P, Yang X, Yuan Y, et al. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. International Journal of Biological Macromolecules, 2021, 180: 547-558. |
| [64] |
Lin D D, Zhao G Q, Ju Z L, et al. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
| [65] |
蔺豆豆, 赵桂琴, 琚泽亮, 15份燕麦材料苗期抗旱性综合评价. 草业学报, 2021, 30(11): 108-121. |
| [66] |
Fazeli F, Ghorbanli M, Niknam V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum, 2007, 51(7): 98-103. |
| [67] |
Wang N. Biological response of different maize varieties at seedling to salt stress and mechanism of tolerance. Shenyang: Shenyang Agricultural University, 2009. |
| [68] |
王宁. 不同玉米品种苗期对盐胁迫的生物学响应及耐性机制研究. 沈阳: 沈阳农业大学, 2009. |
| [69] |
Zhang Y. Alleviative effects and its mechanism of exogenous spermidine on tomato seedlings under salinity-alkalinity mixed stress. Yangling: Northwest A & F University, 2013. |
| [70] |
张毅. 亚精胺对番茄幼苗盐碱胁迫的缓解效应及其调控机理. 杨凌: 西北农林科技大学, 2013. |
| [71] |
Sui L, Yi J N, Wang K C, et al. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress. Chinese Journal of Ecology, 2018, 37(11): 3277-3283. |
| [72] |
隋利, 易家宁, 王康才, 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响. 生态学杂志, 2018, 37(11): 3277-3283. |
| [73] |
Wang Y, Wang Y T, Yang R F, et al. Effects of gibberellin priming on seedling emergence and transcripts involved in mesocotyl elongation in rice under deep direct-seeding conditions. Journal of Zhejiang University-Science (Biomedicine & Biotechnology), 2021, 22(12): 1002-1021. |
| [74] |
Yuan H, Zhang X H, Han X Q, et al. Effects of salt and alkali stress on biomass and physiological characteristics of four Phleum pratense at seedling stage.Acta Agrestia Sinica, 2024, 32(4): 1184-1193. |
| [75] |
袁惠, 张鲜花, 韩禧卿, 盐、碱胁迫对4份梯牧草苗期生物量及生理特性的影响. 草地学报, 2024, 32(4): 1184-1193. |
| [76] |
Wang M M, Zhao G Q, Liang G L, et al. Physiological response of different salt-tolerant oats to salt stress. Pratacultural Science, 2021, 38(11): 2200-2209. |
| [77] |
王苗苗, 赵桂琴, 梁国玲, 不同耐盐性燕麦对盐胁迫的生理响应. 草业科学, 2021, 38(11): 2200-2209. |
| [78] |
Hayat K, Zhou Y, Menhas S, et al. Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environmental Pollution, 2020, 265: 114876. |
| [79] |
Xue L, Li X, Yan Z, et al. Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia, 2018, 806(1): 47-65. |
| [80] |
Lupo Y, Schlisser A, Dong S, et al. Root system response to salt stress in grapevines (Vitis spp.): a link between root structure and salt exclusion. Plant Science, 2022, 325: 111460. |
| [81] |
Chen X H. Identification and tolerance mechanism of common millet (Panicum miliaceum L.) in neutral mixed salts. Jinzhong: Shanxi Agricultural University, 2022. |
| [82] |
陈小红. 糜子耐中性混合盐鉴定与耐盐机制研究. 晋中: 山西农业大学, 2022. |
| [83] |
Li X K, Wu C N, Wang W, et al. Screening and evaluation of salt-tolerant germplasm of synthetic hexaploid wheat. Journal of Triticeae Crops, 2021, 41(12): 1487-1495. |
| [84] |
李小康, 吴崇宁, 王维, 人工合成六倍体小麦耐盐种质资源的筛选及评价. 麦类作物学报, 2021, 41(12): 1487-1495. |
| [85] |
Jia X P, Deng Y M, Sun X B, et al. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
| [86] |
贾新平, 邓衍明, 孙晓波, 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 2015, 24(12): 204-212. |
| [87] |
Li Y B, Han D Y, Fu R Y, et al. Effects of NaCl stress on morphology and related physiological indexes of Carex subpediformis. Pratacultural Science, 2022, 39(3): 529-537. |
| [88] |
李英博, 韩戴宇, 付如裕, NaCl胁迫对亚柄薹草形态和相关生理指标的影响. 草业科学, 2022, 39(3): 529-537. |
| [89] |
Lan Y. Physiological responses of three Echinochloa forages to saline-alkaline stress and comprehensive evaluation for their saline-alkaline tolerance. Yinchuan: Ningxia University, 2022. |
| [90] |
兰艳. 三种稗属牧草种子萌发和幼苗对盐碱胁迫的生理响应及耐性评估. 银川: 宁夏大学, 2022. |
| [91] |
Shaheen S, Naseer S, Ashraf M, et al. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions, 2013, 8(1): 85-96. |
山西省重点研发计划项目课题“白羊草等优良乡土禾草抗逆基因资源挖掘及创新利用(202102140601006-2┫”和山西农业大学“十四五”生物育种工程项目“乡土草种质资源挖掘与新品种选育”┣YZGC134)
/
| 〈 |
|
〉 |